

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64mc202t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.5 ICSP Pins

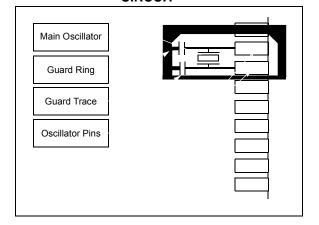
The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3, or MPLAB REAL ICE[™].

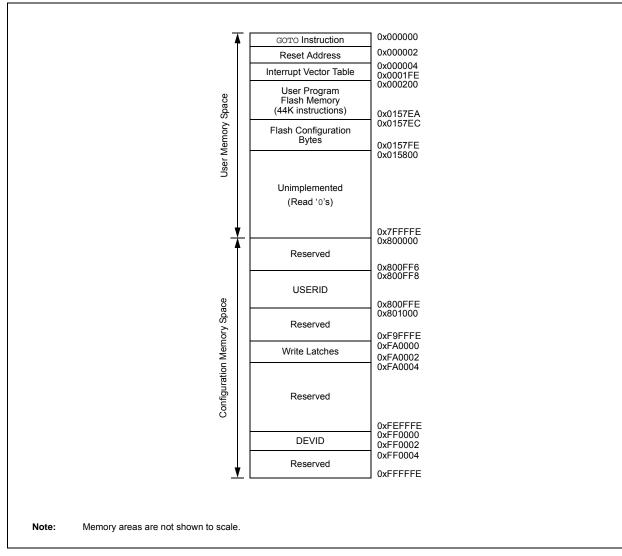
For more information on MPLAB ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB[®] ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) DS51749


2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency Primary Oscillator and a low-frequency Secondary Oscillator. For details, see **Section 9.0 "Oscillator Configuration"** for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.


SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1 ⁽¹⁾	US0 ⁽¹⁾	EDT ^(1,2)	DL2 ⁽¹⁾	DL1 ⁽¹⁾	DL0 ⁽¹⁾
bit 15							bit
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA ⁽¹⁾	SATB ⁽¹⁾	SATDW ⁽¹⁾	ACCSAT ⁽¹⁾	IPL3(3)	SFA	RND ⁽¹⁾	IF(1)
bit 7	I				I	1	bit
Legend:		C = Clearable	e bit				
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	1 = Variable	le Exception Pro exception proce	essing latency	is enabled			
bit 14		nted: Read as '					
bit 13-12	-	SP Multiply Uns		Control bits ⁽¹⁾			
	01 = DSP er 00 = DSP er	ngine multiplies ngine multiplies ngine multiplies	are unsigned are signed				
bit 11	•	O Loop Terminatives executing Dot t			iteration		
bit 10-8		Loop Nesting oops are active		(1)			
	•						
	•						
	001 = 1 DO k 000 = 0 DO k	oop is active oops are active					
bit 7	SATA: ACCA	A Saturation En	able bit ⁽¹⁾				
		ator A saturatio ator A saturatio					
bit 6	SATB: ACCE	B Saturation En	able bit ⁽¹⁾				
		ator B saturatio ator B saturatio					
bit 5	SATDW: Dat	ta Space Write	from DSP Engi	ne Saturation	Enable bit ⁽¹⁾		
		ace write satura ace write satura		I			
bit 4		cumulator Satu		elect bit ⁽¹⁾			
		uration (super s uration (normal	,				
bit 3		nterrupt Priority					
		errupt Priority Le errupt Priority Le					
	nis bit is availabl		PXXXMC20X/	50X and dsPl	C33EPXXXGP	50X devices on	ly.
2: Th	nis bit is always	reau as 0.					

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

FIGURE 4-3: PROGRAM MEMORY MAP FOR dsPIC33EP128GP50X, dsPIC33EP128MC20X/50X AND PIC24EP128GP/MC20X DEVICES

TABLE 4	-16:	QEI1	REGR		P FOR d	SPIC33E	PXXXMO	20X/50)	(AND PI	C24EP)		20X DE	VICES O	NLY	1			r
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
QEI1CON	01C0	QEIEN												0000				
QEI1IOC	01C2	QCAPEN	EN FLTREN QFDIV<2:0> OUTFNC<1:0> SWPAB HOMPOL IDXPOL QEBPOL QEAPOL HOME INDEX QEB QEA 000x															
QEI1STAT	01C4	_	- PCHEQIRQ PCHEQIEN PCLEQIRQ PCLEQIRQ POLEQIEN POSOVIRQ POSOVIEN PCIIRQ PCIIEN VELOVIRQ VELOVIEN HOMIRQ HOMIEN IDXIRQ IDXIEN 0000										0000					
POS1CNTL	01C6								POSCNT<15	:0>								0000
POS1CNTH	01C8							ł	POSCNT<31:	16>								0000
POS1HLD	01CA								POSHLD<15	0>								0000
VEL1CNT	01CC								VELCNT<15	0>								0000
INT1TMRL	01CE								INTTMR<15:	0>								0000
INT1TMRH	01D0								INTTMR<31:	6>								0000
INT1HLDL	01D2								INTHLD<15:)>								0000
INT1HLDH	01D4								INTHLD<31:1	6>								0000
INDX1CNTL	01D6								INDXCNT<15	:0>								0000
INDX1CNTH	01D8								NDXCNT<31:	16>								0000
INDX1HLD	01DA								INDXHLD<15	:0>								0000
QEI1GECL	01DC								QEIGEC<15	0>								0000
QEI1ICL	01DC								QEIIC<15:0	>								0000
QEI1GECH	01DE								QEIGEC<31:	16>								0000
QEI1ICH	01DE		QEIIC<31:16> 0000															
QEI1LECL	01E0		QEILEC<15:0> 0000															
QEI1LECH	01E2								QEILEC<31:1	6>								0000

TABLE 4-16: QEI1 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-46: PORTA REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_	_		TRISA12	TRISA11	TRISA10	TRISA9	TRISA8	TRISA7	_		TRISA4	_		TRISA1	TRISA0	1F93
PORTA	0E02	_	_	-	RA12	RA11	RA10	RA9	RA8	RA7	_		RA4	_	-	RA1	RA0	0000
LATA	0E04		_	_	LATA12	LATA11	LATA10	LATA9	LATA8	LATA7		_	LATA4		_	LA1TA1	LA0TA0	0000
ODCA	0E06		_	_	ODCA12	ODCA11	ODCA10	ODCA9	ODCA8	ODCA7		_	ODCA4		_	ODCA1	ODCA0	0000
CNENA	0E08		_	_	CNIEA12	CNIEA11	CNIEA10	CNIEA9	CNIEA8	CNIEA7		_	CNIEA4		_	CNIEA1	CNIEA0	0000
CNPUA	0E0A		_	_	CNPUA12	CNPUA11	CNPUA10	CNPUA9	CNPUA8	CNPUA7		_	CNPUA4		_	CNPUA1	CNPUA0	0000
CNPDA	0E0C		_	_	CNPDA12	CNPDA11	CNPDA10	CNPDA9	CNPDA8	CNPDA7		_	CNPDA4		_	CNPDA1	CNPDA0	0000
ANSELA	0E0E	_	_	_	ANSA12	ANSA11		_	-	_	_	_	ANSA4	_	_	ANSA1	ANSA0	1813

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-47: PORTB REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	0E16	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E	_	_	—	_	-	_	_	ANSB8	_	_	-	_	ANSB3	ANSB2	ANSB1	ANSB0	010F

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-48: PORTC REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	TRISC15	_	TRISC13	TRISC12	TRISC11	TRISC10	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	BFFF
PORTC	0E22	RC15	_	RC13	RC12	RC11	RC10	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx
LATC	0E24	LATC15	_	LATC13	LATC12	LATC11	LATC10	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
ODCC	0E26	ODCC15	-	ODCC13	ODCC12	ODCC11	ODCC10	ODCC9	ODCC8	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000
CNENC	0E28	CNIEC15	—	CNIEC13	CNIEC12	CNIEC11	CNIEC10	CNIEC9	CNIEC8	CNIEC7	CNIEC6	CNIEC5	CNIEC4	CNIEC3	CNIEC2	CNIEC1	CNIEC0	0000
CNPUC	0E2A	CNPUC15	—	CNPUC13	CNPUC12	CNPUC11	CNPUC10	CNPUC9	CNPUC8	CNPUC7	CNPUC6	CNPUC5	CNPUC4	CNPUC3	CNPUC2	CNPUC1	CNPUC0	0000
CNPDC	0E2C	CNPDC15	—	CNPDC13	CNPDC12	CNPDC11	CNPDC10	CNPDC9	CNPDC8	CNPDC7	CNPDC6	CNPDC5	CNPDC4	CNPDC3	CNPDC2	CNPDC1	CNPDC0	0000
ANSELC	0E2E	_	_	_	_	ANSC11	_	_	_	_	_	_	_	_	ANSC2	ANSC1	ANSC0	0807

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

In addition, DMA transfers can be triggered by timers as well as external interrupts. Each DMA channel is unidirectional. Two DMA channels must be allocated to read and write to a peripheral. If more than one channel receives a request to transfer data, a simple fixed priority scheme based on channel number, dictates which channel completes the transfer and which channel, or channels, are left pending. Each DMA channel moves a block of data, after which, it generates an interrupt to the CPU to indicate that the block is available for processing.

The DMA Controller provides these functional capabilities:

- Four DMA channels
- Register Indirect with Post-Increment Addressing mode
- Register Indirect without Post-Increment Addressing mode

- Peripheral Indirect Addressing mode (peripheral generates destination address)
- CPU interrupt after half or full block transfer complete
- Byte or word transfers
- · Fixed priority channel arbitration
- Manual (software) or automatic (peripheral DMA requests) transfer initiation
- One-Shot or Auto-Repeat Block Transfer modes
- Ping-Pong mode (automatic switch between two SRAM start addresses after each block transfer is complete)
- DMA request for each channel can be selected from any supported interrupt source
- Debug support features

The peripherals that can utilize DMA are listed in Table 8-1.

Peripheral to DMA Association	DMAxREQ Register IRQSEL<7:0> Bits	DMAxPAD Register (Values to Read from Peripheral)	DMAxPAD Register (Values to Write to Peripheral)
INT0 – External Interrupt 0	00000000	_	_
IC1 – Input Capture 1	0000001	0x0144 (IC1BUF)	—
IC2 – Input Capture 2	00000101	0x014C (IC2BUF)	—
IC3 – Input Capture 3	00100101	0x0154 (IC3BUF)	—
IC4 – Input Capture 4	00100110	0x015C (IC4BUF)	—
OC1 – Output Compare 1	0000010	_	0x0906 (OC1R) 0x0904 (OC1RS)
OC2 – Output Compare 2	00000110	_	0x0910 (OC2R) 0x090E (OC2RS)
OC3 – Output Compare 3	00011001	_	0x091A (OC3R) 0x0918 (OC3RS)
OC4 – Output Compare 4	00011010	_	0x0924 (OC4R) 0x0922 (OC4RS)
TMR2 – Timer2	00000111	—	_
TMR3 – Timer3	00001000	—	_
TMR4 – Timer4	00011011	—	_
TMR5 – Timer5	00011100	—	—
SPI1 Transfer Done	00001010	0x0248 (SPI1BUF)	0x0248 (SPI1BUF)
SPI2 Transfer Done	00100001	0x0268 (SPI2BUF)	0x0268 (SPI2BUF)
UART1RX – UART1 Receiver	00001011	0x0226 (U1RXREG)	—
UART1TX – UART1 Transmitter	00001100	—	0x0224 (U1TXREG)
UART2RX – UART2 Receiver	00011110	0x0236 (U2RXREG)	
UART2TX – UART2 Transmitter	00011111	—	0x0234 (U2TXREG)
ECAN1 – RX Data Ready	00100010	0x0440 (C1RXD)	_
ECAN1 – TX Data Request	01000110	—	0x0442 (C1TXD)
ADC1 – ADC1 Convert Done	00001101	0x0300 (ADC1BUF0)	—

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHEN	SIZE	DIR	HALF	NULLW			
bit 15							bit
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
	0-0	AMODE1	AMODE0	0-0	0-0	MODE1	MODE0
bit 7		AWODET	7 WIODE0			MODET	bit
Lovende							
Legend: R = Readab	lo hit	M - Mritabla	hit.		monted bit rec	ud aa '0'	
		W = Writable		-	mented bit, rea		
-n = Value a	IT POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	CHEN: DMA	Channel Enabl	e bit				
	1 = Channel 0 = Channel						
bit 14		ata Transfer S	ze hit				
	1 = Byte						
	0 = Word						
bit 13	DIR: DMA Tra	ansfer Directior	n bit (source/d	estination bus	select)		
		om RAM addre om peripheral a		•			
bit 12		Block Transfer					
	1 = Initiates i	nterrupt when	half of the data	a has been mo			
bit 11		Data Periphera					
		write to periph			e (DIR bit must	also be clear)	
bit 10-6	Unimplemen	ted: Read as '	0'				
bit 5-4	AMODE<1:0	-: DMA Chann	el Addressing	Mode Select b	oits		
	11 = Reserve 10 = Periphe 01 = Register		ressing mode ut Post-Increm	nent mode			
bit 3-2	Unimplemen	ted: Read as '	0'				
bit 1-0	-	DMA Channel		de Select bits			
	11 = One-Sho 10 = Continue	ot, Ping-Pong r ous, Ping-Pong ot, Ping-Pong r	nodes are ena modes are e nodes are dis	abled (one bloc nabled abled	ck transfer fror	n/to each DMA t	ouffer)

REGISTER 8-1: DMAXCON: DMA CHANNEL X CONTROL REGISTER

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

	12. 2007.00						
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—		—	—	RQCOL3	RQCOL2	RQCOL1	RQCOL0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-4	Unimplemen	ted: Read as '	כ'				
bit 3	RQCOL3: DN	/IA Channel 3 T	ransfer Requ	est Collision F	ag bit		
		e and interrupt est collision is d		st collision is d	etected		
h # 0	•			est Callisian Fl	aa hit		
bit 2		/IA Channel 2 T ce and interrupt	•		0		
		e and interrupt est collision is d			elecieu		
bit 1	RQCOL1: DN	/IA Channel 1 T	ransfer Requ	est Collision Fl	ag bit		
	1 = User for	e and interrupt	-based reque	st collision is d	etected		
	0 = No reque	est collision is d	etected				
bit 0	RQCOLO: DN	/IA Channel 0 T	ransfer Requ	est Collision F	lag bit		
	1 = User force	e and interrupt	-based reque	st collision is d	etected		

REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER

0 = No request collision is detected

NOTES:

REGISTER 11-7: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				FLT2R<6:0>			
bit 15							bit 8
	D 444 A	D 444 0	D 444 A	Date	D 444 0	DAVA	D # 44 0
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				FLT1R<6:0>			
bit 7							bit C
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 14-8	FLT2R<6:0> (see Table 11	-2 for input pin	Fault 2 (FLT2)) to the Corresp nbers)	onding RPn F	Pin bits	
bit 14-8	FLT2R<6:0> (see Table 11 1111001 = h	: Assign PWM I	Fault 2 (FLT2) selection nur 121		onding RPn F	Pin bits	
bit 14-8	FLT2R<6:0> (see Table 11 1111001 = h	: Assign PWM I I-2 for input pin nput tied to RPI	Fault 2 (FLT2) selection nur 121 P1		onding RPn F	Pin bits	
bit 14-8 bit 7	FLT2R<6:0> (see Table 11 1111001 = h	: Assign PWM I I-2 for input pin nput tied to RPI nput tied to CM	Fault 2 (FLT2 selection nur 121 P1		onding RPn F	Pin bits	

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				SCK2INR<6:0	>		
bit 15							bit 8
					5444.6	D 444 A	5444.6
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				SDI2R<6:0>			
bit 7							bit 0
Legend:							
R = Readab		W = Writable		U = Unimplen			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
		nput tied to RPI nput tied to CMI nput tied to Vss	P1				
bit 7	Unimpleme	nted: Read as 'o	כי				
bit 6-0	(see Table 1 [^] 1111001 = I	: Assign SPI2 D 1-2 for input pin nput tied to RPI nput tied to CMI	selection num	,	esponding RPi	ר Pin bits	

REGISTER 11-12: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	_	-	—	—	—	—	IC32
bit 15							bit 8
R/W-0	R/W/HS-0	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

Dit 7				DILU
Legend:	HS = Hardware Settab	le bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

SYNCSEL4⁽⁴⁾ SYNCSEL3⁽⁴⁾ SYNCSEL2⁽⁴⁾ SYNCSEL1⁽⁴⁾ SYNCSEL0⁽⁴⁾

hit A

bit 15-9	Unimplemented: Read as '0'	

TRIGSTAT⁽³⁾

ICTRIG⁽²⁾

hit 7

bit 10-0	Ommplemented. Read as 0
bit 8	IC32: Input Capture 32-Bit Timer Mode Select

- IC32: Input Capture 32-Bit Timer Mode Select bit (Cascade mode)
 - 1 = Odd IC and Even IC form a single 32-bit input capture module⁽¹⁾
 - 0 = Cascade module operation is disabled

bit 7 **ICTRIG:** Input Capture Trigger Operation Select bit⁽²⁾

- 1 = Input source used to trigger the input capture timer (Trigger mode)
- 0 = Input source used to synchronize the input capture timer to a timer of another module (Synchronization mode)

bit 6 **TRIGSTAT:** Timer Trigger Status bit⁽³⁾

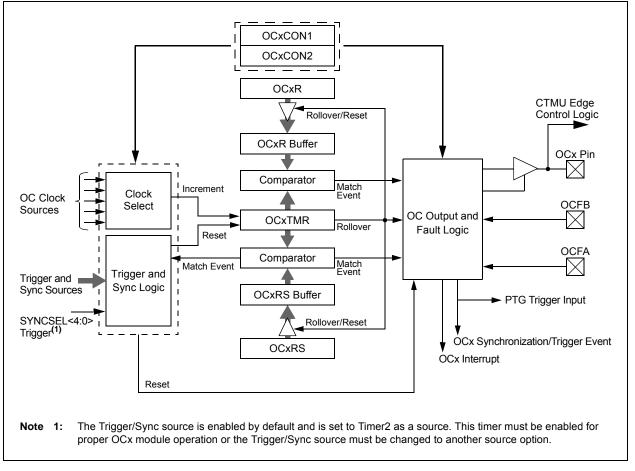
- 1 = ICxTMR has been triggered and is running
- 0 = ICxTMR has not been triggered and is being held clear

bit 5 Unimplemented: Read as '0'

- **Note 1:** The IC32 bit in both the Odd and Even IC must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits). It can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own Sync or Trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.
 - 6: Each Input Capture x (ICx) module has one PTG input source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.

PTGO8 = IC1 PTGO9 = IC2 PTGO10 = IC3 PTGO11 = IC4

DS70000657H-page 216


15.0 OUTPUT COMPARE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Output Compare" (DS70358) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The output compare module can select one of seven available clock sources for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The output compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events and trigger DMA data transfers.

Note: See "Output Compare" (DS70358) in the "dsPIC33/PIC24 Family Reference Manual" for OCxR and OCxRS register restrictions.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	-	—	—		LEB	<11:8>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			LEE	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit V		W = Writable	W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

REGISTER 16-17: LEBDLYx: PWMx LEADING-EDGE BLANKING DELAY REGISTER

bit 15-12 Unimplemented: Read as '0'

bit 11-0 LEB<11:0>: Leading-Edge Blanking Delay for Current-Limit and Fault Inputs bits

R-0	R-0	R-0	R-0	R-0	R-0	R-0
		TERR	CNT<7:0>			
						bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0
		RERR	CNT<7:0>			
						bit 0
R = Readable bit W = Writable bit		it	U = Unimpleme	ented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared			x = Bit is unkr	nown		
	R-0	R-0 R-0 it W = Writable b	TERR R-0 R-0 R-0 RERR it W = Writable bit	TERRCNT<7:0> R-0 R-0 R-0 RERRCNT<7:0> RERRCNT<7:0>	TERRCNT<7:0> R-0 R-0 R-0 RERRCNT<7:0> RERRCNT	TERRCNT<7:0> R-0 R-0 R-0 R-0 RERRCNT<7:0> U = Unimplemented bit, read as '0'

bit 7-0 **RERRCNT<7:0>:** Receive Error Count bits

REGISTER 21-9: CxCFG1: ECANx BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SJW1 | SJW0 | BRP5 | BRP4 | BRP3 | BRP2 | BRP1 | BRP0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
----------	----------------------------

bit 7-6	SJW<1:0>: Synchronization Jump Width bits
	11 = Length is 4 x TQ
	$10 = \text{Length is } 3 \times \text{Tq}$
	$01 = \text{Length is } 2 \times \text{T} Q$
	$00 = \text{Length is } 1 \times \text{Tq}$

```
bit 5-0 BRP<5:0>: Baud Rate Prescaler bits
```

```
11 1111 = TQ = 2 x 64 x 1/FCAN
```

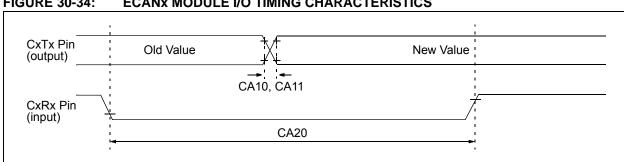
•

- 00 0010 = TQ = 2 x 3 x 1/FCAN 00 0001 = TQ = 2 x 2 x 1/FCAN
- 00 0000 = Tq = 2 x 1 x 1/FCAN

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 21-19: CxFMSKSEL2: ECANx FILTER 15-8 MASK SELECTION REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F15MSK<1:0>		F14MS	F14MSK<1:0>		SK<1:0>	F12MSK<1:0>		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F11MSK<1:0>		F10MSK<1:0>		F9MSK<1:0>		<1:0>	
bit 7							bit C	
Legend:								
R = Readabl	le bit	W = Writable bit		U = Unimplem	l as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 15-14		0>: Mask Sourc	e for Filter 15	bits				
bit 15-14	11 = Reserv	ed						
bit 15-14	11 = Reserv 10 = Accepta	ed ance Mask 2 reg	gisters contair	n mask				
bit 15-14	11 = Reserv 10 = Accept 01 = Accept	ed	gisters contair gisters contair	n mask n mask				
bit 15-14 bit 13-12	11 = Reserv 10 = Accepta 01 = Accepta 00 = Accepta	red ance Mask 2 reg ance Mask 1 reg	gisters contair gisters contair gisters contair	n mask n mask n mask	ies as bits<15∷	14>)		
	11 = Reserv 10 = Accept 01 = Accept 00 = Accept F14MSK<1:	red ance Mask 2 reg ance Mask 1 reg ance Mask 0 reg	gisters contair gisters contair gisters contair e for Filter 14	n mask n mask n mask n mask bits (same valu				
bit 13-12	11 = Reserv 10 = Accept 01 = Accept 00 = Accept F14MSK<1: F13MSK<1:	red ance Mask 2 reg ance Mask 1 reg ance Mask 0 reg 0>: Mask Sourc	gisters contair gisters contair gisters contair e for Filter 14 e for Filter 13	n mask n mask n mask bits (same valu bits (same valu	ies as bits<15:	14>)		
bit 13-12 bit 11-10	11 = Reserv 10 = Accept 01 = Accept 00 = Accept F14MSK<1: F13MSK<1: F12MSK<1:	red ance Mask 2 reg ance Mask 1 reg ance Mask 0 reg 0>: Mask Sourc 0>: Mask Sourc	gisters contair gisters contair gisters contair e for Filter 14 e for Filter 13 e for Filter 12	n mask n mask n mask bits (same valu bits (same valu bits (same valu	ies as bits<15: ies as bits<15:	14>) 14>)		
bit 13-12 bit 11-10 bit 9-8	11 = Reserv 10 = Accept 01 = Accept 00 = Accept F14MSK<1: F13MSK<1: F12MSK<1:	red ance Mask 2 reg ance Mask 1 reg ance Mask 0 reg 0>: Mask Sourc 0>: Mask Sourc 0>: Mask Sourc	gisters contair gisters contair gisters contair e for Filter 14 e for Filter 13 e for Filter 12 e for Filter 11	n mask n mask n mask bits (same valu bits (same valu bits (same valu bits (same valu	ies as bits<15: ies as bits<15: es as bits<15:′	14>) 14>) 14>)		
bit 13-12 bit 11-10 bit 9-8 bit 7-6	11 = Reserv 10 = Accepta 01 = Accepta 00 = Accepta F14MSK<1: F13MSK<1: F12MSK<1: F11MSK<1: F10MSK<1:	red ance Mask 2 reg ance Mask 1 reg ance Mask 0 reg 0>: Mask Sourc 0>: Mask Sourc 0>: Mask Sourc	gisters contair gisters contair gisters contair e for Filter 14 e for Filter 13 e for Filter 13 e for Filter 11 e for Filter 10	n mask n mask n mask bits (same valu bits (same valu bits (same valu bits (same valu bits (same valu	ies as bits<15: ies as bits<15: es as bits<15: ies as bits<15:	14>) 14>) 14>) 14>)		


U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	—	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0	
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	nown			
bit 15-13	Unimplemen	ted: Read as '	0'					
bit 12-8	DWIDTH<4:0>: Data Width Select bits							
	These bits se	t the width of th	ne data word (DWIDTH<4:0>	• + 1).			
bit 7-5	Unimplemented: Read as '0'							

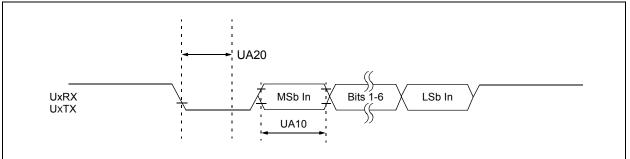
REGISTER 26-2: CRCCON2: CRC CONTROL REGISTER 2

bit 4-0 **PLEN<4:0>:** Polynomial Length Select bits

These bits set the length of the polynomial (Polynomial Length = PLEN<4:0> + 1).

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

FIGURE 30-34: ECAN_x MODULE I/O TIMING CHARACTERISTICS


TABLE 30-51: ECANx MODULE I/O TIMING REQUIREMENTS

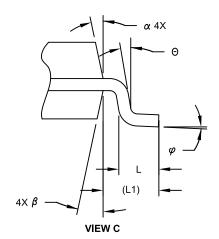
AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
CA10	TIOF	Port Output Fall Time	—	_		ns	See Parameter DO32
CA11	TioR	Port Output Rise Time	—	—	_	ns	See Parameter DO31
CA20	TCWF	VF Pulse Width to Trigger CAN Wake-up Filter			_	ns	

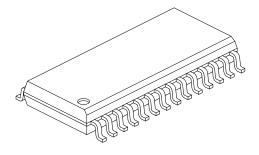
Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 30-35: UARTX MODULE I/O TIMING CHARACTERISTICS

TABLE 30-52: UARTX MODULE I/O TIMING REQUIREMENTS


AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
UA10	TUABAUD	UARTx Baud Time	66.67		_	ns	
UA11	FBAUD	UARTx Baud Frequency	—		15	Mbps	
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	500	_		ns	

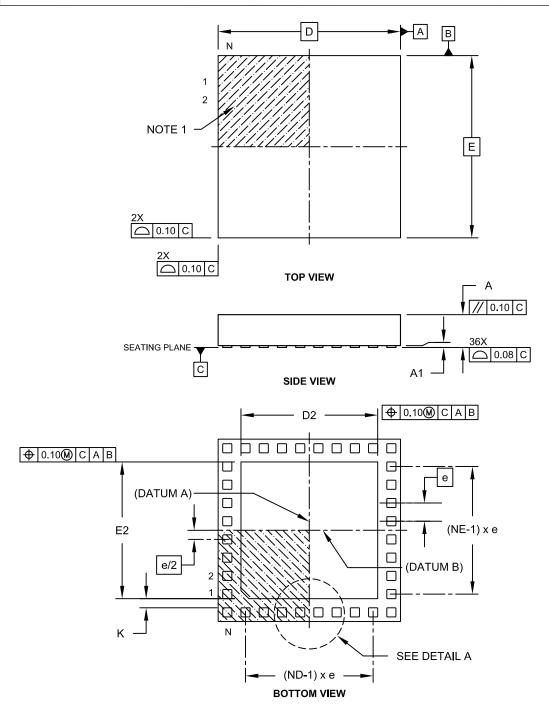

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	Limits	MIN	NOM	MAX			
Number of Pins	N		28				
Pitch	е		1.27 BSC				
Overall Height	Α	-	-	2.65			
Molded Package Thickness	A2	2.05	-	-			
Standoff §	A1	0.10	-	0.30			
Overall Width	E	10.30 BSC					
Molded Package Width	E1	7.50 BSC					
Overall Length	D	17.90 BSC					
Chamfer (Optional)	h	0.25	-	0.75			
Foot Length	L	0.40	-	1.27			
Footprint	L1		1.40 REF				
Lead Angle	Θ	0°	-	-			
Foot Angle	φ	0°	-	8°			
Lead Thickness	С	0.18	-	0.33			
Lead Width	b	0.31	-	0.51			
Mold Draft Angle Top	α	5°	-	15°			
Mold Draft Angle Bottom	β	5°	-	15°			


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

36-Terminal Very Thin Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-187C Sheet 1 of 2