

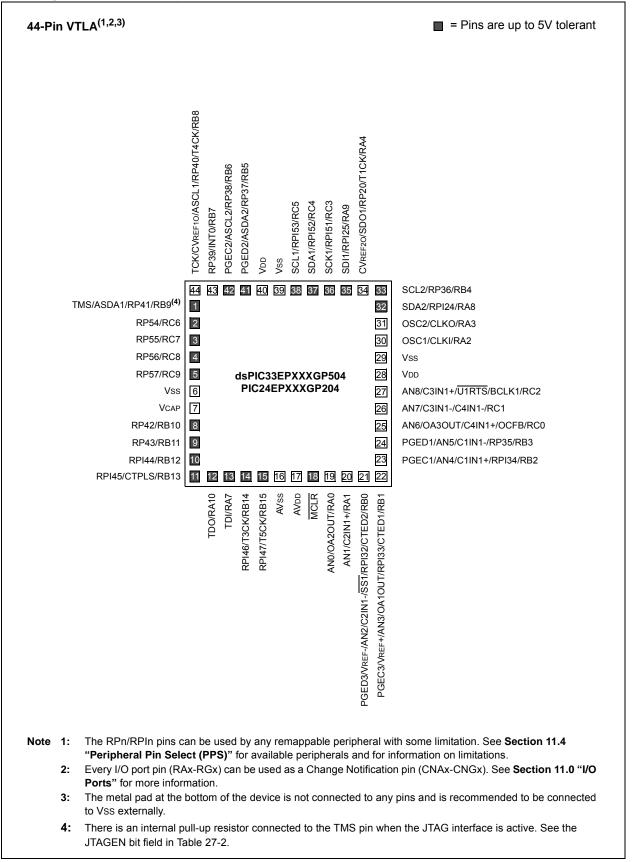
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

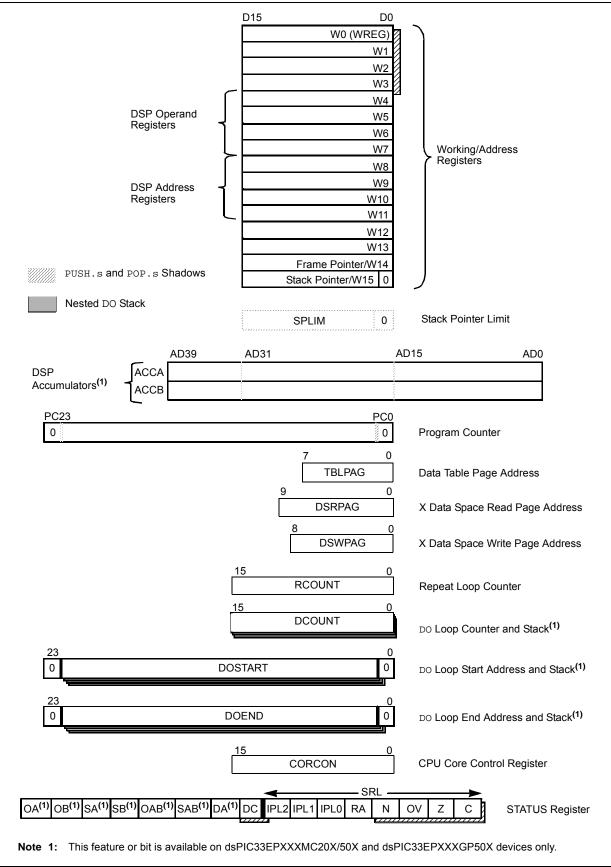
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

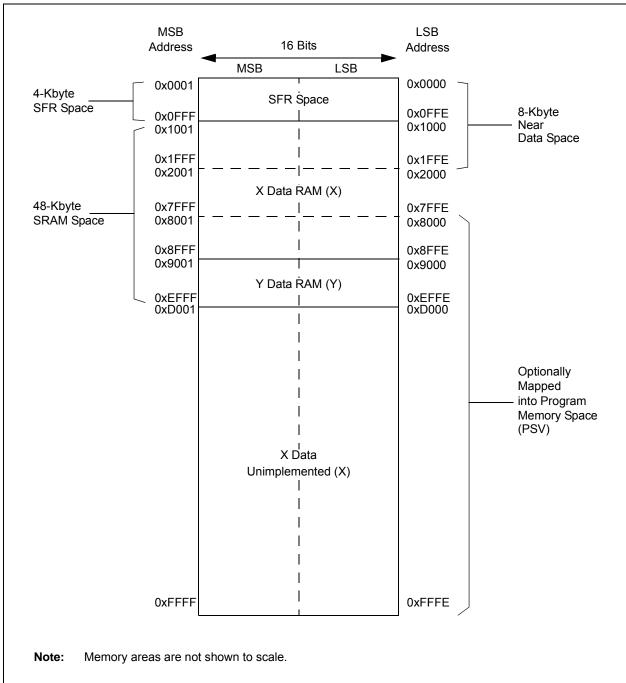
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

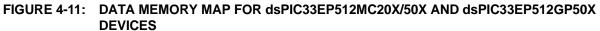
Details


E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	36-VFTLA Exposed Pad
Supplier Device Package	36-VTLA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64mc203-e-tl


Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Pin Diagrams (Continued)

4.4 Special Function Register Maps

TABLE 4-1: CPU CORE REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND dsPIC33EPXXXGP50X DEVICES ONLY

		0.00							20/0/00/							-	r	
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
W0	0000								W0 (WR	EG)								xxxx
W1	0002								W1									xxxx
W2	0004								W2									xxxx
W3	0006								W3									xxxx
W4	8000								W4									xxxx
W5	000A								W5									xxxx
W6	000C		W6										xxxx					
W7	000E		W7										xxxx					
W8	0010		W8										xxxx					
W9	0012								W9									xxxx
W10	0014								W10									xxxx
W11	0016								W11									xxxx
W12	0018								W12									xxxx
W13	001A								W13									xxxx
W14	001C								W14									xxxx
W15	001E								W15									xxxx
SPLIM	0020								SPLI	N								0000
ACCAL	0022								ACCA	L								0000
ACCAH	0024								ACCA	H								0000
ACCAU	0026			Si	gn Extensior	n of ACCA<	39>						ACO	CAU				0000
ACCBL	0028								ACCB	L								0000
ACCBH	002A								ACCB	Н								0000
ACCBU	002C			Si	gn Extensior	n of ACCB<	39>						ACO	CBU				0000
PCL	002E							F	PCL<15:0>									0000
PCH	0030	_	_	_	—	_	_	—	_	_				PCH<6:0>				0000
DSRPAG	0032	_	_	_	—	_	_					DSRPAC	6<9:0>					0001
DSWPAG	0034	_		_	—		_	_				DS	WPAG<8:	0>				0001
RCOUNT	0036		RCOUNT<15:0>										0000					
DCOUNT	0038								DCOUNT<	:15:0>								0000
DOSTARTL	003A							DOS	STARTL<15:1	>								0000
DOSTARTH	003C	_	—	—	_	—	—	_	_	_	—			DOSTAF	RTH<5:0>			0000
DOENDL	003E							DO	ENDL<15:1>	>								0000
DOENDH	0040	_	—	—	—	—	—	_	—	—	—			DOEND)H<5:0>			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

IABLE 4-2	ABLE 4-21: ECAN1 REGISTER MAP WHEN WIN (C1CTRE1<0>) = 0 OR 1 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY																	
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	_	—	CSIDL	ABAT	CANCKS	R	EQOP<2:0	>	OPM	/IODE<2:0	>	—	CANCAP	—	—	WIN	0480
C1CTRL2	0402	_	_	—	_	_	_	—	_	—	_	_		D	NCNT<4:0	>		0000
C1VEC	0404	_	—	—		F	ILHIT<4:0>			—			•	ICODE<6:0	>			0040
C1FCTRL	0406	C	DMABS<2:0	>		_	—	—	—	_	_	_			FSA<4:0>			0000
C1FIFO	0408		—			FBP<	5:0>			_	_			FNRB	<5:0>			0000
C1INTF	040A		—	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C		—	—		_	—	—	—	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E				TERRCN	T<7:0>							RERRCN	NT<7:0>				0000
C1CFG1	0410	_	_	_	_	_	_	_	_	SJW<1	:0>			BRP	<5:0>			0000
C1CFG2	0412	_	WAKFIL	_	_	_	SI	=G2PH<2:()>	SEG2PHTS	SAM	S	EG1PH<2	:0>	P	RSEG<2:0	>	0000
C1FEN1	0414	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C1FMSKSEL1	0418	F7MSł	<<1:0>	F6MSł	<<1:0>	F5MS	K<1:0>	F4MS	K<1:0>	F3MSK<	<1:0>	F2MS	K<1:0>	F1MSH	<<1:0>	F0MS	<<1:0>	0000
C1FMSKSEL2	041A	F15MS	K<1:0>	F14MS	K<1:0>	F13MS	K<1:0>	F12MS	K<1:0>	F11MSK	<1:0>	F10MS	K<1:0>	F9MSk	<<1:0>	F8MSI	<<1:0>	0000

TABLE 4-21: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 0 OR 1 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 0 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E							S	ee definition	when WIN	= x							
C1RXFUL1	0420	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C1RXFUL2	0422	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C1RXOVF1	0428	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C1RXOVF2	042A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PF	RI<1:0>	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PF	RI<1:0>	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PF	RI<1:0>	0000
C1TR67CON	0436	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7PF	RI<1:0>	TXEN6	TXABAT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PF	RI<1:0>	xxxx
C1RXD	0440							E	CAN1 Rece	eive Data Wo	ord							xxxx
C1TXD	0442		ECAN1 Transmit Data Word xxxx									xxxx						

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

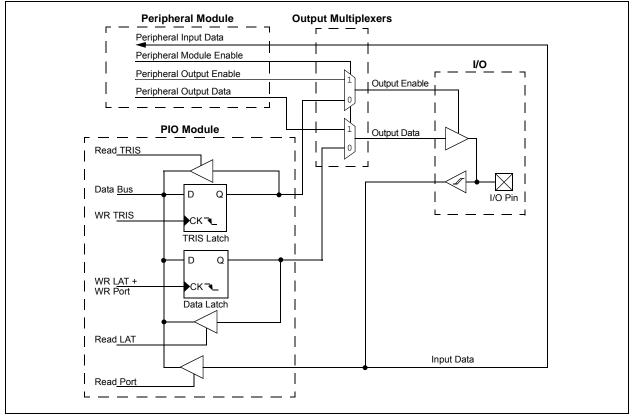
11.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports" (DS70598) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Many of the device pins are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

Generally, a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.


When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have eight registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Latch register (LATx) read the latch. Writes to the Latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device is disabled. This means the corresponding LATx and TRISx registers and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

11.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code, or a complete redesign, may be the only option.

Peripheral Pin Select configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.4.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the label, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

11.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital-only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs. In comparison, some digital-only peripheral modules are never included in the Peripheral Pin Select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I^2C^{TM} and the PWM. A similar requirement excludes all modules with analog inputs, such as the ADC Converter.

A key difference between remappable and nonremappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.4.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of SFRs: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheralselectable pin is handled in two different ways, depending on whether an input or output is being mapped.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0
FLTMD	FLTOUT	FLTTRIEN	OCINV	—	_	—	OC32
bit 15	·				·		bit
R/W-0	R/W-0, HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
OCTRIC	G TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL
bit 7							bit
Legend:		HS = Hardwa	re Settable bit				
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	1 = Fault mo cleared i	t Mode Select b ode is maintain n software and	ed until the Fa a new PWM pe	eriod starts			
		de is maintaine	d until the Faul	t source is rem	loved and a ne	w PWM period	starts
bit 14	FLTOUT: Fau		. –				
		tput is driven hi tput is driven lo					
bit 13		ault Output Sta					
		is tri-stated on		'n			
	•	I/O state is defi			ault condition		
bit 12	OCINV: Outp	ut Compare x I	nvert bit				
		out is inverted out is not invert	ed				
bit 11-9	Unimplemen	ted: Read as '	כי				
bit 8	OC32: Casca	ide Two OCx M	odules Enable	bit (32-bit oper	ration)		
		module operate module operate					
bit 7		tput Compare x		Select bit			
		OCx from the s			CSELx bits		
		nizes OCx with				S	
bit 6	TRIGSTAT: T	imer Trigger St	atus bit				
		urce has been [.] urce has not be			d clear		
bit 5		put Compare x		•			
	1 = OCx is tr	• •	·				
	0 = Output C	ompare x mod	ule drives the C	OCx pin			
Note 1:	Do not use the O	Cx module as i	ts own Svnchro	nization or Tric	aaer source.		
	When the OCy m		-			module uses t	he OCv
	module as a Trigg						
3:	Each Output Con "Peripheral Trig PTGO0 = OC1 PTGO1 = OC2					n source. See S	Section 24.0
	PTGO2 = OC3 $PTGO3 = OC4$						

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

16.1.2 WRITE-PROTECTED REGISTERS

On dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices, write protection is implemented for the IOCONx and FCLCONx registers. The write protection feature prevents any inadvertent writes to these registers. This protection feature can be controlled by the PWMLOCK Configuration bit (FOSCSEL<6>). The default state of the write protection feature is enabled (PWMLOCK = 1). The write protection feature can be disabled by configuring, PWMLOCK = 0. To gain write access to these locked registers, the user application must write two consecutive values of (0xABCD and 0x4321) to the PWMKEY register to perform the unlock operation. The write access to the IOCONx or FCLCONx registers must be the next SFR access following the unlock process. There can be no other SFR accesses during the unlock process and subsequent write access. To write to both the IOCONx and FCLCONx registers requires two unlock operations.

The correct unlocking sequence is described in Example 16-1.

EXAMPLE 16-1: PWMx WRITE-PROTECTED REGISTER UNLOCK SEQUENCE

	lled low externally in order to clear and disable the fault egister requires unlock sequence
<pre>mov #0xabcd,w10 mov #0x4321,w11 mov #0x0000,w0 mov w10, PWMKEY mov w11, PWMKEY mov w0,FCLCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of FCLCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to FCLCON1 register</pre>
-	d polarity using the IOCON1 register gister requires unlock sequence
<pre>mov #0xabcd,w10 mov #0x4321,w11 mov #0xF000,w0 mov w10, PWMKEY mov w11, PWMKEY mov w0,IOCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of IOCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to IOCON1 register</pre>

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT					
bit 15		1		11			bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0					
EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0	—	_					
bit 7				1 1		1	bit (
Legend:												
R = Readabl	le bit	W = Writable	oit	U = Unimplem	ented bit, read	l as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown					
bit 15	EDG1MOD: E	Edge 1 Edge Sa	ampling Mode	Selection bit								
	1 = Edge 1 is	s edge-sensitive	9									
	•	s level-sensitive										
bit 14		dge 1 Polarity										
		s programmed f										
L:1 40 40	•	s programmed f	•	•								
bit 13-10		:0>: Edge 1 So	urce Select bits	5								
	1xxx = Reserved 01xx = Reserved											
	0011 = CTED1 pin											
	0010 = CTED2 pin											
	0001 = OC1											
hit O	0000 = Timer		:+									
bit 9		Edge 2 Status b		vritten to control	the odge cou	reo						
	1 = Edge 2 h				the edge sou	ice.						
		as not occurred	ł									
bit 8	EDG1STAT: E	Edge 1 Status b	it									
			1 and can be v	vritten to control	the edge sou	rce.						
	1 = Edge 1 h											
	-	as not occurred										
bit 7		Edge 2 Edge Sa		Selection bit								
		s edge-sensitive s level-sensitive										
bit 6	•	dge 2 Polarity										
Sit 0		s programmed f		dae response								
		s programmed f										
bit 5-2	EDG2SEL<3	:0>: Edge 2 So	urce Select bits	3								
	1111 = Rese	rved										
	01xx = Rese											
	0100 = CMP ² 0011 = CTEE											
	0010 = CTEE											
		Ji pili										
	0001 = OC1	module										
		module										

REGISTER 22-2: CTMUCON2: CTMU CONTROL REGISTER 2

23.4 ADC Control Registers

REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
ADON	—	ADSIDL	ADDMABM		AD12B	FORM1	FORM0			
bit 15	•						bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC, HS	R/C-0. HC. HS			
SSRC2	SSRC1	SSRC0	SSRCG	SIMSAM	ASAM	SAMP	DONE ⁽³⁾			
bit 7							bit (
Legend:		HC - Hardwar	e Clearable bit	HS - Hardwa	re Settable bit	C = Clearable bi	+			
R = Readable	a hit	W = Writable b			nented bit, read		L			
-n = Value at		'1' = Bit is set	nt -	'0' = Bit is clea		x = Bit is unknov	vp.			
	FUR	I - DILIS SEL			aieu					
bit 15	ADON: ADO	C1 Operating M	ode bit							
	1 = ADC mo 0 = ADC is 0	odule is operatir off	ng							
bit 14	Unimpleme	nted: Read as	' 0 '							
bit 13	ADSIDL: ADC1 Stop in Idle Mode bit									
	1 = Disconti	nues module oj	peration when o	device enters	ldle mode					
	0 = Continu	es module oper	ation in Idle mo	ode						
bit 12		: DMA Buffer B								
						rovides an addre	ess to the DM			
						nd-alone buffer des a Scatter/Ga	ther address t			
						size of the DMA b				
bit 11		nted: Read as								
bit 10	AD12B: AD	C1 10-Bit or 12	-Bit Operation I	Mode bit						
		-channel ADC	-							
	0 = 10-bit, 4	-channel ADC	operation							
bit 9-8	FORM<1:0>	Data Output I	Format bits							
	For 10-Bit C									
		l fractional (Dou nal (Dou⊤ = dd			0, where s = .I	NOT.d<9>)				
		l integer (DOUT			where $s = .NC$	(<9>)				
		r (Dout = 0000								
	For 12-Bit C	peration:								
	•	fractional (Dou			0, where s = .I	NOT.d<11>)				
		nal (Dout = dd I integer (Dout				(<11>)				

- 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
- 3: Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

24.2 PTG Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

24.2.1 KEY RESOURCES

- "Peripheral Trigger Generator" (DS70669) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

26.3 Programmable CRC Registers

REGISTER 26-1: CRCCON1: CRC CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0
CRCEN	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0
bit 15	·						bit 8
R-0	R-1	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	_	_	_
bit 7	•						bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	0 = CRC mo	dule is enabled		chines, pointer	s and CRCWD	AT/CRCDAT a	re reset, othe
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	CSIDL: CRC	Stop in Idle Mo	ode bit				
		nues module op es module opera			Idle mode		
				oue			
bit 12-8	VWORD<4:0	>: Pointer Value		oue			
bit 12-8	Indicates the		e bits		naximum value	of 8 when PLE	N<4:0> > 7
	Indicates the or 16 when P	number of valio	e bits d words in the		naximum value	of 8 when PLE	N<4:0> > 7
	Indicates the or 16 when P	number of valic LEN<4:0> \leq 7. C FIFO Full bit ull	e bits d words in the		naximum value	of 8 when PLE	N<4:0> > 7
bit 7	Indicates the or 16 when P CRCFUL : CR 1 = FIFO is fi 0 = FIFO is r	number of valic LEN<4:0> \leq 7. C FIFO Full bit ull	e bits d words in the		naximum value	of 8 when PLE	N<4:0> > 7
bit 7	Indicates the or 16 when P CRCFUL : CR 1 = FIFO is fi 0 = FIFO is r CRCMPT : CF 1 = FIFO is e	number of valic LEN<4:0> \leq 7. C FIFO Full bit ull not full RC FIFO Empty empty	e bits d words in the		naximum value	of 8 when PLE	N<4:0> > 7
bit 7 bit 6	Indicates the or 16 when P CRCFUL : CR 1 = FIFO is fi 0 = FIFO is r CRCMPT : CF 1 = FIFO is e 0 = FIFO is r	number of valic LEN<4:0> \leq 7. RC FIFO Full bit ull not full RC FIFO Empty empty not empty	e bits d words in the : Bit		naximum value	of 8 when PLE	N<4:0> > 7
bit 7 bit 6	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is f 0 = FIFO is r CRCMPT: CF 1 = FIFO is r 0 = FIFO is r CRCISEL: CF	number of valic LEN<4:0> \leq 7. RC FIFO Full bit ull not full RC FIFO Empty empty not empty RC Interrupt Se	e bits d words in the Bit election bit	FIFO. Has a m			N<4:0> > 7
bit 7 bit 6	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is f 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CI 1 = Interrupt	number of valic LEN<4: $0> \leq 7$. CC FIFO Full bit ull not full RC FIFO Empty empty not empty RC Interrupt Se on FIFO is empty	e bits d words in the Bit election bit oty; final word	FIFO. Has a model of data is still s	shifting through		N<4:0> > 7
bit 7 bit 6 bit 5	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is f 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CI 1 = Interrupt	number of valic LEN<4:0> \leq 7. C FIFO Full bit ull act full C FIFO Empty mot empty act empty RC Interrupt Se on FIFO is emp on shift is comp	e bits d words in the Bit election bit oty; final word	FIFO. Has a model of data is still s	shifting through		N<4:0> > 7
bit 7 bit 6 bit 5	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is fi 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Star	number of valic LEN<4:0> \leq 7. C FIFO Full bit ull act full C FIFO Empty mot empty act empty RC Interrupt Se on FIFO is emp on shift is comp	e bits d words in the Bit election bit pty; final word plete and CR0	FIFO. Has a model of data is still s	shifting through		N<4:0> > 7
bit 7 bit 6 bit 5 bit 4	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is f 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Star 1 = Starts CF	number of valic LEN<4:0> \leq 7. C FIFO Full bit ull not full RC FIFO Empty empty not empty RC Interrupt Se on FIFO is emp on shift is comp t CRC bit	e bits d words in the Bit election bit oty; final word plete and CRC	FIFO. Has a model of data is still s	shifting through		N<4:0> > 7
bit 7 bit 6 bit 5 bit 4	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is f 0 = FIFO is f 1 = FIFO is f 0 = FIFO is f 0 = FIFO is f CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Star 1 = Starts CF 0 = CRC seri LENDIAN: Da	number of valic LEN<4:0> \leq 7. RC FIFO Full bit ull not full RC FIFO Empty mot empty RC Interrupt Se on FIFO is emp on shift is comp on shift is comp rt CRC bit RC serial shifter ial shifter is turr ata Word Little-	e bits d words in the d bit Bit election bit oty; final word plete and CRC ned off Endian Config	FIFO. Has a m of data is still s CWDAT results	shifting through are ready	CRC	N<4:0> > 7
bit 7 bit 6 bit 5	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is fi 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Star 1 = Starts CF 0 = CRC ser LENDIAN: Da 1 = Data wor	number of valic LEN<4:0> \leq 7. C FIFO Full bit ull not full RC FIFO Empty mot empty RC Interrupt Se on FIFO is emp on shift is comp rt CRC bit RC serial shifter ial shifter is turr ata Word Little- rd is shifted into	e bits d words in the d bit Bit election bit oty; final word plete and CRG ned off Endian Config the CRC star	FIFO. Has a m of data is still s CWDAT results guration bit ting with the LS	shifting through are ready Sb (little endiar	ı CRC	N<4:0> > 7
bit 7 bit 6 bit 5 bit 4	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is fi 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Star 1 = Starts CF 0 = CRC seri LENDIAN: Da 1 = Data wor 0 = Data wor	number of valic LEN<4:0> \leq 7. RC FIFO Full bit ull not full RC FIFO Empty mot empty RC Interrupt Se on FIFO is emp on shift is comp on shift is comp rt CRC bit RC serial shifter ial shifter is turr ata Word Little-	e bits d words in the d words in the d words in the d words in the d words in the bits bits bits contain the the the d words contain the the the d words in the d word words in the d words in the d word words in the d word words in the d words in the d words in the d word words in the d words in the d words in the the the the d words in the	FIFO. Has a m of data is still s CWDAT results guration bit ting with the LS	shifting through are ready Sb (little endiar	ı CRC	N<4:0> > 7

29.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16 and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

29.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

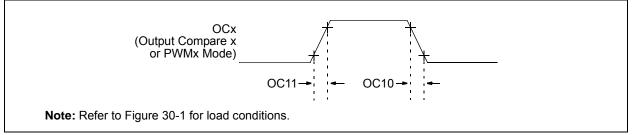
- Integration into MPLAB X IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

29.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:


- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

29.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

FIGURE 30-7: OUTPUT COMPARE x MODULE (OCx) TIMING CHARACTERISTICS

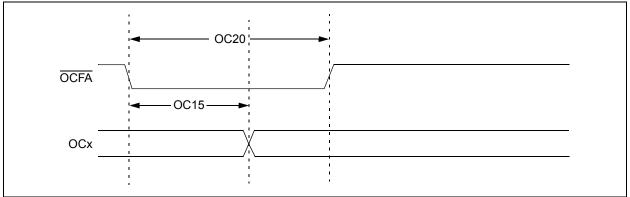


TABLE 30-27: OUTPUT COMPARE x MODULE TIMING REQUIREMENTS

АС СНА	RACTER	ISTICS	(unless	$\begin{array}{llllllllllllllllllllllllllllllllllll$								
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions					
OC10	TccF	OCx Output Fall Time	_		_	ns	See Parameter DO32					
OC11	TccR	OCx Output Rise Time	_	_	—	ns	See Parameter DO31					

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-8: OCx/PWMx MODULE TIMING CHARACTERISTICS

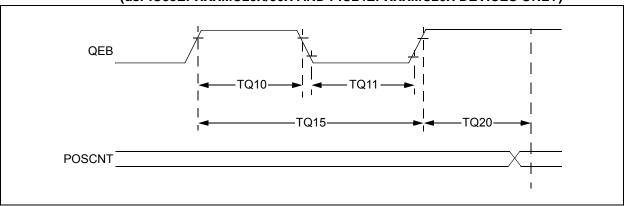


TABLE 30-28: OCx/PWMx MODE TIMING REQUIREMENTS

AC CHAF	RACTERIS	FICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symbol Characteristic ¹		Min.	Тур.	Max.	Units	Conditions			
OC15	TFD	Fault Input to PWMx I/O Change	—	_	Tcy + 20	ns				
OC20	TFLT	Fault Input Pulse Width	TCY + 20		—	ns				

Note 1: These parameters are characterized but not tested in manufacturing.

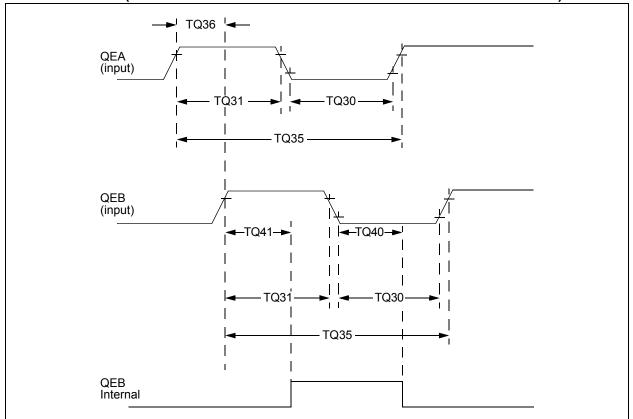

FIGURE 30-11: TIMERQ (QEI MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

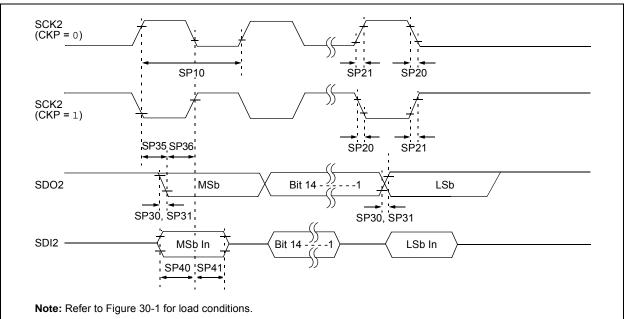
TABLE 30-30: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Charae	cteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
TQ10	TtQH	TQCK High Time	Synchronous, with prescaler	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25			ns	Must also meet Parameter TQ15
TQ11	TtQL	TQCK Low Time	Synchronous, with prescaler	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25	—	_	ns	Must also meet Parameter TQ15
TQ15	TtQP	TQCP Input Period	Synchronous, with prescaler	Greater of 25 + 50 or (1 Tcy/N) + 50	—	_	ns	
TQ20	TCKEXTMRL	Delay from E Clock Edge t Increment	xternal TQCK o Timer	_	1	Тсү	—	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-12: QEA/QEB INPUT CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-31: QUADRATURE DECODER TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)


AC CHARACTERISTICS			Standard Ope (unless other Operating tem	wise state	nditions: 3.0V to 3.6V d) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended		
Param No.	Symbol	Characteristic ⁽¹⁾	Тур. ⁽²⁾	Max.	Units	Conditions	
TQ30	TQUL	Quadrature Input Low Time	6 Tcy		ns		
TQ31	TQUH	Quadrature Input High Time	6 Tcy	—	ns		
TQ35	TQUIN	Quadrature Input Period	12 TCY	_	ns		
TQ36	TQUP	Quadrature Phase Period	3 TCY	—	ns		
TQ40	TQUFL	Filter Time to Recognize Low, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)	
TQ41	TQUFH	Filter Time to Recognize High, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to "Quadrature Encoder Interface (QEI)" (DS70601) in the "*dsPIC33/PIC24 Family Reference Manual*". Please see the Microchip web site for the latest family reference manual sections.

FIGURE 30-17: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-36:SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK2 Frequency		—	9	MHz	-40°C to +125°C (Note 3)
SP20	TscF	SCK2 Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK2 Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	_	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—		ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK2 is 111 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPI2 pins.

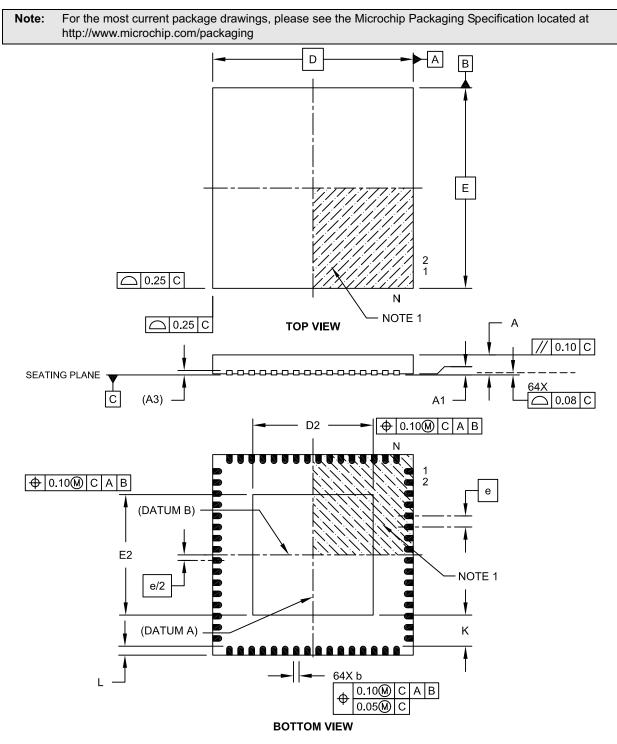

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Param No.	Symbol TLO:SCL	Characteristic ⁽⁴⁾		Min. ⁽¹⁾	-40 Max.	Units	+125°C for Extended Conditions
IM10		Clock Low Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μS	
			400 kHz mode	TCY/2 (BRG + 2)		μ S	
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)		μs	
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 2)		μS	
		Ū	400 kHz mode	Tcy/2 (BRG + 2)		μ S	
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)		μS	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾		100	ns	-
IM21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode		1000	ns	CB is specified to be from 10 to 400 pF
			400 kHz mode	20 + 0.1 Св	300	ns	
			1 MHz mode ⁽²⁾		300	ns	-
IM25	TSU:DAT	Data Input Setup Time	100 kHz mode	250		ns	
			400 kHz mode	100		ns	
			1 MHz mode ⁽²⁾	40		ns	-
IM26	Thd:dat	Data Input Hold Time	100 kHz mode	0		μS	
			400 kHz mode	0	0.9	μ S	
			1 MHz mode ⁽²⁾	0.2		μs	-
IM30	TSU:STA	Start Condition Setup Time	100 kHz mode	Tcy/2 (BRG + 2)		μ S	Only relevant for Repeated Start condition
			400 kHz mode	Tcy/2 (BRG + 2)		μS	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)		μs	
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 2)		μ s	After this period, the first clock pulse is generated
			400 kHz mode	Tcy/2 (BRG +2)		μS	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)		μS	
IM33	Τςυ:ςτο	STO Stop Condition Setup Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μS	
			400 kHz mode	Tcy/2 (BRG + 2)	_	μS	
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)	_	μS	
IM34	THD:STO	Stop Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μS	
			400 kHz mode	TCY/2 (BRG + 2)	_	μS	
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)	_	μS	
IM40	TAA:SCL	Output Valid From Clock	100 kHz mode	—	3500	ns	
			400 kHz mode	—	1000	ns	
			1 MHz mode ⁽²⁾	—	400	ns	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μs	Time the bus must be
			400 kHz mode	1.3	_	μ s	free before a new transmission can st
			1 MHz mode ⁽²⁾	0.5		μ s	
IM50	Св	Bus Capacitive L		_	400	pF	
IM51	TPGD	Pulse Gobbler De	-	65	390	ns	(Note 3)

TABLE 30-49: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the l²C[™] Baud Rate Generator. Refer to "Inter-Integrated Circuit (l²C[™])" (DS70330) in the "dsPIC33/PIC24 Family Reference Manual". Please see the Microchip web site for the latest family reference manual sections.

- 2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
- **3:** Typical value for this parameter is 130 ns.
- 4: These parameters are characterized, but not tested in manufacturing.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Microchip Technology Drawing C04-154A Sheet 1 of 2