

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64mc204-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.5 ICSP Pins

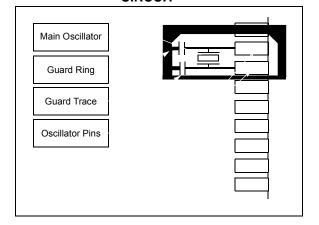
The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3, or MPLAB REAL ICE[™].

For more information on MPLAB ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB[®] ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) DS51749

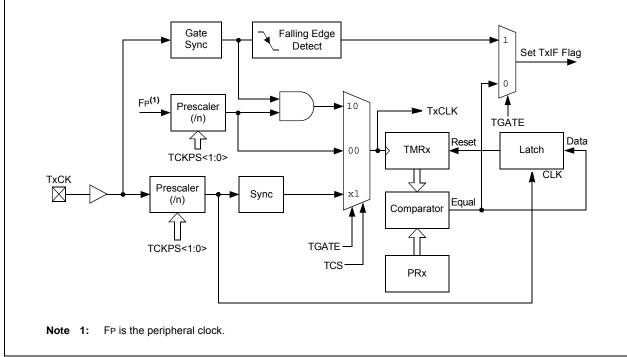

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency Primary Oscillator and a low-frequency Secondary Oscillator. For details, see **Section 9.0 "Oscillator Configuration"** for details.

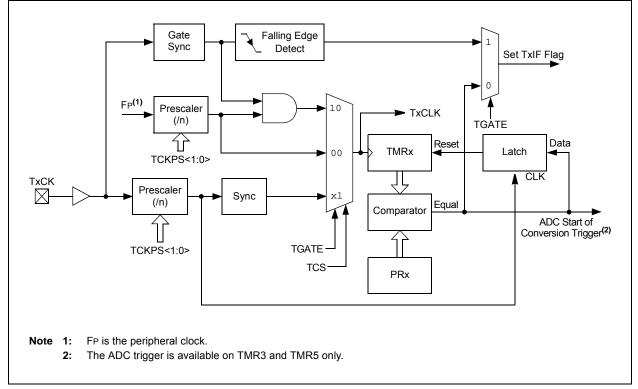
The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

TABLE 4-52: PORTG REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY


File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	0E60	_	-	_	_	-	-	TRISG9	TRISG8	TRISG7	TRISG6	_	_	_	_	_	-	03C0
PORTG	0E62			-	_	_	_	RG9	RG8	RG7	RG6	_	_	_	_	_	_	xxxx
LATG	0E64			-	_	_	_	LATG9	LATG8	LATG7	LATG6	_	_	_	_	_	_	xxxx
ODCG	0E66			-	_	_	_	ODCG9	ODCG8	ODCG7	ODCG6	_	_	_	_	_	_	0000
CNENG	0E68			-	_	_	_	CNIEG9	CNIEG8	CNIEG7	CNIEG6	_	_	_	_	_	_	0000
CNPUG	0E6A			-	_	_	_	CNPUG9	CNPUG8	CNPUG7	CNPUG6	_	_	_	_	_	_	0000
CNPDG	0E6C	_	-	_	_			CNPDG9	CNPDG8	CNPDG7	CNPDG6	_	_	-	_	_		0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.


REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 3	SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit
	 Device was in Idle mode Device was not in Idle mode
bit 1	BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit 1 = A Power-on Reset has occurred 0 = A Power-on Reset has not occurred

- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

FIGURE 13-2: TYPE C TIMER BLOCK DIAGRAM (x = 3 AND 5)

FIGURE 13-1:TYPE B TIMER BLOCK DIAGRAM (x = 2 AND 4)

REGISTER 16-8: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			PDC	<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			PDC	x<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is un				x = Bit is unkr	nown				

bit 15-0 **PDCx<15:0>:** PWMx Generator # Duty Cycle Value bits

REGISTER 16-9: PHASEx: PWMx PRIMARY PHASE-SHIFT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			PHAS	Ex<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			PHAS	SEx<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			pit	U = Unimplemented bit, read as '0'					
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			

bit 15-0 PHASEx<15:0>: PWMx Phase-Shift Value or Independent Time Base Period for the PWM Generator bits

Note 1: If ITB (PWMCONx<9>) = 0, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCON<11:10>) = 00, 01 or 10), PHASEx<15:0> = Phase-shift value for PWMxH and PWMxL outputs

 If ITB (PWMCONx<9>) = 1, the following applies based on the mode of operation: Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10), PHASEx<15:0> = Independent time base period value for PWMxH and PWMxL

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
_	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL ⁽²⁾	CLMOD						
bit 15			•				bit 8						
	D 4 4	D 0.01 4	D 444		DAMA	DAMA	D 444.0						
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0 FLTPOL ⁽²⁾	R/W-0	R/W-0						
FLTSRC4 bit 7	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLIPOL-	FLTMOD1	FLTMOD0 bit						
							DI						
Legend:													
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'							
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown						
bit 15	Unimplemen	ted: Read as '	0'										
bit 14-10	CLSRC<4:0>	Current-Limit	Control Signa	al Source Seleo	ct for PWM Ger	nerator # bits							
	11111 = Fault 32												
	11110 = Reserved												
	•												
	•												
	• 01100 = Reserved												
	01011 = Comparator 4												
	01011 = Op Amp/Comparator 3												
	01001 = Op Amp/Comparator 2												
	01000 = Op Amp/Comparator 1												
	00111 = Reserved												
	00110 = Reserved												
	00101 = Reserved												
	00100 = Reserved												
	00011 = Fault 4												
	00010 = Fault 3												
	00001 = Fault 2												
	00000 = Fault 1 (default)												
bit 9	CLPOL: Current-Limit Polarity for PWM Generator # bit ⁽²⁾												
	1 = The selected current-limit source is active-low												
	0 = The selec	cted current-lim	it source is ac	tive-high									
bit 8	CLMOD: Cur	rent-Limit Mode	e Enable for P	WM Generator	r # bit								
		imit mode is er imit mode is di											
	ne PWMLOCK			<6>) is a '1', th	e IOCONx regi	ster can only be	e written aftei						
the	unlock sequen	ce has been ex	ecuted.										

REGISTER 16-15: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER⁽¹⁾

2: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		QEIG	EC<31:24>				
						bit 8	
	DAMO				DAMO		
R/W-U	R/W-0			R/W-U	R/W-U	R/W-0	
		QEIGE	EC<23:16>				
						bit (
R = Readable bit W = Writable bit		t	U = Unimplem	nented bit, rea	d as '0'		
-n = Value at POR '1'		'1' = Bit is set		ared	x = Bit is unknown		
		W = Writable bi	R/W-0 R/W-0 QEIGI W = Writable bit	R/W-0 R/W-0 R/W-0 QEIGEC<23:16> W = Writable bit U = Unimplem	R/W-0 R/W-0 R/W-0 QEIGEC<23:16> W = Writable bit U = Unimplemented bit, real	R/W-0 R/W-0 R/W-0 R/W-0 QEIGEC<23:16> U = Unimplemented bit, read as '0'	

REGISTER 17-15: QEI1GECH: QEI1 GREATER THAN OR EQUAL COMPARE HIGH WORD REGISTER

bit 15-0 QEIGEC<31:16>: High Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEI1GEC) bits

REGISTER 17-16: QEI1GECL: QEI1 GREATER THAN OR EQUAL COMPARE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			QEIGE	C<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			QEIG	EC<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknowr			nown	

bit 15-0 QEIGEC<15:0>: Low Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEI1GEC) bits

Legend: R = Readable	bit	C = Writable b W = Writable l			n to clear the bit mented bit, read		
bit 7							bit 0
IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
							2 0
bit 15							bit 8
_	—	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0

'0' = Bit is cleared

x = Bit is unknown

REGISTER 21-6: CxINTF: ECANx INTERRUPT FLAG REGISTER

'1' = Bit is set

bit 15-14	Unimplemented: Read as '0'
bit 13	TXBO: Transmitter in Error State Bus Off bit
	1 = Transmitter is in Bus Off state
	0 = Transmitter is not in Bus Off state
bit 12	TXBP: Transmitter in Error State Bus Passive bit
	1 = Transmitter is in Bus Passive state0 = Transmitter is not in Bus Passive state
bit 11	RXBP: Receiver in Error State Bus Passive bit
	1 = Receiver is in Bus Passive state 0 = Receiver is not in Bus Passive state
bit 10	TXWAR: Transmitter in Error State Warning bit
	1 = Transmitter is in Error Warning state 0 = Transmitter is not in Error Warning state
bit 9	RXWAR: Receiver in Error State Warning bit
	1 = Receiver is in Error Warning state 0 = Receiver is not in Error Warning state
bit 8	EWARN: Transmitter or Receiver in Error State Warning bit
	 1 = Transmitter or receiver is in Error Warning state 0 = Transmitter or receiver is not in Error Warning state
bit 7	IVRIF: Invalid Message Interrupt Flag bit
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 6	WAKIF: Bus Wake-up Activity Interrupt Flag bit
	1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 5	ERRIF: Error Interrupt Flag bit (multiple sources in CxINTF<13:8>)
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 4	Unimplemented: Read as '0'
bit 3	FIFOIF: FIFO Almost Full Interrupt Flag bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 2	RBOVIF: RX Buffer Overflow Interrupt Flag bit
	1 = Interrupt request has occurred

-n = Value at POR

REGISTER 23-5: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	-	CH123NB1	CH123NB0	CH123SB
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	CH123NA1	CH123NA0	CH123SA
bit 7							bit 0

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'

bit 10-9

CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample MUXB bits In 12-bit mode (AD21B = 1), CH123NB is Unimplemented and is Read as '0':

Value	ADC Channel					
Value	CH1	CH2	CH3			
11	AN9	AN10	AN11			
10 (1,2)	OA3/AN6	AN7	AN8			
0x	Vrefl	VREFL	Vrefl			

bit 8 **CH123SB:** Channel 1, 2, 3 Positive Input Select for Sample MUXB bit In 12-bit mode (AD21B = 1), CH123SB is Unimplemented and is Read as '0':

Value	ADC Channel					
value	CH1	CH2	CH3			
1 (2)	OA1/AN3	OA2/AN0	OA3/AN6			
0 (1,2)	OA2/AN0	AN1	AN2			

bit 7-3 Unimplemented: Read as '0'

bit 2-1 **CH123NA<1:0>:** Channel 1, 2, 3 Negative Input Select for Sample MUXA bits In 12-bit mode (AD21B = 1), CH123NA is Unimplemented and is Read as '0':

Value	ADC Channel					
Value	CH1	CH2	CH3			
11	AN9	AN10	AN11			
10 (1,2)	OA3/AN6	AN7	AN8			
0x	VREFL	VREFL	Vrefl			

- **Note 1:** AN0 through AN7 are repurposed when comparator and op amp functionality is enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.

REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER (CONTINUED)

bit 4-0	CH0SA<4:0>: Channel 0 Positive Input Select for Sample MUXA bits ⁽¹⁾
	11111 = Open; use this selection with CTMU capacitive and time measurement
	11110 = Channel 0 positive input is connected to the CTMU temperature measurement diode (CTMU TEMP)
	11101 = Reserved
	11100 = Reserved
	11011 = Reserved
	11010 = Channel 0 positive input is the output of OA3/AN6 ^(2,3)
	11001 = Channel 0 positive input is the output of OA2/AN0 ⁽²⁾
	11000 = Channel 0 positive input is the output of OA1/AN3 ⁽²⁾
	10110 = Reserved
	•
	•
	10000 = Reserved
	01111 = Channel 0 positive input is AN15 ^(1,3)
	01110 = Channel 0 positive input is AN14 ^(1,3)
	01101 = Channel 0 positive input is AN13 ^(1,3)
	•
	00010 = Channel 0 positive input is AN2 ^(1,3)
	00001 = Channel 0 positive input is AN1 ^(1,3)
	00000 = Channel 0 positive input is AN0(1,3)

- **Note 1:** AN0 through AN7 are repurposed when comparator and op amp functionality is enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.
 - 3: See the "Pin Diagrams" section for the available analog channels for each device.

24.3 PTG Control Registers

REGISTER 24-1: PTGCST: PTG CONTROL/STATUS REGISTER

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
PTGEN	—	PTGSIDL	PTGTOGL	_	PTGSWT ⁽²⁾	PTGSSEN ⁽³⁾	PTGIVIS
bit 15	•					· · · · ·	bit 8
R/W-0	HS-0	U-0	U-0	U-0	U-0	R/W	/-0

R/W-0	HS-0	U-0	U-0	U-0	U-0	R/V	V-0
PTGSTRT	PTGWDTO	—	_	—	—	PTGITM1 ⁽¹⁾	PTGITM0 ⁽¹⁾
bit 7							bit 0

Legend:	HS = Hardware Settable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	PTGEN: Module Enable bit
	1 = PTG module is enabled
	0 = PTG module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	PTGSIDL: PTG Stop in Idle Mode bit
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12	PTGTOGL: PTG TRIG Output Toggle Mode bit
	 1 = Toggle state of the PTGOx for each execution of the PTGTRIG command 0 = Each execution of the PTGTRIG command will generate a single PTGOx pulse determined by the value in the PTGPWDx bits
bit 11	Unimplemented: Read as '0'
bit 10	PTGSWT: PTG Software Trigger bit ⁽²⁾
	 1 = Triggers the PTG module 0 = No action (clearing this bit will have no effect)
bit 9	PTGSSEN: PTG Enable Single-Step bit ⁽³⁾
	1 = Enables Single-Step mode 0 = Disables Single-Step mode
bit 8	PTGIVIS: PTG Counter/Timer Visibility Control bit
	 1 = Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the current values of their corresponding counter/timer registers (PTGSD, PTGCx, PTGTx) 0 = Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the value previously written to those limit registers
bit 7	PTGSTRT: PTG Start Sequencer bit
	1 = Starts to sequentially execute commands (Continuous mode)0 = Stops executing commands
bit 6	PTGWDTO: PTG Watchdog Timer Time-out Status bit
	 1 = PTG Watchdog Timer has timed out 0 = PTG Watchdog Timer has not timed out.
bit 5-2	Unimplemented: Read as '0'
Note 1:	These bits apply to the PTGWHI and PTGWLO commands only.
2:	This bit is only used with the PTGCTRL step command software trigger option.

3: Use of the PTG Single-Step mode is reserved for debugging tools only.

REGISTER 24-4: PTGT0LIM: PTG TIMER0 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			PTGT0	_IM<15:8>					
bit 15	bit 15 bit 8								
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			PTGT0	LIM<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'					
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		

bit 15-0 **PTGT0LIM<15:0>:** PTG Timer0 Limit Register bits General Purpose Timer0 Limit register (effective only with a PTGT0 Step command).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-5: PTGT1LIM: PTG TIMER1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PTGT1LIM<15:8>								
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PTGT1LIM<7:0>								
bit 7 bit 0								

Legend:					
R = Readable bit	W = Writable bit	Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 **PTGT1LIM<15:0>:** PTG Timer1 Limit Register bits

General Purpose Timer1 Limit register (effective only with a PTGT1 Step command).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-3: CM4CON: COMPARATOR 4 CONTROL REGISTER (CONTINUED)

- bit 5 Unimplemented: Read as '0'
- bit 4 **CREF:** Comparator Reference Select bit (VIN+ input)⁽¹⁾
 - 1 = VIN+ input connects to internal CVREFIN voltage
 - 0 = VIN+ input connects to C4IN1+ pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Channel Select bits⁽¹⁾
 - 11 = VIN- input of comparator connects to OA3/AN6
 - 10 = VIN- input of comparator connects to OA2/AN0
 - 01 = VIN- input of comparator connects to OA1/AN3
 - 00 = VIN- input of comparator connects to C4IN1-
- Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.

Bit Field	Description					
GCP	General Segment Code-Protect bit 1 = User program memory is not code-protected 0 = Code protection is enabled for the entire program memory space					
GWRP	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected					
IESO	 Two-Speed Oscillator Start-up Enable bit 1 = Start up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start up device with user-selected oscillator source 					
PWMLOCK ⁽¹⁾	PWM Lock Enable bit 1 = Certain PWM registers may only be written after a key sequence 0 = PWM registers may be written without a key sequence					
FNOSC<2:0>	Oscillator Selection bits 111 = Fast RC Oscillator with Divide-by-N (FRCDIVN) 110 = Fast RC Oscillator with Divide-by-16 (FRCDIV16) 101 = Low-Power RC Oscillator (LPRC) 100 = Reserved; do not use 011 = Primary Oscillator with PLL module (XT + PLL, HS + PLL, EC + PLL) 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator with Divide-by-N with PLL module (FRCPLL) 000 = Fast RC Oscillator (FRC)					
FCKSM<1:0>	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled					
IOL1WAY	Peripheral Pin Select Configuration bit 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations					
OSCIOFNC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is the clock output 0 = OSC2 is a general purpose digital I/O pin					
POSCMD<1:0>	Primary Oscillator Mode Select bits 11 = Primary Oscillator is disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode					
FWDTEN	 Watchdog Timer Enable bit 1 = Watchdog Timer is always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect.) 0 = Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register) 					
WINDIS	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode					
PLLKEN	PLL Lock Enable bit 1 = PLL lock is enabled 0 = PLL lock is disabled nly available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.					

TABLE 27-2: CONFIGURATION BITS DESCRIPTION

Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

2: When JTAGEN = 1, an internal pull-up resistor is enabled on the TMS pin. Erased devices default to JTAGEN = 1. Applications requiring I/O pins in a high-impedance state (tri-state) in Reset should use pins other than TMS for this purpose. Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the Program Counter is changed as a result of the instruction, or a PSV or Table Read is performed, or an SFR register is read. In these cases, the execution takes multiple instruction cycles with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157). For more information on instructions that take more than one instruction cycle to execute, refer to **"CPU"** (DS70359) in the *"dsPIC33/PIC24 Family Reference Manual"*, particularly the **"Instruction Flow Types"** section.

Field	Description					
#text	Means literal defined by "text"					
(text)	Means "content of text"					
[text]	Means "the location addressed by text"					
{}	Optional field or operation					
$a \in \{b, c, d\}$	a is selected from the set of values b, c, d					
<n:m></n:m>	Register bit field					
.b	Byte mode selection					
.d	Double-Word mode selection					
.S	Shadow register select					
.w	Word mode selection (default)					
Acc	One of two accumulators {A, B}					
AWB	Accumulator write back destination address register ∈ {W13, [W13]+ = 2}					
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$					
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero					
Expr	Absolute address, label or expression (resolved by the linker)					
f	File register address ∈ {0x00000x1FFF}					
lit1	1-bit unsigned literal $\in \{0,1\}$					
lit4	4-bit unsigned literal ∈ {015}					
lit5	5-bit unsigned literal ∈ {031}					
lit8	8-bit unsigned literal ∈ {0255}					
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode					
lit14	14-bit unsigned literal ∈ {016384}					
lit16	16-bit unsigned literal ∈ {065535}					
lit23	23-bit unsigned literal ∈ {08388608}; LSb must be '0'					
None	Field does not require an entry, can be blank					
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate					
PC	Program Counter					
Slit10	10-bit signed literal ∈ {-512511}					
Slit16	16-bit signed literal ∈ {-3276832767}					
Slit6	6-bit signed literal ∈ {-1616}					
Wb	Base W register ∈ {W0W15}					
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }					
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }					

TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Parameter No.	Тур.	Max.	Units	Conditions				
Operating Cur	rent (IDD) ⁽¹⁾							
DC20d	9	15	mA	-40°C				
DC20a	9	15	mA	+25°C	3.3V	10 MIPS		
DC20b	9	15	mA	+85°C	3.3V			
DC20c	9	15	mA	+125°C				
DC22d	16	25	mA	-40°C		20 MIPS		
DC22a	16	25	mA	+25°C	3.3∨			
DC22b	16	25	mA	+85°C	3.3V			
DC22c	16	25	mA	+125°C				
DC24d	27	40	mA	-40°C		40 MIPS		
DC24a	27	40	mA	+25°C	3.3V			
DC24b	27	40	mA	+85°C	3.3V			
DC24c	27	40	mA	+125°C				
DC25d	36	55	mA	-40°C		60 MIPS		
DC25a	36	55	mA	+25°C	3.3V			
DC25b	36	55	mA	+85°C	3.3V	OU IVIIPS		
DC25c	36	55	mA	+125°C	7			
DC26d	41	60	mA	-40°C				
DC26a	41	60	mA	+25°C	3.3V	70 MIPS		
DC26b	41	60	mA	+85°C				

TABLE 30-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- CPU is executing while(1) {NOP(); } statement
- · JTAG is disabled

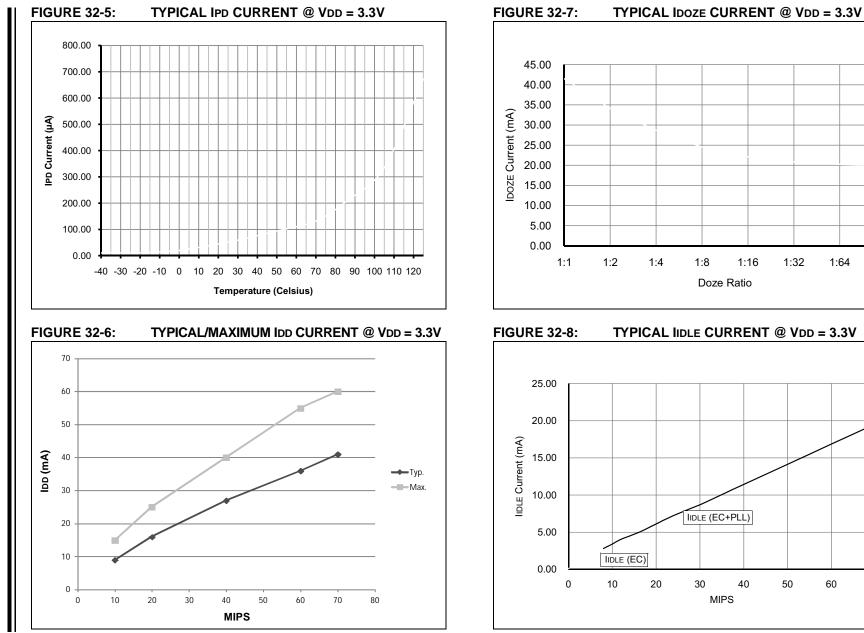
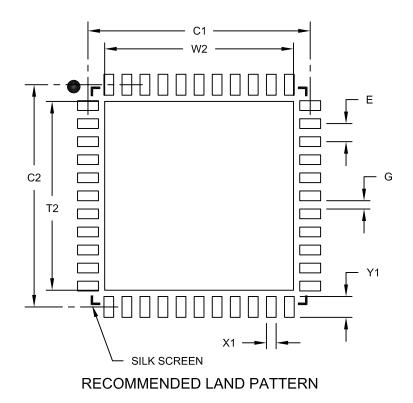

AC CHARACTERISTICS		$ \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array} $					
Param No.	Symbol	Characteristic	Min. Typ. Max.		Units	Conditions	
		ADC A	Accuracy	(12-Bit	Mode)		
AD20a	Nr	Resolution	12	2 Data Bi	ts	bits	
AD21a INL		Integral Nonlinearity	-2.5		2.5	LSb	-40°C ≤ TA ≤ +85°C (Note 2)
			-5.5	_	5.5	LSb	+85°C < TA ≤ +125°C (Note 2)
AD22a DNL		Differential Nonlinearity	-1	—	1	LSb	-40°C \leq TA \leq +85°C (Note 2)
			-1	—	1	LSb	+85°C < TA \leq +125°C (Note 2)
AD23a Gerr		Gain Error ⁽³⁾	-10	—	10	LSb	-40°C \leq TA \leq +85°C (Note 2)
			-10	_	10	LSb	+85°C < TA \leq +125°C (Note 2)
AD24a	AD24a EOFF Offset Error		-5	_	5	LSb	$-40^{\circ}C \leq TA \leq +85^{\circ}C \text{ (Note 2)}$
			-5	_	5	LSb	+85°C < TA \leq +125°C (Note 2)
AD25a	—	Monotonicity	—	—	—		Guaranteed
		Dynamic	Performa	ance (12-	Bit Mod	e)	
AD30a	THD	Total Harmonic Distortion ⁽³⁾	_	75	_	dB	
AD31a	SINAD	Signal to Noise and Distortion ⁽³⁾	—	68	_	dB	
AD32a	SFDR	Spurious Free Dynamic Range ⁽³⁾	—	80	—	dB	
AD33a	Fnyq	Input Signal Bandwidth ⁽³⁾	—	250	—	kHz	
AD34a	ENOB	Effective Number of Bits ⁽³⁾	11.09	11.3	_	bits	

TABLE 30-58: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

3: Parameters are characterized but not tested in manufacturing.



1:128

70

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.65 BSC		
Optional Center Pad Width	W2			6.60
Optional Center Pad Length	T2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B

NOTES: