

Welcome to E-XFL.COM

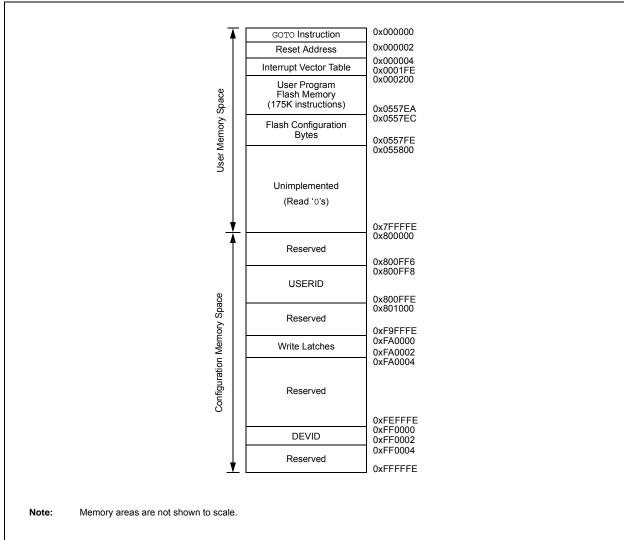
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Becano	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64mc204-i-tl


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0			
VAR	—	US1 ⁽¹⁾	US0 ⁽¹⁾	EDT ^(1,2)	DL2 ⁽¹⁾	DL1 ⁽¹⁾	DL0 ⁽¹⁾			
bit 15							bit			
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0			
SATA ⁽¹⁾	SATB ⁽¹⁾	SATDW ⁽¹⁾	ACCSAT ⁽¹⁾	IPL3(3)	SFA	RND ⁽¹⁾	IF(1)			
bit 7	I				I	1	bit			
Legend:		C = Clearable	e bit							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	1 = Variable	le Exception Pro exception proce	essing latency	is enabled						
bit 14		nted: Read as '								
bit 13-12	-	SP Multiply Uns		Control bits ⁽¹⁾						
	01 = DSP er 00 = DSP er	ngine multiplies ngine multiplies ngine multiplies	are unsigned are signed							
bit 11	•	O Loop Terminatives executing Dot t			iteration					
bit 10-8	DL<2:0>: DO Loop Nesting Level Status bits ⁽¹⁾ 111 = 7 DO loops are active									
	•									
	•									
	001 = 1 DO k 000 = 0 DO k	oop is active oops are active								
bit 7	SATA: ACCA	A Saturation En	able bit ⁽¹⁾							
	 1 = Accumulator A saturation is enabled 0 = Accumulator A saturation is disabled 									
bit 6	SATB: ACCE	B Saturation En	able bit ⁽¹⁾							
		ator B saturatio ator B saturatio								
bit 5	SATDW: Dat	ta Space Write	from DSP Engi	ne Saturation	Enable bit ⁽¹⁾					
		ace write satura ace write satura		I						
bit 4	ACCSAT: Accumulator Saturation Mode Select bit ⁽¹⁾									
		uration (super s uration (normal	,							
bit 3		nterrupt Priority								
		errupt Priority Le errupt Priority Le								
	nis bit is availabl		PXXXMC20X/	50X and dsPl	C33EPXXXGP	50X devices on	ly.			
2: Th	nis bit is always	reau as 0.								

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

FIGURE 4-5: PROGRAM MEMORY MAP FOR dsPIC33EP512GP50X, dsPIC33EP512MC20X/50X AND PIC24EP512GP/MC20X DEVICES

REGISTER 10-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6								
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
—	—	—	—	_	PWM3MD ⁽¹⁾	PWM2MD ⁽¹⁾	PWM1MD ⁽¹⁾	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-11	Unimplement	ted: Read as '	כ'					
bit 10	PWM3MD: P\	NM3 Module D	isable bit ⁽¹⁾					
	1 = PWM3 mo	odule is disable	ed					
	0 = PWM3 mo	odule is enable	d					
bit 9	PWM2MD: P\	NM2 Module D	isable bit ⁽¹⁾					
1 = PWM2 module is disabled			ed					
	0 = PWM2 mo	odule is enable	d					
bit 8	PWM1MD: PWM1 Module Disable bit ⁽¹⁾							
		odule is disable						
	0 = PWM1 mo	odule is enable	d					
bit 7-0	Unimplement	Unimplemented: Read as '0'						

REGISTER 10-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6

Note 1: This bit is available on dsPIC33EPXXXMC50X/20X and PIC24EPXXXMC20X devices only.

16.1.2 WRITE-PROTECTED REGISTERS

On dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices, write protection is implemented for the IOCONx and FCLCONx registers. The write protection feature prevents any inadvertent writes to these registers. This protection feature can be controlled by the PWMLOCK Configuration bit (FOSCSEL<6>). The default state of the write protection feature is enabled (PWMLOCK = 1). The write protection feature can be disabled by configuring, PWMLOCK = 0. To gain write access to these locked registers, the user application must write two consecutive values of (0xABCD and 0x4321) to the PWMKEY register to perform the unlock operation. The write access to the IOCONx or FCLCONx registers must be the next SFR access following the unlock process. There can be no other SFR accesses during the unlock process and subsequent write access. To write to both the IOCONx and FCLCONx registers requires two unlock operations.

The correct unlocking sequence is described in Example 16-1.

EXAMPLE 16-1: PWMx WRITE-PROTECTED REGISTER UNLOCK SEQUENCE

	lled low externally in order to clear and disable the fault egister requires unlock sequence
<pre>mov #0xabcd,w10 mov #0x4321,w11 mov #0x0000,w0 mov w10, PWMKEY mov w11, PWMKEY mov w0,FCLCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of FCLCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to FCLCON1 register</pre>
-	d polarity using the IOCON1 register gister requires unlock sequence
<pre>mov #0xabcd,w10 mov #0x4321,w11 mov #0xF000,w0 mov w10, PWMKEY mov w11, PWMKEY mov w0,IOCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of IOCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to IOCON1 register</pre>

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
PENH	PENL	POLH	POLL	PMOD1 ⁽¹⁾	PMOD0 ⁽¹⁾	OVRENH	OVRENL				
bit 15		•					bit				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
-	-	-		-	-	-	R/W-0				
OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC				
bit 7							bit				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15		xH Output Pin	Ownorshin hit								
bit 15		odule controls	•								
		dule controls F									
bit 14			•								
	PENL: PWMxL Output Pin Ownership bit 1 = PWMx module controls PWMxL pin										
	0 = GPIO mo	dule controls F	WMxL pin								
bit 13	POLH: PWMxH Output Pin Polarity bit										
	1 = PWMxH pin is active-low 0 = PWMxH pin is active-high										
		-	•								
bit 12	POLL: PWMxL Output Pin Polarity bit										
	1 = PWMxL pin is active-low 0 = PWMxL pin is active-high										
bit 11-10	PMOD<1:0>: PWMx # I/O Pin Mode bits ⁽¹⁾										
	11 = Reserve	,									
		/O pin pair is ir /O pin pair is ir									
bit 9	00 = PWMx I/O pin pair is in the Complementary Output mode OVRENH: Override Enable for PWMxH Pin bit										
	1 = OVRDAT<1> controls output on PWMxH pin										
		nerator contro	•	•							
bit 8	OVRENL: Override Enable for PWMxL Pin bit										
	1 = OVRDAT<0> controls output on PWMxL pin										
	•	nerator contro									
bit 7-6					de is Enabled b						
					by OVRDAT< by OVRDAT<0						
bit 5-4	If OVERENL = 1, PWMxL is driven to the state specified by OVRDAT<0>. FLTDAT<1:0>: Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits										
	If Fault is active, PWMxH is driven to the state specified by FLTDAT<1>.										
	If Fault is active	ve, PWMxL is	driven to the s	tate specified b	by FLTDAT<0>.						
bit 3-2	CLDAT<1:0>	: Data for PWN	/IxH and PWM	xL Pins if CLM	10D is Enabled	bits					
		If current-limit is active, PWMxH is driven to the state specified by CLDAT<1>. If current-limit is active, PWMxL is driven to the state specified by CLDAT<0>.									
		IS AULIVE. F VVI									
Note 1: The					enabled (PTEN						

REGISTER 16-13: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾

2: If the PWMLOCK Configuration bit (FOSCSEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

NOTES:

20.1 UART Helpful Tips

- 1. In multi-node, direct-connect UART networks, receive inputs UART react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the Idle state, the default of which is logic high (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a Start bit detection and will cause the first byte received, after the device has been initialized, to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.
- 2. The first character received on a wake-up from Sleep mode caused by activity on the UxRX pin of the UARTx module will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock, relative to the incoming UxRX bit timing, is no longer synchronized, resulting in the first character being invalid; this is to be expected.

20.2 UART Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

20.2.1 KEY RESOURCES

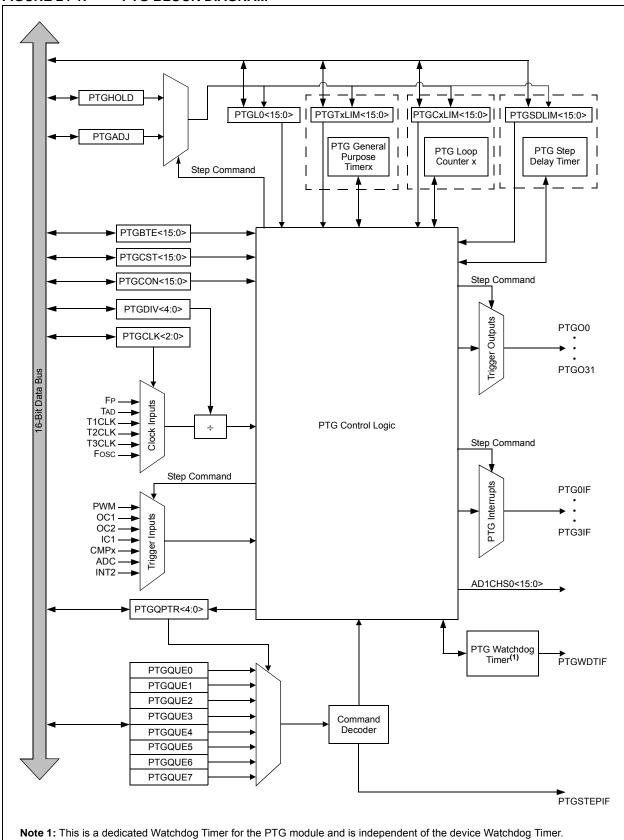
- "UART" (DS70582) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 21-13: CxBUFPNT2: ECANx FILTER 4-7 BUFFER POINTER REGISTER 2

R/W-0								
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F7BF	°<3:0>			F6BF	P<3:0>		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F5BF	°<3:0>		F4BP<3:0>				
bit 7							bit 0	
Legend:								
R = Readable bi	t	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		'0' = Bit is cleare	'0' = Bit is cleared x = Bit is unkr		nown			

	1110 = Filter hits received in RX Buffer 14
	•
	0001 = Filter hits received in RX Buffer 1
	0000 = Filter hits received in RX Buffer 0
bit 11-8	F6BP<3:0>: RX Buffer Mask for Filter 6 bits (same values as bits<15:12>)
bit 7-4	F5BP<3:0>: RX Buffer Mask for Filter 5 bits (same values as bits<15:12>)
bit 3-0	F4BP<3:0>: RX Buffer Mask for Filter 4 bits (same values as bits<15:12>)

REGISTER 21-14: CxBUFPNT3: ECANx FILTER 8-11 BUFFER POINTER REGISTER 3


R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F11BF	P<3:0>		F10BP<3:0>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F9BP	2<3:0>			F8B	P<3:0>		
bit 7							bit 0	
Legend:								
R = Readabl	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	
bit 15-12	1111 = Filter 1110 = Filter • • • •	RX Buffer Mar hits received ir hits received ir hits received ir hits received ir	n RX FIFO bu n RX Buffer 1 n RX Buffer 1	iffer 4				
bit 11-8	F10BP<3:0>	: RX Buffer Ma	sk for Filter 1	0 bits (same val	ues as bits<1	5:12>)		
bit 7-4	F9BP<3:0>:	RX Buffer Mas	k for Filter 9 b	oits (same value	s as bits<15:1	2>)		
bit 3-0	F8BP<3:0>:	RX Buffer Mas	k for Filter 8 k	oits (same value	s as bits<15:1	2>)		

© 2011-2013 Microchip Technology Inc.

REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

bit 7-5	SSRC<2:0>: Sample Trigger Source Select bits
	If SSRCG = 1: 111 = Reserved 110 = PTGO15 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 101 = PTGO14 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 100 = PTGO13 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 011 = PTGO12 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 010 = PWM Generator 3 primary trigger compare ends sampling and starts conversion ⁽²⁾ 001 = PWM Generator 2 primary trigger compare ends sampling and starts conversion ⁽²⁾ 000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion ⁽²⁾
	If SSRCG = 0: 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = CTMU ends sampling and starts conversion 101 = Reserved
	 101 - Reserved 100 = Timer5 compare ends sampling and starts conversion 011 = PWM primary Special Event Trigger ends sampling and starts conversion 010 = Timer3 compare ends sampling and starts conversion 001 = Active transition on the INT0 pin ends sampling and starts conversion 000 = Clearing the Sample bit (SAMP) ends sampling and starts conversion (Manual mode)
bit 4	SSRCG: Sample Trigger Source Group bit
	See SSRC<2:0> for details.
bit 3	 SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x) <u>In 12-bit mode (AD21B = 1), SIMSAM is Unimplemented and is Read as '0':</u> 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence
bit 2	ASAM: ADC1 Sample Auto-Start bit
	 1 = Sampling begins immediately after the last conversion; SAMP bit is auto-set 0 = Sampling begins when the SAMP bit is set
bit 1	SAMP: ADC1 Sample Enable bit
	 1 = ADC Sample-and-Hold amplifiers are sampling 0 = ADC Sample-and-Hold amplifiers are holding If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC<2:0> = 000, software can write '0' to end sampling and start conversion. If SSRC<2:0> ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC1 Conversion Status bit ⁽³⁾
	 1 = ADC conversion cycle has completed 0 = ADC conversion has not started or is in progress Automatically set by hardware when the ADC conversion is complete. Software can write '0' to clear the DONE status bit (software is not allowed to write '1'). Clearing this bit does NOT affect any operation in progress. Automatically cleared by hardware at the start of a new conversion.
Note 1:	See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

- 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
- **3:** Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ADCTS4	ADCTS3	ADCTS2	ADCTS1	IC4TSS	IC3TSS	IC2TSS	IC1TSS				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
OC4CS		OC2CS	OC1CS	OC4TSS	OC3TSS	OC2TSS	OC1TSS				
bit 7		00100					bit (
Legend:											
R = Reada	ble bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown				
bit 15	ADCTS4: Sa	mple Trigger P	TGO15 for AE	OC bit							
	1 = Generate	es Trigger wher	the broadcas	t command is	executed						
	0 = Does not	generate Trigg	er when the b	roadcast com	mand is execute	ed					
bit 14		mple Trigger P									
		es Trigger wher				al					
bit 13					mand is execute	a					
DIE 13		ADCTS2: Sample Trigger PTGO13 for ADC bit 1 = Generates Trigger when the broadcast command is executed									
					mand is execute	ed					
bit 12		ADCTS1: Sample Trigger PTGO12 for ADC bit									
	1 = Generate	1 = Generates Trigger when the broadcast command is executed									
					mand is execute	ed					
bit 11	-	IC4TSS: Trigger/Synchronization Source for IC4 bit									
					ast command is broadcast con		ited				
bit 10	IC3TSS: Trig	IC3TSS: Trigger/Synchronization Source for IC3 bit									
					ast command is broadcast con		ited				
bit 9	IC2TSS: Trig	IC2TSS: Trigger/Synchronization Source for IC2 bit									
					ast command is broadcast con		ited				
bit 8		 0 = Does not generate Trigger/Synchronization when the broadcast command is executed IC1TSS: Trigger/Synchronization Source for IC1 bit 									
					ast command is broadcast con		ited				
bit 7		 Does not generate Trigger/Synchronization when the broadcast command is executed OC4CS: Clock Source for OC4 bit 									
		es clock pulse v generate clock				cuted					
bit 6		 0 = Does not generate clock pulse when the broadcast command is executed OC3CS: Clock Source for OC3 bit 									
		es clock pulse v aenerate clock			d is executed command is exe	cuted					
bit 5		ck Source for C	-								
	1 = Generate	es clock pulse v	when the broad		d is executed command is exe	cuted					
	This register is rea PTGSTRT = 1).	-					and				
	,	lv used with the	PTGCTRI. OI	PTION = 1111	Step command	L					
	his register is only used with the PTGCTRL OPTION = 1111 Step command.										

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2)

REGISTER 24-10: PTGADJ: PTG ADJUST REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PTGA	DJ<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PTGA	DJ<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

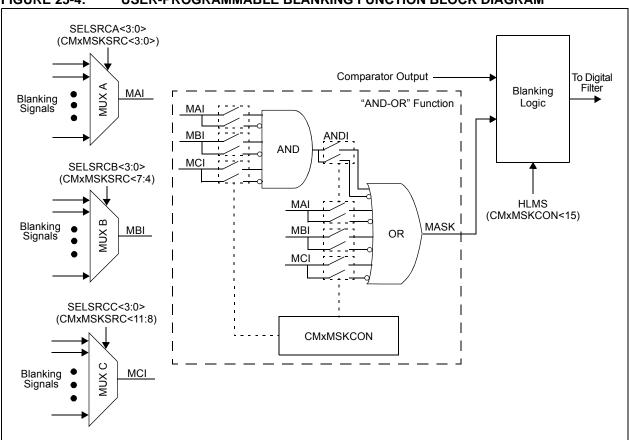
bit 15-0 **PTGADJ<15:0>:** PTG Adjust Register bits This register holds user-supplied data to be added to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 registers with the PTGADD command.

REGISTER 24-11: PTGL0: PTG LITERAL 0 REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGL0	<15:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGL)<7:0>			
bit 7							bit 0

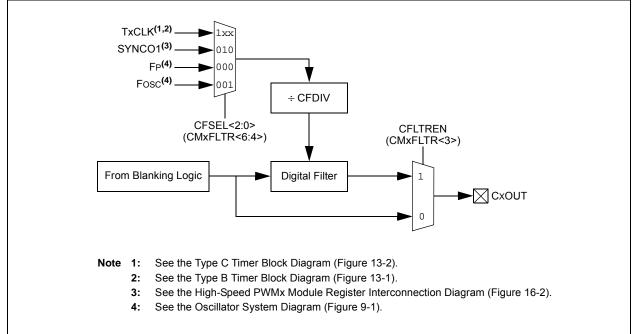
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 15-0 PTGL0<15:0>: PTG Literal 0 Register bits

This register holds the 16-bit value to be written to the AD1CHS0 register with the ${\tt PTGCTRL}$ Step command.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).


NOTES:

DIGITAL FILTER INTERCONNECT BLOCK DIAGRAM

REGISTER 25-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	RW-0
—	—	—	—	SELSRCC3	SELSRCC2	SELSRCC1	SELSRCC0
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SELSRCB3 | SELSRCB2 | SELSRCB1 | SELSRCB0 | SELSRCA3 | SELSRCA2 | SELSRCA1 | SELSRCA0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

DIL 10-12	Uninpienenteu. Reau as 0
bit 11-8	SELSRCC<3:0>: Mask C Input Select bits
	1111 = FLT4
	1110 = FLT2
	1101 = PTGO19
	1100 = PTGO18
	1011 = Reserved
	1010 = Reserved
	1001 = Reserved
	1000 = Reserved
	0111 = Reserved
	0110 = Reserved
	0101 = PWM3H
	0100 = PWM3L
	0011 = PWM2H
	0010 = PWM2L
	0001 = PWM1H
	0000 = PWM1L
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits 1111 = FLT4
bit 7-4	1111 = FLT4 1110 = FLT2
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 0111 = Reserved 0110 = Reserved 0110 = Reserved 0101 = PWM3H
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 0111 = Reserved 0110 = Reserved 0110 = Reserved 0101 = PWM3H 0100 = PWM3L
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 0111 = Reserved 0110 = Reserved 0110 = Reserved 0110 = PWM3H 0100 = PWM3L 0011 = PWM2H
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 0111 = Reserved 0111 = Reserved 0110 = Reserved 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H 0010 = PWM2L
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 0111 = Reserved 0110 = Reserved 0110 = Reserved 0110 = PWM3H 0100 = PWM3L 0011 = PWM2H

DC CHARACT	ERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Parameter No.	Тур.	Max.	Units	Conditions			
Operating Cur	rent (IDD) ⁽¹⁾						
DC20d	9	15	mA	-40°C			
DC20a	9	15	mA	+25°C	3.3V	10 MIPS	
DC20b	9	15	mA	+85°C	3.3V		
DC20c	9	15	mA	+125°C			
DC22d	16	25	mA	-40°C			
DC22a	16	25	mA	+25°C	3.3∨	20 MIPS	
DC22b	16	25	mA	+85°C	3.3V	20 101173	
DC22c	16	25	mA	+125°C			
DC24d	27	40	mA	-40°C			
DC24a	27	40	mA	+25°C	3.3V	40 MIPS	
DC24b	27	40	mA	+85°C	3.3V	40 1011-5	
DC24c	27	40	mA	+125°C			
DC25d	36	55	mA	-40°C			
DC25a	36	55	mA	+25°C	3.3V	60 MIPS	
DC25b	36	55	mA	+85°C	3.3V	OU IVIIPS	
DC25c	36	55	mA	+125°C	7		
DC26d	41	60	mA	-40°C			
DC26a	41	60	mA	+25°C	3.3V	70 MIPS	
DC26b	41	60	mA	+85°C			

TABLE 30-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- CPU is executing while(1) {NOP(); } statement
- · JTAG is disabled

AC CHARACTERISTICS			(unless		se stateo rature	i)⁽¹⁾ -40°C ≤ ⁻	3.0V to 3.6V TA \leq +85°C for Industrial TA \leq +125°C for Extended
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
		ADC A	Accuracy	(12-Bit	Mode)		
AD20a	Nr	Resolution	12	2 Data Bi	its	bits	
AD21a	INL	Integral Nonlinearity	-2.5		2.5	LSb	$-40^{\circ}C \le TA \le +85^{\circ}C$ (Note 2)
			-5.5	—	5.5	LSb	+85°C $<$ TA \leq +125°C (Note 2)
AD22a	DNL	Differential Nonlinearity	-1	_	1	LSb	-40°C \leq TA \leq +85°C (Note 2)
			-1	—	1	LSb	+85°C $<$ TA \leq +125°C (Note 2)
AD23a	Gerr	Gain Error ⁽³⁾	-10	_	10	LSb	-40°C \leq TA \leq +85°C (Note 2)
			-10	_	10	LSb	+85°C < TA \leq +125°C (Note 2)
AD24a	EOFF	Offset Error	-5	—	5	LSb	$-40^{\circ}C \le TA \le +85^{\circ}C$ (Note 2)
			-5	—	5	LSb	+85°C < TA \leq +125°C (Note 2)
AD25a	—	Monotonicity	—				Guaranteed
		Dynamic	Performa	ance (12-	-Bit Mod	e)	
AD30a	THD	Total Harmonic Distortion ⁽³⁾	_	75		dB	
AD31a	SINAD	Signal to Noise and Distortion ⁽³⁾	—	68		dB	
AD32a	SFDR	Spurious Free Dynamic Range ⁽³⁾	—	80	—	dB	
AD33a	Fnyq	Input Signal Bandwidth ⁽³⁾	—	250	—	kHz	
AD34a	ENOB	Effective Number of Bits ⁽³⁾	11.09	11.3		bits	

TABLE 30-58: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

3: Parameters are characterized but not tested in manufacturing.

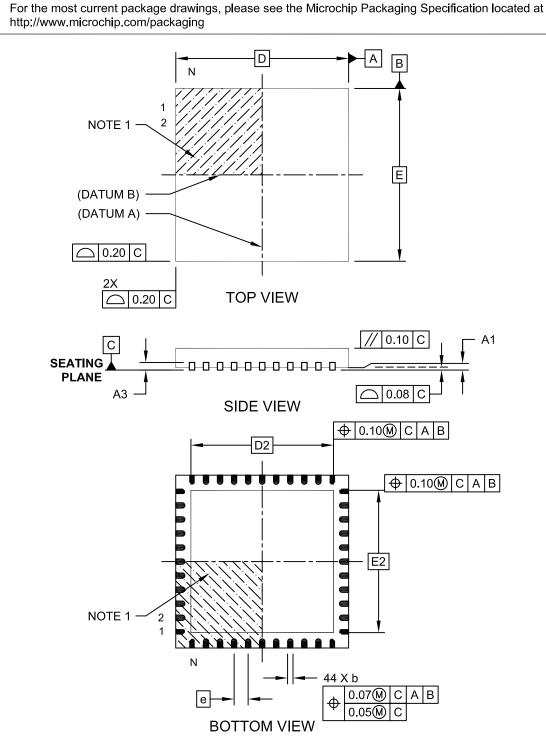
	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
		ADC A	Accuracy	(12-Bit	Mode) ⁽¹⁾		
HAD20a	Nr	Resolution ⁽³⁾	12	2 Data B	its	bits	
HAD21a	INL	Integral Nonlinearity	-5.5	_	5.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
HAD22a	DNL	Differential Nonlinearity	-1	_	1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
HAD23a	Gerr	Gain Error	-10		10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
HAD24a	EOFF	Offset Error	-5	—	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
		Dynamic I	Performa	nce (12-	Bit Mode	e) ⁽²⁾	
HAD33a	Fnyq	Input Signal Bandwidth	_	_	200	kHz	

TABLE 31-12: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.


TABLE 31-13: ADC MODULE SPECIFICATIONS (10-BIT MODE)

AC CHAF	(unless	otherwi	ise stated	d)	: 3.0V to 3.6V TA ≤ +150°C		
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
		ADC A	ccuracy	(10-Bit I	Mode) ⁽¹⁾		
HAD20b	Nr	Resolution ⁽³⁾	10) Data B	its	bits	
HAD21b	INL	Integral Nonlinearity	-1.5	_	1.5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
HAD22b	DNL	Differential Nonlinearity	-0.25	_	0.25	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
HAD23b	Gerr	Gain Error	-2.5		2.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
HAD24b	EOFF	Offset Error	-1.25		1.25	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
		Dynamic P	erforma	nce (10-	Bit Mode	e) ⁽²⁾	
HAD33b	Fnyq	Input Signal Bandwidth	_	_	400	kHz	

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note:

Microchip Technology Drawing C04-103C Sheet 1 of 2

Section Name	Update Description
Section 30.0 "Electrical	These SPI2 Timing Requirements were updated:
Characteristics" (Continued)	 Maximum value for Parameter SP10 and the minimum clock period value for SCKx in Note 3 (see Table 30-36, Table 30-37, and Table 30-38)
	 Maximum value for Parameter SP70 and the minimum clock period value for SCKx in Note 3 (see Table 30-40 and Table 30-42)
	The Maximum Data Rate values were updated for the SPI2 Maximum Data/Clock Rate Summary (see Table 30-43)
	These SPI1 Timing Requirements were updated:
	Maximum value for Parameters SP10 and the minimum clock period value for SCKx in Note 3 (see Table 30-44, Table 30-45, and Table 30-46)
	Maximum value for Parameters SP70 and the minimum clock period value for SCKx in Note 3 (see Table 30-47 through Table 30-50)
	 Minimum value for Parameters SP40 and SP41 see Table 30-44 through Table 30-50)
	Updated all Typical values for the CTMU Current Source Specifications (see Table 30-55).
	Updated Note1, the Maximum value for Parameter AD06, the Minimum value for AD07, and the Typical values for AD09 in the ADC Module Specifications (see Table 30-56).
	Added Note 1 to the ADC Module Specifications (12-bit Mode) (see Table 30-57).
	Added Note 1 to the ADC Module Specifications (10-bit Mode) (see Table 30-58).
	Updated the Minimum and Maximum values for Parameter AD21b in the 10-bit Mode ADC Module Specifications (see Table 30-58).
	Updated Note 2 in the ADC Conversion (12-bit Mode) Timing Requirements (see Table 30-59).
	Updated Note 1 in the ADC Conversion (10-bit Mode) Timing Requirements (see Table 30-60).

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)