

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64mc204t-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-6: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC35	0886	_		JTAGIP<2:0)>	—		ICDIP<2:0	>	_	—	—	_	—	_	-		4400
IPC36	0888	-	l	PTG0IP<2:0)>	_	PT	GWDTIP<	2:0>	_	P	TGSTEPIP<2	:0>	—	—			4440
IPC37	088A		_	_	_	_	F	PTG3IP<2:0)>	_		PTG2IP<2:0>	>	_	F	PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	—	—	_			—	_	—	—	_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	_	—	—	—	_			—	_	DAE	DOOVR	_	—			0000
INTCON4	08C6	-	_	—	_	_	_		_	_	_	—	—	—	—	_	SGHT	0000
INTTREG	08C8	-	—	—	_	ILR<3:0>			VECNUM<7:0>								0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-17: I2C1 AND I2C2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	—	—	—	—	—	—	—	_				I2C1 Recei	ve Register				0000
I2C1TRN	0202	_	_	_	_	—	_	—	_				I2C1 Transi	mit Register				OOFF
I2C1BRG	0204	_	_	_	_	_	_	_				Bau	d Rate Gene	erator				0000
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	_	_	_	I2C1 Address Register 0							0000			
I2C1MSK	020C	_	_	_	_	_	_					I2C1 Add	dress Mask					0000
I2C2RCV	0210	_	_	_	_	_	_	_	_				I2C2 Recei	ve Register				0000
I2C2TRN	0212	_	_	_	_	_	_	_	_				I2C2 Transi	mit Register				OOFF
I2C2BRG	0214	_	_	_	_	_	_	_				Bau	d Rate Gene	erator				0000
I2C2CON	0216	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	_	_	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C2ADD	021A	_	_	_	_	—	_					I2C2 Addr	ess Register	r				0000
I2C2MSK	021C	_	_	_	_	_	_	I2C2 Address Mask 00							0000			

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: UART1 AND UART2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	_	UEN<	:1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_	_	_				UART1	Transmit F	Register				xxxx
U1RXREG	0226	_	_	_	_	_	_	_	UART1 Receive Register						0000			
U1BRG	0228							Baud Rate Generator Prescaler 0						0000				
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN<	:1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_	_	_				UART2	Transmit F	Register				xxxx
U2RXREG	0236	_	_	_	_	—	_	UART2 Receive Register 00							0000			
U2BRG	0238							Baud	Rate Gen	erator Pre	scaler							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-24: CRC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 F									All Resets			
CRCCON1	0640	CRCEN	—	CSIDL		VWORD<4:0> CRCFUL CRCMPT CRCISEL CRCGO LENDIAN									0000		
CRCCON2	0642		_	_		D	WIDTH<4:0)>		_	-	_		F	PLEN<4:0>		0000
CRCXORL	0644		X<15:1>00										0000				
CRCXORH	0646								X·	<31:16>							0000
CRCDATL	0648								CRC Data	Input Low V	Vord						0000
CRCDATH	064A								CRC Data	Input High \	Vord						0000
CRCWDATL	064C		CRC Result Low Word 00										0000				
CRCWDATH	064E		CRC Result High Word 00									0000					

Legend: — = unimplemented, read as '0'. Shaded bits are not used in the operation of the programmable CRC module.

TABLE 4-25: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC202/502 AND PIC24EPXXXGP/MC202 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit						Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets		
RPOR0	0680	—	—		RP35R<5:0>						_		RP20R<5:0>							
RPOR1	0682	_	_		RP37R<5:0>						Ι		RP36R<5:0>							
RPOR2	0684	_	_			RP39F	<5:0>			_	Ι	RP38R<5:0>						0000		
RPOR3	0686	_	_		RP41R<5:0>					_	Ι			RP40F	۲<5:0>			0000		
RPOR4	0688	_	_		RP43R<5:0>						_			RP42F	R<5:0>			0000		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC203/503 AND PIC24EPXXXGP/MC203 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680		—		RP35R<5:0>					_	_			RP20F	२<5:0>			0000
RPOR1	0682	_	_		RP37R<5:0>					_	_		RP36R<5:0>					
RPOR2	0684	_	_			RP39F	२<5:0>			_	—		RP38R<5:0>					0000
RPOR3	0686	_	_			RP41F	२<5:0>			_	—		RP40R<5:0>					0000
RPOR4	0688	_	_			RP43F	۲<5:0>			_	_	RP42R<5:0>					0000	
RPOR5	068A	_	_	_	_	_	_		_	_	_	_	_	_	_			0000
RPOR6	068C	_	—							0000								

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 8-7: DMAXPAD: DMA CHANNEL X PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			PAD	<15:8>							
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			PAE)<7:0>							
bit 7							bit 0				
Legend:											
R = Readable	R = Readable bit W = Writable bit				nented bit, read	d as '0'					
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown							

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-8: DMAXCNT: DMA CHANNEL X TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—				CNT<	13:8> (2)			
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			CNT<	<7:0> (2)				
bit 7							bit 0	
Legend:								
R = Readable b	oit	W = Writable b	bit	U = Unimplen	nented bit, rea	id as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		

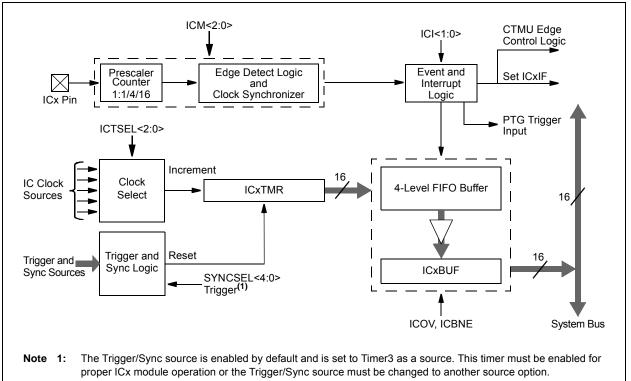
bit 15-14 Unimplemented: Read as '0'

bit 13-0 CNT<13:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: The number of DMA transfers = CNT<13:0> + 1.

14.0 INPUT CAPTURE


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Input Capture" (DS70352) in the "dsPIC33/dsPIC24 Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices support four input capture channels.

Key features of the input capture module include:

- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 19 user-selectable Trigger/Sync sources available
- A 4-level FIFO buffer for capturing and holding timer values for several events
- Configurable interrupt generation
- Up to six clock sources available for each module, driving a separate internal 16-bit counter

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

bit 4-0	SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
	11111 = OCxRS compare event is used for synchronization
	11110 = INT2 pin synchronizes or triggers OCx
	11101 = INT1 pin synchronizes or triggers OCx
	11100 = CTMU module synchronizes or triggers OCx
	11011 = ADC1 module synchronizes or triggers OCx
	11010 = CMP3 module synchronizes or triggers OCx
	11001 = CMP2 module synchronizes or triggers OCx
	11000 = CMP1 module synchronizes or triggers OCx
	10111 = Reserved
	10110 = Reserved
	10101 = Reserved
	10100 = Reserved
	10011 = IC4 input capture event synchronizes or triggers OCx
	10010 = IC3 input capture event synchronizes or triggers OCx
	10001 = IC2 input capture event synchronizes or triggers OCx
	10000 = IC1 input capture event synchronizes or triggers OCx
	01111 = Timer5 synchronizes or triggers OCx
	01110 = Timer4 synchronizes or triggers OCx
	01101 = Timer3 synchronizes or triggers OCx
	01100 = Timer2 synchronizes or triggers OCx (default)
	01011 = Timer1 synchronizes or triggers OCx (2)
	01010 = PTGOx synchronizes or triggers $OCx^{(3)}$
	01001 = Reserved
	01000 = Reserved
	00111 = Reserved
	00110 = Reserved
	00101 = Reserved
	00100 = OC4 module synchronizes or triggers $OCx^{(1,2)}$
	00011 = OC3 module synchronizes or triggers $OCx^{(1,2)}$
	00010 = OC2 module synchronizes or triggers $OCx^{(1,2)}$
	00001 = OC1 module synchronizes or triggers $OCx^{(1,2)}$
	00000 = No Sync or Trigger source for OCx

- **Note 1:** Do not use the OCx module as its own Synchronization or Trigger source.
 - 2: When the OCy module is turned OFF, it sends a trigger out signal. If the OCx module uses the OCy module as a Trigger source, the OCy module must be unselected as a Trigger source prior to disabling it.
 - Each Output Compare x module (OCx) has one PTG Trigger/Synchronization source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information. PTGO0 = OC1

PTGO0 = OC1 PTGO1 = OC2 PTGO2 = OC3PTGO3 = OC4

REGISTER 16-13: IOCONX: PWMx I/O CONTROL REGISTER⁽²⁾ (CONTINUED)

- bit 1 SWAP: SWAP PWMxH and PWMxL Pins bit
 1 = PWMxH output signal is connected to PWMxL pins; PWMxL output signal is connected to PWMxH pins
 0 = PWMxH and PWMxL pins are mapped to their respective pins
 bit 0 OSYNC: Output Override Synchronization bit
 1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWMx period boundary
 - 0 = Output overrides via the OVDDAT<1:0> bits occur on the next CPU clock boundary
- Note 1: These bits should not be changed after the PWMx module is enabled (PTEN = 1).
 - 2: If the PWMLOCK Configuration bit (FOSCSEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

22.2 **CTMU Control Registers**

REGISTER	22-1: CTM	UCON1: CTM	J CONTROI	- REGISTER	1				
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN ⁽¹⁾	CTTRIG		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	_		_	<u> </u>	<u> </u>		_		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable b	bit	U = Unimplen	nented bit, read	as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own		
bit 15 CTMUEN: CTMU Enable bit 1 = Module is enabled 0 = Module is disabled									
bit 14 Unimplemented: Read as '0'									
bit 13 CTMUSIDL: CTMU Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode									
bit 12	TGEN: Time	Generation Ena	ble bit						

DECISTED

bit 9	IDISSEN: Analog Current Source Control bit ⁽¹⁾
	1 = Analog current source output is grounded0 = Analog current source output is not grounded
bit 8	CTTRIG: ADC Trigger Control bit
	1 = CTMU triggers ADC start of conversion0 = CTMU does not trigger ADC start of conversion

EDGSEQEN: Edge Sequence Enable bit

0 = No edge sequence is needed

1 = Enables edge delay generation 0 = Disables edge delay generation

EDGEN: Edge Enable bit

bit 7-0 Unimplemented: Read as '0'

bit 11

bit 10

Note 1: The ADC module Sample-and-Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitance measurement must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.

1 = Hardware modules are used to trigger edges (TMRx, CTEDx, etc.) 0 = Software is used to trigger edges (manual set of EDGxSTAT)

1 = Edge 1 event must occur before Edge 2 event can occur

24.0 PERIPHERAL TRIGGER GENERATOR (PTG) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Peripheral Trigger Generator (PTG)" (DS70669) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

24.1 Module Introduction

The Peripheral Trigger Generator (PTG) provides a means to schedule complex high-speed peripheral operations that would be difficult to achieve using software. The PTG module uses 8-bit commands, called "Steps", that the user writes to the PTG Queue registers (PTGQUE0-PTGQUE7), which perform operations, such as wait for input signal, generate output trigger and wait for timer.

The PTG module has the following major features:

- Multiple clock sources
- Two 16-bit general purpose timers
- Two 16-bit general limit counters
- Configurable for rising or falling edge triggering
- Generates processor interrupts to include:
 - Four configurable processor interrupts
 - Interrupt on a Step event in Single-Step modeInterrupt on a PTG Watchdog Timer time-out
- Able to receive trigger signals from these peripherals:
 - ADC
 - PWM
 - Output Compare
 - Input Capture
 - Op Amp/Comparator
 - INT2
- Able to trigger or synchronize to these peripherals:
 - Watchdog Timer
 - Output Compare
 - Input Capture
 - ADC
 - PWM
- Op Amp/Comparator

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 24-12: PTGQPTR: PTG STEP QUEUE POINTER REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—		_	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_					PTGQPTR<4:0	>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 **PTGQPTR<4:0>:** PTG Step Queue Pointer Register bits This register points to the currently active Step command in the Step queue.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-13: PTGQUEX: PTG STEP QUEUE REGISTER x (x = 0-7)^(1,3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STEP(2x +	- 1)<7:0> (2)			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STEP(2x	()<7:0> ⁽²⁾			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	STEP(2x + 1)<7:0>: PTG Step Queue Pointer Register bits ⁽²⁾
	A queue location for storage of the STEP(2x + 1) command byte.
bit 7-0	STEP(2x)<7:0>: PTG Step Queue Pointer Register bits ⁽²⁾
	A queue location for storage of the STEP(2x) command byte.

- **Note 1:** This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).
 - 2: Refer to Table 24-1 for the Step command encoding.

3: The Step registers maintain their values on any type of Reset.

File Name	Address	Device Memory Size (Kbytes)	Bits 23-8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Reserved	0057EC	32										
	00AFEC	64										
	0157EC	128	_	_	_	_		_	_	_	_	
	02AFEC	256										
	0557EC	512										
Reserved	0057EE	32										
	00AFEE	64										
	0157EE	128	_	_	_	_	_	_	_	_	_	
	02AFEE	256										
	0557EE	512										
FICD	0057EE	32										
TIOD	00AFF0	64										
	0157F0	128	-	Reserved ⁽³⁾		JTAGEN	Reserved ⁽²⁾	Reserved ⁽³⁾		1094	1.05	
	0137F0 02AFF0	256		Reserveu	_	JIAGEN	Reserveu	Reserveu	_	1034	S<1:0>	
	0557F0	512	4									
FROR												
FPOR	0057F2	32	-									
	00AFF2	64	-					Reserved ⁽³⁾				
	0157F2	128		VVDTV	VIN<1:0>	ALTI2C2	ALTI2C1	Reserved	_	_	_	
	02AFF2	256	4									
EN DE	0557F2	512			r							
FWDT	0057F4	32	-									
	00AFF4	64	-									
	0157F4	128		FWDTEN	WINDIS	PLLKEN	WDTPRE		WDTPOST<3:0>			
	02AFF4	256	-									
	0557F4	512										
FOSC	0057F6	32										
	00AFF6	64	_									
	0157F6	128	—	FCKS	SM<1:0>	IOL1WAY	—	—	OSCIOFNC	POSCM	iD<1:0>	
	02AFF6	256										
	0557F6	512										
FOSCSEL	0057F8	32										
	00AFF8	64										
	0157F8	128	—	IESO	PWMLOCK ⁽¹⁾	—	—	-	F	NOSC<2:0>		
	02AFF8	256										
	0557F8	512										
FGS	0057FA	32										
	00AFFA	64										
	0157FA	128	_	—	—	_	—	—	—	GCP	GWRP	
	02AFFA	256										
	0557FA	512										
Reserved	0057FC	32										
	00AFFC	64										
	0157FC	128	_	_	—	_	—	_	_	_	—	
	02AFFC	256										
	0557FC	512										
Reserved	057FFE	32										
	00AFFE	64										
		128	_	_	_	_	_	_	_	_	_	
1	015766											
	0157FE 02AFFE	256										

TABLE 27-1: CONFIGURATION BYTE REGISTER MAP

Legend: — = unimplemented, read as '1'.

Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

2: This bit is reserved and must be programmed as '0'.

3: These bits are reserved and must be programmed as '1'.

Bit Field	Description
GCP	General Segment Code-Protect bit 1 = User program memory is not code-protected 0 = Code protection is enabled for the entire program memory space
GWRP	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	 Two-Speed Oscillator Start-up Enable bit 1 = Start up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start up device with user-selected oscillator source
PWMLOCK ⁽¹⁾	PWM Lock Enable bit 1 = Certain PWM registers may only be written after a key sequence 0 = PWM registers may be written without a key sequence
FNOSC<2:0>	Oscillator Selection bits 111 = Fast RC Oscillator with Divide-by-N (FRCDIVN) 110 = Fast RC Oscillator with Divide-by-16 (FRCDIV16) 101 = Low-Power RC Oscillator (LPRC) 100 = Reserved; do not use 011 = Primary Oscillator with PLL module (XT + PLL, HS + PLL, EC + PLL) 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator with Divide-by-N with PLL module (FRCPLL) 000 = Fast RC Oscillator (FRC)
FCKSM<1:0>	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	Peripheral Pin Select Configuration bit 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations
OSCIOFNC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is the clock output 0 = OSC2 is a general purpose digital I/O pin
POSCMD<1:0>	Primary Oscillator Mode Select bits 11 = Primary Oscillator is disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	 Watchdog Timer Enable bit 1 = Watchdog Timer is always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect.) 0 = Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
PLLKEN	PLL Lock Enable bit 1 = PLL lock is enabled 0 = PLL lock is disabled nly available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

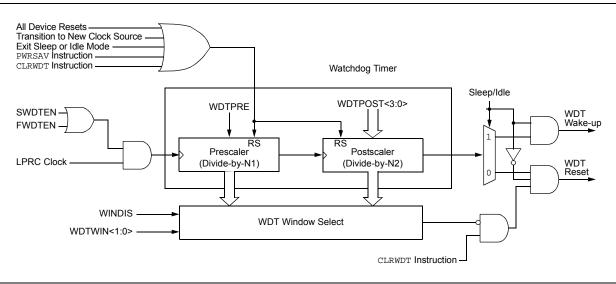
TABLE 27-2: CONFIGURATION BITS DESCRIPTION

Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

2: When JTAGEN = 1, an internal pull-up resistor is enabled on the TMS pin. Erased devices default to JTAGEN = 1. Applications requiring I/O pins in a high-impedance state (tri-state) in Reset should use pins other than TMS for this purpose.

27.5 Watchdog Timer (WDT)

For dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.


27.5.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a WDT Timeout period (TWDT), as shown in Parameter SY12 in Table 30-22.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution
- Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

FIGURE 27-2: WDT BLOCK DIAGRAM

27.5.2 SLEEP AND IDLE MODES

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes the device and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bit (RCON<3,2>) needs to be cleared in software after the device wakes up.

27.5.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

27.5.4 WDT WINDOW

The Watchdog Timer has an optional Windowed mode, enabled by programming the WINDIS bit in the WDT Configuration register (FWDT<6>). In the Windowed mode (WINDIS = 0), the WDT should be cleared based on the settings in the programmable Watchdog Timer Window select bits (WDTWIN<1:0>).

29.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

29.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- · Multiple projects
- Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

29.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

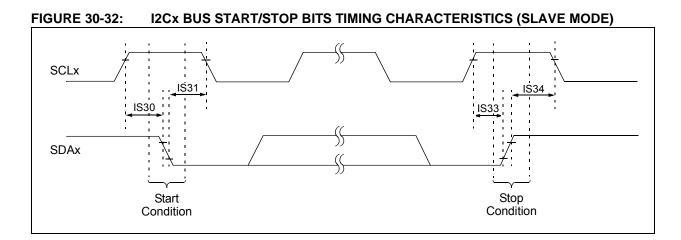
In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

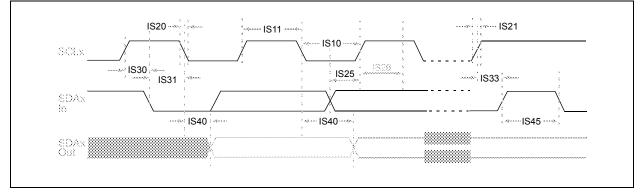
Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

29.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.


- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

AC CHA	RACTER	ISTICS		Standard Operatin (unless otherwise Operating tempera	stated) iture -40)°C ≤ Ta ≤	+85°C for Industrial
Param No.	Symbol	Characte	eristic ⁽⁴⁾	Min. ⁽¹⁾	-40 Max.	Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μS	
			400 kHz mode	TCY/2 (BRG + 2)		μS	
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)		μs	
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 2)		μS	
		U U	400 kHz mode	Tcy/2 (BRG + 2)		μ S	
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)		μ S	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾		100	ns	-
IM21	TR:SCL	SDAx and SCLx	100 kHz mode		1000	ns	CB is specified to be
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾		300	ns	-
IM25	TSU:DAT	Data Input	100 kHz mode	250		ns	
		Setup Time	400 kHz mode	100	_	ns	
			1 MHz mode ⁽²⁾	40		ns	-
IM26	THD:DAT	Data Input	100 kHz mode	0	_	μS	
		Hold Time	400 kHz mode	0	0.9	μS	
			1 MHz mode ⁽²⁾	0.2		μs	-
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 2)		μ S	Only relevant for
		Setup Time	400 kHz mode	Tcy/2 (BRG + 2)		μS	Repeated Start
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μs	condition
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 2)		μ s	After this period, the
		Hold Time	400 kHz mode	Tcy/2 (BRG +2)		μS	first clock pulse is
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μS	generated
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μs	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 2)	_	μs	1
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)	—	μS	
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μs	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 2)	—	μS	
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)	—	μS	
IM40	TAA:SCL	Output Valid	100 kHz mode		3500	ns	
		From Clock	400 kHz mode	—	1000	ns	İ.
			1 MHz mode ⁽²⁾	—	400	ns	İ.
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be
			400 kHz mode	1.3	_	μ s	free before a new
			1 MHz mode ⁽²⁾	0.5	_	μ s	transmission can star
IM50	Св	Bus Capacitive L		_	400	pF	
IM51	TPGD	Pulse Gobbler De	-	65	390	ns	(Note 3)


TABLE 30-49: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the l²C[™] Baud Rate Generator. Refer to "Inter-Integrated Circuit (l²C[™])" (DS70330) in the "dsPIC33/PIC24 Family Reference Manual". Please see the Microchip web site for the latest family reference manual sections.

- 2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
- **3:** Typical value for this parameter is 130 ns.
- 4: These parameters are characterized, but not tested in manufacturing.

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

NOTES: