

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64mc502-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.5 **Programmer's Model**

The programmer's model for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X is shown in Figure 3-2. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.

In addition to the registers contained in the programmer's model, the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/

MC20X devices contain control registers for Modulo Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only), Bit-Reversed Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only) and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory mapped, as shown in Table 4-1.

Register(s) Name	Description
W0 through W15	Working Register Array
ACCA, ACCB	40-Bit DSP Accumulators
PC	23-Bit Program Counter
SR	ALU and DSP Engine STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
DSRPAG	Extended Data Space (EDS) Read Page Register
DSWPAG	Extended Data Space (EDS) Write Page Register
RCOUNT	REPEAT Loop Count Register
DCOUNT ⁽¹⁾	DO Loop Count Register
DOSTARTH ^(1,2) , DOSTARTL ^(1,2)	DO Loop Start Address Register (High and Low)
DOENDH ⁽¹⁾ , DOENDL ⁽¹⁾	DO Loop End Address Register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

TABLE 3-1: PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Note 1: This register is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.

2: The DOSTARTH and DOSTARTL registers are read-only.

TABLE 4-24: CRC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON1	0640	CRCEN	—	CSIDL		V	WORD<4:()>		CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	—	-	—	0000
CRCCON2	0642	_	_	_		D	WIDTH<4:0)>		_	_	_		F	PLEN<4:0>			0000
CRCXORL	0644								X<15:1	>							_	0000
CRCXORH	0646								X	<31:16>								0000
CRCDATL	0648								CRC Data	Input Low V	Vord							0000
CRCDATH	064A								CRC Data	Input High \	Nord							0000
CRCWDATL	064C								CRC Re	sult Low Wo	ord							0000
CRCWDATH	064E		CRC Result High Word 0000								0000							

Legend: — = unimplemented, read as '0'. Shaded bits are not used in the operation of the programmable CRC module.

TABLE 4-25: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC202/502 AND PIC24EPXXXGP/MC202 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	_	—								—			RP20F	R<5:0>			0000
RPOR1	0682	_	_			RP37F	२<5:0>			—	_	RP36R<5:0>					0000	
RPOR2	0684	_	_			RP39F	२<5:0>			—	_	RP38R<5:0>						0000
RPOR3	0686	_	_		RP41R<5:0>					—	_	RP40R<5:0>					0000	
RPOR4	0688	_	—		RP43R<5:0>						_			RP42F	२<5:0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC203/503 AND PIC24EPXXXGP/MC203 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	—	_						_	_	RP20R<5:0>						0000	
RPOR1	0682	_	_			RP37	२<5:0>			_	_			RP36	२<5:0>			0000
RPOR2	0684	_	_			RP39	२<5:0>			_	_	RP38R<5:0>						0000
RPOR3	0686	_	_			RP41	२<5:0>			_	_	RP40R<5:0>						0000
RPOR4	0688	_	_			RP43	२<5:0>			_	_			RP42	२<5:0>			0000
RPOR5	068A	_	_	_	_	_	_	_	_	_	_						_	0000
RPOR6	068C			-	—	_		—			_	RP56R<5:0>					0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

EXAMPLE 4-3: PAGED DATA MEMORY SPACE

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 8-7: DMAXPAD: DMA CHANNEL X PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD)<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-8: DMAXCNT: DMA CHANNEL X TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_			CNT<	13:8> (2)		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNT≪	<7:0> (2)			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable b	oit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 CNT<13:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: The number of DMA transfers = CNT<13:0> + 1.

11.7 **Peripheral Pin Select Registers**

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INT1R<6:0>			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	-	—	—	_	—	—
bit 7	•		•	•			bit 0

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 14-8 INT1R<6:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 0000001 = Input tied to CMP1 0000000 = Input tied to Vss bit 7-0 Unimplemented: Read as '0'

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_	—	_	_	_	—
bit 15		L	I	4			bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INT2R<6:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
-n = Value at F bit 15-7	POR Unimplemen	<pre>'1' = Bit is set ted: Read as '0</pre>	0'	ʻ0' = Bit is cle	ared	x = Bit is unkr	iown
-n = Value at F bit 15-7 bit 6-0	Unimplement INT2R<6:0>: (see Table 11-	'1' = Bit is set ted: Read as '0 Assign Externa -2 for input pin)' al Interrupt 2 (selection nun	'0' = Bit is cle (INT2) to the C nbers)	orresponding R	x = Bit is unkr Pn Pin bits	iown
-n = Value at F bit 15-7 bit 6-0	POR Unimplement INT2R<6:0>: (see Table 11- 1111001 = In	'1' = Bit is set ted: Read as '0 Assign Externa -2 for input pin uput tied to RPI	o' al Interrupt 2 (selection nun 121	'0' = Bit is cle (INT2) to the C nbers)	ared	x = Bit is unkr Pn Pin bits	iown
-n = Value at F bit 15-7 bit 6-0	OR Unimplemen INT2R<6:0>: (see Table 11- 1111001 = In	'1' = Bit is set ted: Read as '(Assign Externa -2 for input pin put tied to RPI	o' al Interrupt 2 (selection nun 121	'0' = Bit is cle (INT2) to the C nbers)	orresponding R	x = Bit is unkr Pn Pin bits	iown
-n = Value at F bit 15-7 bit 6-0	POR Unimplement INT2R<6:0>: (see Table 11- 1111001 = In	'1' = Bit is set ted: Read as '0 Assign Externa 2 for input pin uput tied to RPI	o' al Interrupt 2 (selection nun 121	'0' = Bit is cle (INT2) to the C nbers)	orresponding R	x = Bit is unkr Pn Pin bits	iown
-n = Value at F bit 15-7 bit 6-0	POR Unimplement INT2R<6:0>: (see Table 11- 1111001 = In	'1' = Bit is set ted: Read as '0 Assign Externa 2 for input pin put tied to RPI	o' al Interrupt 2 (selection nun 121 P1	'0' = Bit is cle (INT2) to the C nbers)	orresponding R	x = Bit is unkr Pn Pin bits	iown
-n = Value at F bit 15-7 bit 6-0	Unimplement INT2R<6:0>: (see Table 11- 1111001 = In 0000001 = In 0000000 = In	'1' = Bit is set ted: Read as '0 Assign Externa 2 for input pin put tied to RPI put tied to CMI put tied to Vss	o' al Interrupt 2 (selection nun 121 P1	'0' = Bit is cle (INT2) to the C nbers)	orresponding R	x = Bit is unkr	iown

REGISTER 11-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

REGISTER 11-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	_		_				_		
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—				T2CKR<6:0>					
bit 7							bit 0		
Legend:									
R = Readabl	le bit	W = Writable I	bit	U = Unimplem	nented bit, read	as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
			Unimplemented: Read as '0'						
bit 15-7	Unimplemen	ted: Read as 'o)'						
bit 15-7 bit 6-0	Unimplemen T2CKR<6:0> (see Table 11	ted: Read as '(: Assign Timer2 -2 for input pin)' 2 External Clo selection nur	ock (T2CK) to th nbers)	e Correspondi	ng RPn pin bits			
bit 15-7 bit 6-0	Unimplemen T2CKR<6:0> (see Table 11 1111001 = Ir	ted: Read as '(: Assign Timer2 -2 for input pin nput tied to RPI) [;] 2 External Clo selection nur 121	ock (T2CK) to th nbers)	ie Correspondii	ng RPn pin bits			
bit 15-7 bit 6-0	Unimplemen T2CKR<6:0> (see Table 11 1111001 = Ir	ted: Read as '(: Assign Timer2 -2 for input pin nput tied to RPI) [;] 2 External Clo selection nur 121	ock (T2CK) to th nbers)	e Correspondi	ng RPn pin bits			
bit 15-7 bit 6-0	Unimplemen T2CKR<6:0> (see Table 11 1111001 = Ir	ted: Read as ' : Assign Timer2 -2 for input pin nput tied to RPI)' 2 External Cle selection nur 121	ock (T2CK) to th nbers)	e Correspondi	ng RPn pin bits			
bit 15-7 bit 6-0	Unimplemen T2CKR<6:0> (see Table 11 1111001 = Ir	ted: Read as 'c : Assign Timer2 -2 for input pin nput tied to RPI)' 2 External Clo selection nur 121 P1	ock (T2CK) to th nbers)	le Correspondi	ng RPn pin bits			
bit 15-7 bit 6-0	Unimplemen T2CKR<6:0> (see Table 11 1111001 = Ir 0000001 = Ir 0000000 = Ir	ted: Read as '(: Assign Timer2 -2 for input pin nput tied to RPI nput tied to CMI nput tied to Vss)' 2 External Clo selection nur 121 P1	ock (T2CK) to th nbers)	e Correspondi	ng RPn pin bits			

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_				IC4R<6:0>						
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_				IC3R<6:0>						
bit 7							bit 0			
Legend:										
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown			
bit 15	Unimpleme	ented: Read as '	0'							
bit 14-8	IC4R<6:0>: (see Table 2	Assign Input Ca	pture 4 (IC4) selection nu) to the Correspo mbers)	onding RPn P	in bits				
	1111001 =	Input tied to RPI	121							
	•									
	•									
	0000001 =	Input tied to CM	P1							
bit 7		nput tied to vss	, 0,							
bit 6-0		Assign Input Ca	o unture 3 (IC3)) to the Correspo	ondina RPn P	in hits				
bit 0 0	(see Table 1	(see Table 11-2 for input pin selection numbers)								
	1111001 =	Input tied to RPI	121	,						
	•									
	0000001 =	Input tied to CM	P1							
	0000000 =	Input tied to Vss	5							

REGISTER 11-5: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

REGISTER 11-15: RPINR37: PERIPHERAL PIN SELECT INPUT REGISTER 37 (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

	5444.0	D 44/ 0	D 444 0		D 44/ 0	D 444 0		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—				SYNCI1R<6:0)>			
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—		—	—	—	—	
bit 7				-	•		bit 0	
Legend:								
R = Readabl	le bit	W = Writable b	oit	U = Unimplemented bit, read as '0'				
-n = Value at	t POR	'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15	Unimplemer	nted: Read as '0)'					
bit 14-8	SYNCI1R<6: (see Table 11	• 0>: Assign PWI I-2 for input pin :	VI Synchroniz selection nur	zation Input 1 to nbers)	o the Correspon	ding RPn Pin b	its	
	1111001 = 	nput tied to RPI	121					
	•							
	•							
	0000001 = l	nout tied to CME	21					
	0000000 = 1	nput tied to Vss						
bit 7-0	Unimplemer	nted: Read as '0)'					

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	IC32
bit 15							bit 8
R/W-0	R/W/HS-0	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

bit 7			bit 0
Legend:	HS = Hardware Settal	ble bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	

SYNCSEL4⁽⁴⁾ SYNCSEL3⁽⁴⁾ SYNCSEL2⁽⁴⁾ SYNCSEL1⁽⁴⁾

SYNCSEL0⁽⁴⁾

		P	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9 Unimplemented: Read as '0'

TRIGSTAT⁽³⁾

ICTRIG⁽²⁾

bit 8

- IC32: Input Capture 32-Bit Timer Mode Select bit (Cascade mode)
 - 1 = Odd IC and Even IC form a single 32-bit input capture module⁽¹⁾
 - 0 = Cascade module operation is disabled

bit 7 ICTRIG: Input Capture Trigger Operation Select bit⁽²⁾

- 1 = Input source used to trigger the input capture timer (Trigger mode)
- 0 = Input source used to synchronize the input capture timer to a timer of another module (Synchronization mode)

bit 6 **TRIGSTAT:** Timer Trigger Status bit⁽³⁾

- 1 = ICxTMR has been triggered and is running
- 0 = ICxTMR has not been triggered and is being held clear

bit 5 Unimplemented: Read as '0'

- **Note 1:** The IC32 bit in both the Odd and Even IC must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits). It can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own Sync or Trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.
 - 6: Each Input Capture x (ICx) module has one PTG input source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.

PTGO8 = IC1 PTGO9 = IC2 PTGO10 = IC3 PTGO11 = IC4

DS70000657H-page 216

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

bit 4-0	SYNCSE	-<4:0>: Trigger/Synchronization Source Selection bits
	11111 =	OCxRS compare event is used for synchronization
	11110 =	INT2 pin synchronizes or triggers OCx
	11101 =	INT1 pin synchronizes or triggers OCx
	11100 =	CTMU module synchronizes or triggers OCx
	11011 =	ADC1 module synchronizes or triggers OCx
	11010 =	CMP3 module synchronizes or triggers OCx
	11001 =	CMP2 module synchronizes or triggers OCx
	11000 =	CMP1 module synchronizes or triggers OCx
	10111 =	Reserved
	10110 =	Reserved
	10101 =	Reserved
	10100 =	Reserved
	10011 =	IC4 input capture event synchronizes or triggers OCx
	10010 =	IC3 input capture event synchronizes or triggers OCx
	10001 =	IC2 input capture event synchronizes or triggers OCx
	10000 =	IC1 input capture event synchronizes or triggers OCx
	01111 =	Timer5 synchronizes or triggers OCx
	01110 =	Timer4 synchronizes or triggers OCx
	01101 =	Timer3 synchronizes or triggers OCx
	01100 =	Timer2 synchronizes or triggers OCx (default)
	01011 =	Timer1 synchronizes or triggers OCx
	01010 =	PTGOx synchronizes or triggers OCx ⁽³⁾
	01001 =	Reserved
	01000 =	Reserved
	00111 =	Reserved
	00110 =	Reserved
	00101 =	Reserved
	00100 =	OC4 module synchronizes or triggers $OCx^{(1,2)}$
	00011 =	OC3 module synchronizes or triggers $OCx^{(1,2)}$
	00010 =	OC2 module synchronizes or triggers $OCx^{(1,2)}$
	00001 =	OC1 module synchronizes or triggers OCx ^(1,2)
	00000 =	No Sync or Trigger source for OCx

- **Note 1:** Do not use the OCx module as its own Synchronization or Trigger source.
 - 2: When the OCy module is turned OFF, it sends a trigger out signal. If the OCx module uses the OCy module as a Trigger source, the OCy module must be unselected as a Trigger source prior to disabling it.
 - Each Output Compare x module (OCx) has one PTG Trigger/Synchronization source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information. PTGO0 = OC1

PTGO0 = OC1 PTGO1 = OC2 PTGO2 = OC3PTGO3 = OC4

REGISTER 16-2: PTCON2: PWMx PRIMARY MASTER CLOCK DIVIDER SELECT REGISTER
--

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	_	—	—	—	PCLKDIV2 ⁽¹⁾	PCLKDIV1 ⁽¹⁾	PCLKDIV0(1)
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			iown	
bit 15 2	Unimplomon	tod. Dood on '	۰ '				

bit 15-3 Unimplemented: Read as '0'

bit 2-0 PCLKDIV<2:0>: PWMx Input Clock Prescaler (Divider) Select bits⁽¹⁾

- 111 = Reserved 110 = Divide-by-64 101 = Divide-by-32
- 100 = Divide-by-32100 = Divide-by-16
- 011 = Divide-by-8
- 010 = Divide-by-4
- 001 = Divide-by-2
- 000 = Divide-by-1, maximum PWMx timing resolution (power-on default)
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with the SCLREL bit. 1 = Enables software or receives clock stretching 0 = Disables software or receives clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit. Hardware is clear at the end of the master Acknowledge sequence. 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C. Hardware is clear at the end of the eighth bit of the master receive data byte. a Receive acquirement in program.
hit 2	0 = Receive sequence is not in progress
511 2	 1 = Initiates Stop condition on SDAx and SCLx pins. Hardware is clear at the end of the master Stop sequence. a Stop condition is not in processor.
h :+ 4	0 = Stop condition is not in progress
DIT	RSEN: Repeated Start Condition Enable bit (when operating as I-C master)
	 Initiates Repeated Start condition on SDAx and SCLX pins. Hardware is clear at the end of the master Repeated Start sequence. 0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as l^2C master)
	 1 = Initiates Start condition on SDAx and SCLx pins. Hardware is clear at the end of the master Start sequence. 0 = Start condition is not in progress

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

NOTES:

24.3 PTG Control Registers

REGISTER 24-1: PTGCST: PTG CONTROL/STATUS REGISTER

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
PTGEN	—	PTGSIDL	PTGTOGL	—	PTGSWT ⁽²⁾	PTGSSEN ⁽³⁾	PTGIVIS
bit 15							bit 8
R/W-0	HS-0	U-0	U-0	U-0	U-0	R/V	V-0
PTGSTRT	PTGWDTO	_	_	_	_	PTGITM1 ⁽¹⁾	PTGITM0 ⁽¹⁾

h	it	7
υ	π.	1

Legend:	HS = Hardware Settable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15		PTGEN: Module Enable bit
		1 = PTG module is enabled
		0 = PTG module is disabled
bit 14		Unimplemented: Read as '0'
bit 13		PTGSIDL: PTG Stop in Idle Mode bit
		 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12		PTGTOGL: PTG TRIG Output Toggle Mode bit
		 1 = Toggle state of the PTGOx for each execution of the PTGTRIG command 0 = Each execution of the PTGTRIG command will generate a single PTGOx pulse determined by the value in the PTGPWDx bits
bit 11		Unimplemented: Read as '0'
bit 10		PTGSWT: PTG Software Trigger bit ⁽²⁾
		1 = Triggers the PTG module
		0 = No action (clearing this bit will have no effect)
bit 9		PTGSSEN: PTG Enable Single-Step bit ⁽³⁾
		1 = Enables Single-Step mode
		0 = Disables Single-Step mode
bit 8		PTGIVIS: PTG Counter/Timer Visibility Control bit
		1 = Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the current values of their corresponding counter/timer registers (PTGSD, PTGCx, PTGTx)
		 Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the value previously written to those limit registers
bit 7		PTGSTRT: PTG Start Sequencer bit
		1 = Starts to sequentially execute commands (Continuous mode)0 = Stops executing commands
bit 6		PTGWDTO: PTG Watchdog Timer Time-out Status bit
		1 = PTG Watchdog Timer has timed out
		0 = PTG watchdog Timer has not timed out.
bit 5-2		Unimplemented: Read as '0'
Note	1:	These bits apply to the PTGWHI and PTGWLO commands only.
	2:	This bit is only used with the PTGCTRL step command software trigger option.

3: Use of the PTG Single-Step mode is reserved for debugging tools only.

bit 0

REGISTER 24-1: PTGCST: PTG CONTROL/STATUS REGISTER (CONTINUED)

- PTGITM<1:0>: PTG Input Trigger Command Operating Mode bits⁽¹⁾
 - 11 = Single level detect with Step delay not executed on exit of command (regardless of the PTGCTRL command)
 - 10 = Single level detect with Step delay executed on exit of command
 - 01 = Continuous edge detect with Step delay not executed on exit of command (regardless of the PTGCTRL command)
 - 00 = Continuous edge detect with Step delay executed on exit of command
- Note 1: These bits apply to the PTGWHI and PTGWLO commands only.

bit 1-0

- **2:** This bit is only used with the PTGCTRL step command software trigger option.
- **3:** Use of the PTG Single-Step mode is reserved for debugging tools only.

PTG Output Number	PTG Output Description		
PTGO0	Trigger/Synchronization Source for OC1		
PTGO1	Trigger/Synchronization Source for OC2		
PTGO2	Trigger/Synchronization Source for OC3		
PTGO3	Trigger/Synchronization Source for OC4		
PTGO4	Clock Source for OC1		
PTGO5	Clock Source for OC2		
PTGO6	Clock Source for OC3		
PTGO7	Clock Source for OC4		
PTGO8	Trigger/Synchronization Source for IC1		
PTGO9	Trigger/Synchronization Source for IC2		
PTGO10	Trigger/Synchronization Source for IC3		
PTGO11	Trigger/Synchronization Source for IC4		
PTGO12	Sample Trigger for ADC		
PTGO13	Sample Trigger for ADC		
PTGO14	Sample Trigger for ADC		
PTGO15	Sample Trigger for ADC		
PTGO16	PWM Time Base Synchronous Source for PWM ⁽¹⁾		
PTGO17	PWM Time Base Synchronous Source for PWM ⁽¹⁾		
PTGO18	Mask Input Select for Op Amp/Comparator		
PTGO19	Mask Input Select for Op Amp/Comparator		
PTGO20	Reserved		
PTGO21	Reserved		
PTGO22	Reserved		
PTGO23	Reserved		
PTGO24	Reserved		
PTGO25	Reserved		
PTGO26	Reserved		
PTGO27	Reserved		
PTGO28	Reserved		
PTGO29	Reserved		
PTGO30	PTG Output to PPS Input Selection		
PTGO31	PTG Output to PPS Input Selection		

TABLE 24-2: PTG OUTPUT DESCRIPTIONS

Note 1: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

NOTES:

Base Instr #	Assembly Mnemonic	, Assembly Syntax		Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
52	MUL	MUL.SS Wb,Ws,Wnd		{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SS	UL.SS Wb,Ws,Acc ⁽¹⁾ Accumulator = signed(Wb) * signed(Ws)		1	1	None
		MUL.SU Wb,Ws,Wnd {Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)		1	1	None	
		MUL.SU	Wb,Ws,Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None
		MULW.SS	Wb,Ws,Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
		MULW.SU	Wb,Ws,Wnd	Wnd = signed(Wb) * unsigned(Ws)	1	1	None
		MULW.US	Wb,Ws,Wnd	Wnd = unsigned(Wb) * signed(Ws)	1	1	None
		MULW.UU	Wb,Ws,Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
1		MUL.UU	Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

DC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$					
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
HDO10	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾	_	—	0.4	V	IOL ≤ 5 mA, VDD = 3.3V (Note 1)
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	—	_	0.4	V	IOL ≤ 8 mA, VDD = 3.3V (Note 1)
HDO20	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4	—	—	V	IOH ≥ -10 mA, VDD = 3.3V (Note 1)
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	—	—	V	IOH ≥ 15 mA, VDD = 3.3V (Note 1)
HDO20A	Voh1	Output High Voltage 4x Source Driver Pins ⁽²⁾	1.5	—	—	V	IOH ≥ -3.9 mA, VDD = 3.3V (Note 1)
			2.0	—	—		IOH ≥ -3.7 mA, VDD = 3.3V (Note 1)
			3.0	—	—		IOH ≥ -2 mA, VDD = 3.3V (Note 1)
		Output High Voltage 8x Source Driver Pins ⁽³⁾	1.5	_	_	V	IOH ≥ -7.5 mA, VDD = 3.3V (Note 1)
			2.0	_	_		IOH ≥ -6.8 mA, VDD = 3.3V (Note 1)
			3.0	_	_		IOH ≥ -3 mA, VDD = 3.3V (Note 1)

TABLE 31-8: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

2: Includes all I/O pins that are not 8x Sink Driver pins (see below).

Includes the following pins:
 For devices with less than 64 pins: RA3, RA4, RA9, RB<15:7> and RC3
 For 64-pin devices: RA4, RA9, RB<15:7>, RC3 and RC15

33.1 Package Marking Information (Continued)

48-Lead UQFN (6x6x0.5 mm)

Example 33EP64GP 504-I/MV (3) 1310017

64-Lead QFN (9x9x0.9 mm)

Example dsPIC33EP 64GP506 -I/MR® 1310017

64-Lead TQFP (10x10x1 mm)

Example

© 2011-2013 Microchip Technology Inc.