

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

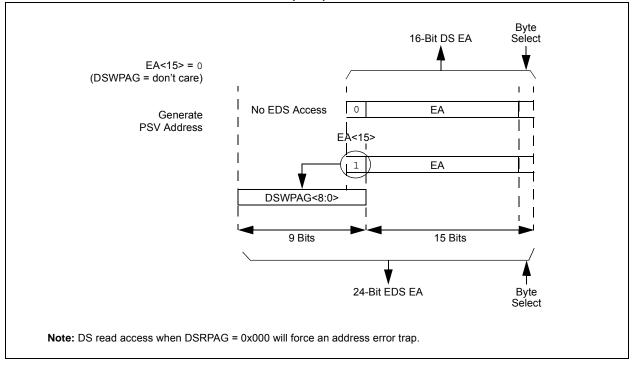
Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64mc502-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

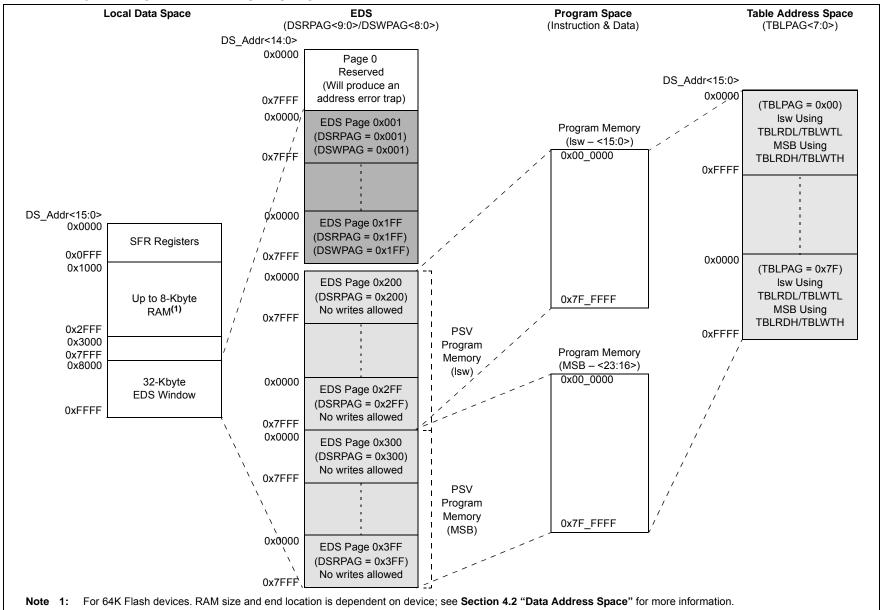
TABLE 4-27: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC204/504 AND PIC24EPXXXGP/MC204 DEVICES ONLY DEVICES ONLY


File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680				RP35R<5:0>					_	—	RP20R<5:0>						0000
RPOR1	0682	_	_		RP37R<5:0>						_	RP36R<5:0>						0000
RPOR2	0684	_	_		RP39R<5:0>					_	RP38R<5:0>					0000		
RPOR3	0686	_	_			RP41	R<5:0>				_	RP40R<5:0>					0000	
RPOR4	0688	_	_		RP43R<5:0>						_	RP42R<5:0>					0000	
RPOR5	068A	_	—		RP55R<5:0>				_	—	RP54R<5:0>					0000		
RPOR6	068C	_	—		RP57R<5:0>					_	—			RP56F	R<5:0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-28: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC206/506 AND PIC24EPXXXGP/MC206 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	_	_		RP35R<5:0>				_	_	RP20R<5:0>						0000	
RPOR1	0682	_			RP37R<5:0>				_	_	RP36R<5:0>					0000		
RPOR2	0684	_	—		RP39R<5:0>				_	_	RP38R<5:0>					0000		
RPOR3	0686	_	—			RP41F	२<5:0>			_	_	RP40R<5:0>					0000	
RPOR4	0688	_	_			RP43F	२<5:0>			—	_	RP42R<5:0>						0000
RPOR5	068A	_	_			RP55F	२<5:0>			—	_	RP54R<5:0>					0000	
RPOR6	068C	_	_			RP57F	२<5:0>			—	_			RP56	R<5:0>			0000
RPOR7	068E	_	_		RP97R<5:0>					—	_	_	_	_	_	_	_	0000
RPOR8	0690		_		RP118R<5:0>					_	_	—	_	—	_	—	_	0000
RPOR9	0692	—	_	_	_	_	_	_	_	_	_	RP120R<5:0>					0000	


Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

EXAMPLE 4-2: EXTENDED DATA SPACE (EDS) WRITE ADDRESS GENERATION

The paged memory scheme provides access to multiple 32-Kbyte windows in the EDS and PSV memory. The Data Space Page registers, DSxPAG, in combination with the upper half of the Data Space address, can provide up to 16 Mbytes of additional address space in the EDS and 8 Mbytes (DSRPAG only) of PSV address space. The paged data memory space is shown in Example 4-3.

The Program Space (PS) can be accessed with a DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG. Writes to PS are not supported, so DSWPAG is dedicated to DS, including EDS only. The Data Space and EDS can be read from, and written to, using DSRPAG and DSWPAG, respectively.

EXAMPLE 4-3: PAGED DATA MEMORY SPACE

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 3	SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit
	 Device was in Idle mode Device was not in Idle mode
bit 1	BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit 1 = A Power-on Reset has occurred 0 = A Power-on Reset has not occurred

- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

	Vector	IRQ		Inte	errupt Bit L	ocation
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority
QEI1 – QEI1 Position Counter Compare ⁽²⁾	66	58	0x000088	IFS3<10>	IEC3<10>	IPC14<10:8>
Reserved	67-72	59-64	0x00008A-0x000094	_	_	_
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4<2>	IEC4<2>	IPC16<10:8>
CRC – CRC Generator Interrupt	75	67	0x00009A	IFS4<3>	IEC4<3>	IPC16<14:12>
Reserved	76-77	68-69	0x00009C-0x00009E	—	_	—
C1TX – CAN1 TX Data Request ⁽¹⁾	78	70	0x000A0	IFS4<6>	IEC4<6>	IPC17<10:8>
Reserved	79-84	71-76	0x0000A2-0x0000AC	—	_	—
CTMU – CTMU Interrupt	85	77	0x0000AE	IFS4<13>	IEC4<13>	IPC19<6:4>
Reserved	86-101	78-93	0x0000B0-0x0000CE	—	_	—
PWM1 – PWM Generator 1 ⁽²⁾	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>
PWM2 – PWM Generator 2 ⁽²⁾	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>
PWM3 – PWM Generator 3 ⁽²⁾	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>
Reserved	105-149	97-141	0x0001D6-0x00012E	—	_	—
ICD – ICD Application	150	142	0x000142	IFS8<14>	IEC8<14>	IPC35<10:8>
JTAG – JTAG Programming	151	143	0x000130	IFS8<15>	IEC8<15>	IPC35<14:12>
Reserved	152	144	0x000134	—	_	_
PTGSTEP – PTG Step	153	145	0x000136	IFS9<1>	IEC9<1>	IPC36<6:4>
PTGWDT – PTG Watchdog Time-out	154	146	0x000138	IFS9<2>	IEC9<2>	IPC36<10:8>
PTG0 – PTG Interrupt 0	155	147	0x00013A	IFS9<3>	IEC9<3>	IPC36<14:12>
PTG1 – PTG Interrupt 1	156	148	0x00013C	IFS9<4>	IEC9<4>	IPC37<2:0>
PTG2 – PTG Interrupt 2	157	149	0x00013E	IFS9<5>	IEC9<5>	IPC37<6:4>
PTG3 – PTG Interrupt 3	158	150	0x000140	IFS9<6>	IEC9<6>	IPC37<10:8>
Reserved	159-245	151-245	0x000142-0x0001FE	—	—	_
	Lowe	est Natura	I Order Priority			

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

Note 1: This interrupt source is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

2: This interrupt source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROON		ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾
bit 15						•	bit
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_		_		_	
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown
bit 14	0 = Reference	e oscillator outp e oscillator outp i ted: Read as '	out is disabled		.K pin ⁽²⁾		
bit 13	-	ference Oscilla		en hit			
	1 = Reference	e oscillator out e oscillator out	out continues	to run in Sleep			
bit 12	1 = Oscillator	erence Oscillato crystal is used lock is used as	as the refere	nce clock			
bit 11-8	1111 = Refer 1110 = Refer 1101 = Refer 1000 = Refer 1011 = Refer 1001 = Refer 1000 = Refer 0111 = Refer 0111 = Refer 0101 = Refer 0100 = Refer 0101 = Refer 0011 = Refer 0011 = Refer 0011 = Refer	Reference Os rence clock divi rence clock divi	ded by 32,763 ded by 16,384 ded by 8,192 ded by 4,096 ded by 2,048 ded by 1,024 ded by 512 ded by 512 ded by 256 ded by 128 ded by 64 ded by 32 ded by 16 ded by 8 ded by 4	8			
	0000 = Refer	ence clock	-				

REGISTER 9-5: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- **Note 1:** The reference oscillator output must be disabled (ROON = 0) before writing to these bits.
 - 2: This pin is remappable. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

- g) The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRIS setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRIS settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned
- h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Pin Select registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Pin Select registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

11.6 I/O Ports Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

11.6.1 KEY RESOURCES

- "I/O Ports" (DS70598) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is cleared only by software
- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits
 - 111 = Center-Aligned PWM mode: Output set high when OCxTMR = OCxR and set low when OCxTMR = OCxRS⁽¹⁾
 - 110 = Edge-Aligned PWM mode: Output set high when OCxTMR = 0 and set low when OCxTMR = OCxR⁽¹⁾
 - 101 = Double Compare Continuous Pulse mode: Initializes OCx pin low, toggles OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initializes OCx pin low, toggles OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare mode: Compare event with OCxR, continuously toggles OCx pin
 - 010 = Single Compare Single-Shot mode: Initializes OCx pin high, compare event with OCxR, forces OCx pin low
 - 001 = Single Compare Single-Shot mode: Initializes OCx pin low, compare event with OCxR, forces OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: OCxR and OCxRS are double-buffered in PWM mode only.
 - 2: Each Output Compare x module (OCx) has one PTG clock source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.
 - PTGO4 = OC1 PTGO5 = OC2
 - PTGO6 = OC3 PTGO7 = OC4

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0
FLTMD	FLTOUT	FLTTRIEN	OCINV	—	_	—	OC32
bit 15	·				·		bit
R/W-0	R/W-0, HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
OCTRIG	G TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL
bit 7							bit
Legend:		HS = Hardwa	re Settable bit				
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	1 = Fault mo cleared i	t Mode Select b ode is maintain n software and	ed until the Fa a new PWM pe	eriod starts			
		de is maintaine	d until the Faul	t source is rem	loved and a ne	w PWM period	starts
bit 14	FLTOUT: Fau		. –				
		tput is driven hi tput is driven lo					
bit 13		ault Output Sta					
		is tri-stated on		'n			
	•	I/O state is defi			ault condition		
bit 12	OCINV: Outp	ut Compare x I	nvert bit				
		out is inverted out is not invert	ed				
bit 11-9	Unimplemen	ted: Read as '	כי				
bit 8	OC32: Casca	ide Two OCx M	odules Enable	bit (32-bit oper	ration)		
		module operate module operate					
bit 7		tput Compare x		Select bit			
		OCx from the s			CSELx bits		
		nizes OCx with				S	
bit 6	TRIGSTAT: T	imer Trigger St	atus bit				
		urce has been [.] urce has not be			d clear		
bit 5		put Compare x		•			
	1 = OCx is tr	• •	·				
	0 = Output C	ompare x mod	ule drives the C	OCx pin			
Note 1:	Do not use the O	Cx module as i	ts own Svnchro	nization or Tric	aaer source.		
	When the OCy m		-			module uses t	he OCv
	module as a Trigg						
3:	Each Output Con "Peripheral Trig PTGO0 = OC1 PTGO1 = OC2					n source. See S	Section 24.0
	PTGO2 = OC3 $PTGO3 = OC4$						

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

REGISTER 17-3: QEI1STAT: QEI1 STATUS REGISTER (CONTINUED)

bit 2	HOMIEN: Home Input Event Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled
bit 1	IDXIRQ: Status Flag for Index Event Status bit 1 = Index event has occurred 0 = No Index event has occurred
bit 0	IDXIEN: Index Input Event Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled

Note 1: This status bit is only applicable to PIMOD<2:0> modes, '011' and '100'.

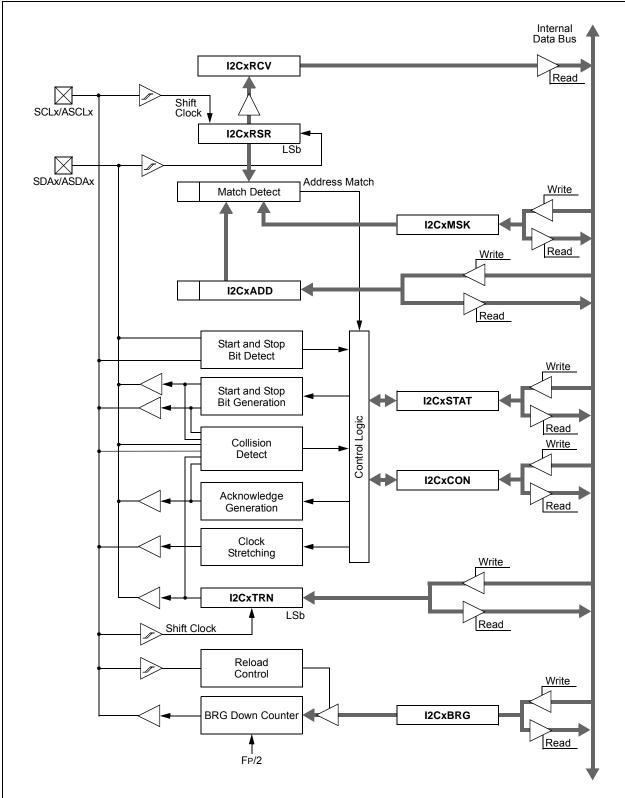


FIGURE 19-1: I2Cx BLOCK DIAGRAM (X = 1 OR 2)

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	_	—	—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0			
—	—	—	DNCNT4	DNCNT3	DNCNT2	DNCNT1	DNCNT0			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
bit 15-5	Unimplemen	ted: Read as '	0'							
bit 4-0	DNCNT<4:0>	: DeviceNet™	Filter Bit Num	iber bits						
		1 = Invalid sele npares up to Da		6 with EID<17	>					
	•									
	•									
	•									
		npares up to Da s not compare	•	7 with EID<0>						

BUFFER 21-7: ECAN™ MESSAGE BUFFER WORD 6

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
			Ву	rte 7						
bit 15							bit 8			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
			Ву	rte 6						
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	x = Bit is unknown				

bit 15-8 Byte 7<15:8>: ECAN Message Byte 7 bits

bit 7-0 Byte 6<7:0>: ECAN Message Byte 6 bits

BUFFER 21-8: ECAN[™] MESSAGE BUFFER WORD 7

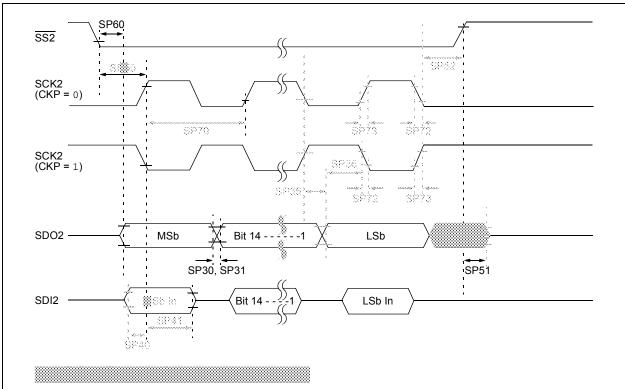
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	FILHIT4 ⁽¹⁾	FILHIT3 ⁽¹⁾	FILHIT2 ⁽¹⁾	FILHIT1 ⁽¹⁾	FILHITO ⁽¹⁾
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_		—				—
bit 7							bit 0
Legend:							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	FILHIT<4:0>: Filter Hit Code bits ⁽¹⁾
	Encodes number of filter that resulted in writing this buffer.
bit 7-0	Unimplemented: Read as '0'

Note 1: Only written by module for receive buffers, unused for transmit buffers.

REGISTER 25-5:	CMxMSKCON: COMPARATOR x MASK GATING
	CONTROL REGISTER


R/W-0										
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
HLMS	—	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN			
bit 15							bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN			
bit 7							bit			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown			
			-							
bit 15	HLMS: High	or Low-Level N	/lasking Select	bits						
	•		•		erted ('0') compa	rator signal from	m propagatin			
					erted ('1') compa					
bit 14	Unimplemen	ted: Read as	ʻ0'							
bit 13	OCEN: OR G	Sate C Input Er	nable bit							
	1 = MCI is co	nnected to OR	t gate							
	0 = MCI is no	ot connected to	OR gate							
bit 12	OCNEN: OR Gate C Input Inverted Enable bit									
	1 = Inverted MCI is connected to OR gate									
	0 = Inverted MCI is not connected to OR gate									
bit 11	OBEN: OR Gate B Input Enable bit									
		nnected to OR	gate							
bit 10	0 = MBI is no	t connected to	gate OR gate	e hit						
bit 10	0 = MBI is no OBNEN: OR	t connected to Gate B Input I	gate OR gate nverted Enable							
bit 10	0 = MBI is no OBNEN: OR 1 = Inverted I	t connected to	gate OR gate nverted Enable ed to OR gate							
bit 10 bit 9	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I	t connected to Gate B Input I MBI is connect	gate OR gate nverted Enable ed to OR gate nected to OR g							
	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co	t connected to Gate B Input I MBI is connect MBI is not conr Gate A Input Er nnected to OR	gate OR gate nverted Enable ed to OR gate nected to OR g nable bit gate							
	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no	t connected to Gate B Input I MBI is connect MBI is not conn Gate A Input Er nnected to OR t connected to	gate OR gate nverted Enable ed to OR gate nected to OR g nable bit gate OR gate	jate						
	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is no OANEN: OR	t connected to Gate B Input I MBI is connect MBI is not conn Gate A Input Er nnected to OR t connected to Gate A Input I	gate OR gate nverted Enable ed to OR gate nected to OR g nable bit gate OR gate nverted Enable	jate e bit						
bit 9	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is no OANEN: OR 1 = Inverted I	t connected to Gate B Input I MBI is connect MBI is not com Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect	gate OR gate nverted Enable ed to OR gate nected to OR g nable bit gate OR gate nverted Enable ed to OR gate	jate e bit						
bit 9 bit 8	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I	t connected to Gate B Input I MBI is connect MBI is not com Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not com	gate OR gate nverted Enable ed to OR gate nected to OR gate bit gate OR gate nverted Enable ed to OR gate	gate e bit gate						
bit 9	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND	t connected to Gate B Input I MBI is connect MBI is not com Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not com Gate Output Ir	gate OR gate nverted Enable ed to OR gate nected to OR gate bit gate OR gate nverted Enable nected to OR gate nected to OR gate	gate e bit gate e bit						
bit 9 bit 8	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is no 0 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND 1 = Inverted I	t connected to Gate B Input I MBI is connect MBI is not com Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not connect Gate Output Ir ANDI is connect	gate OR gate nverted Enable ed to OR gate nected to OR gate oR gate OR gate nverted Enable nected to OR gate nected to OR gate	gate e bit gate e bit e						
bit 9 bit 8	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND 1 = Inverted I 0 = Inverted I	t connected to Gate B Input I MBI is connect MBI is not conn Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not connect ANDI is not connect ANDI is not connect	gate OR gate nverted Enable ed to OR gate nected to OR g able bit gate OR gate Nverted Enable nected to OR gate nverted Enable cted to OR gat	gate e bit gate e bit e						
bit 9 bit 8 bit 7	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND 1 = Inverted I PAGS: AND 1 = ANDI is no	t connected to Gate B Input I MBI is connect MBI is not conn Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not connect ANDI is not connect Gate Output Ir ANDI is not connect Gate Output E connected to O	gate OR gate nverted Enable ed to OR gate nected to OR g able bit gate OR gate nverted Enable ed to OR gate nected to OR gat nected to OR gat	gate e bit gate e bit e						
bit 9 bit 8 bit 7	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND 1 = Inverted I 0 = Inverted I	t connected to Gate B Input I MBI is connect MBI is not com Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not com Gate Output Ir ANDI is not con Gate Output E connected to O tot connected t	gate OR gate nverted Enable ed to OR gate nected to OR gate oR gate OR gate nverted Enable ed to OR gate nected to OR gate	gate e bit gate e bit e						
bit 9 bit 8 bit 7	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I NAGS: AND 1 = Inverted I NAGS: AND 1 = Inverted I PAGS: AND 1 = ANDI is co 0 = ANDI is no	t connected to Gate B Input I MBI is connect MBI is not com Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not connected ANDI is not connected ANDI is not connected to Gate Output E connected to O tot connected to Gate C Input E	gate OR gate nverted Enable ed to OR gate nected to OR gate oR gate OR gate nverted Enable ed to OR gate nected bit R gate to OR gate nable bit	gate e bit gate e bit e						
bit 9 bit 8 bit 7 bit 6	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND 1 = Inverted I 0 = Inverted I PAGS: AND 1 = ANDI is co 0 = ANDI is co 1 = MCI is co	t connected to Gate B Input I MBI is connect MBI is not com Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not com Gate Output Ir ANDI is connect ANDI is not con Gate Output E connected to O tot connected to Gate C Input E nnected to AN	a gate OR gate Nverted Enable ed to OR gate nected to OR gate OR gate OR gate Nverted Enable ed to OR gate nected to OR gate nected to OR gate the de to OR gate the for OR gate cable bit R gate to OR gate Enable bit D gate	gate e bit gate e bit e						
bit 9 bit 8 bit 7 bit 6 bit 5	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND 1 = Inverted I PAGS: AND 1 = ANDI is co 0 = ANDI is no 0 = MCI is no 0 = MCI is no	t connected to Gate B Input I MBI is connect MBI is not conn Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not connect ANDI is not connected to Gate Output E connected to O tot connected to Gate C Input E mnected to AN of connected to	gate OR gate nverted Enable ed to OR gate nected to OR gate oR gate OR gate nverted Enable ed to OR gate nected to OR gate nected to OR gate the dto OR gate nected to OR gate chable bit R gate to OR gate nable bit R gate to OR gate anable bit D gate AND gate	gate e bit gate e gate						
bit 9 bit 8 bit 7 bit 6	0 = MBI is no OBNEN: OR 1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND 1 = Inverted I PAGS: AND 1 = ANDI is co 0 = ANDI is no ACEN: AND 1 = MCI is co 0 = MCI is no ACNEN: AND	t connected to Gate B Input I MBI is connect MBI is not com Gate A Input Er nnected to OR t connected to Gate A Input I MAI is connect MAI is not com Gate Output Ir ANDI is connect ANDI is not con Gate Output E connected to O tot connected to Gate C Input E nnected to AN	gate OR gate nverted Enable ed to OR gate nected to OR gate oR gate OR gate nverted Enable ed to OR gate nected to OR gate nected to OR gate the dto OR gate nected to OR gate co OR gate able bit R gate o OR gate Enable bit D gate AND gate	gate e bit gate e bit gate						

Bit Field	Description
WDTPRE	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32
WDTPOST<3:0>	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • • • • • • • • • • • •
WDTWIN<1:0>	Watchdog Window Select bits 11 = WDT window is 25% of WDT period 10 = WDT window is 37.5% of WDT period 01 = WDT window is 50% of WDT period 00 = WDT window is 75% of WDT period
ALTI2C1	Alternate I2C1 pin 1 = I2C1 is mapped to the SDA1/SCL1 pins 0 = I2C1 is mapped to the ASDA1/ASCL1 pins
ALTI2C2	Alternate I2C2 pin 1 = I2C2 is mapped to the SDA2/SCL2 pins 0 = I2C2 is mapped to the ASDA2/ASCL2 pins
JTAGEN ⁽²⁾	JTAG Enable bit 1 = JTAG is enabled 0 = JTAG is disabled
ICS<1:0>	ICD Communication Channel Select bits 11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved, do not use

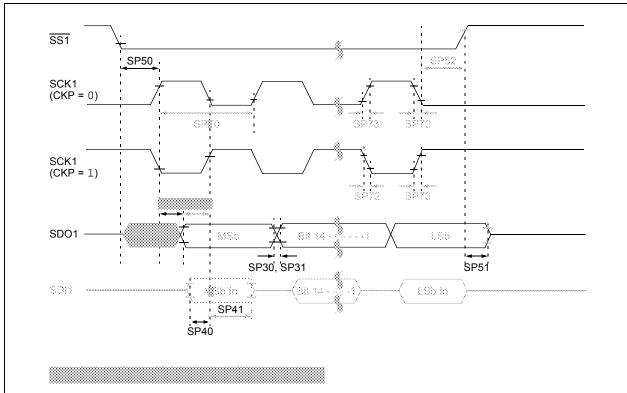
TABLE 27-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

2: When JTAGEN = 1, an internal pull-up resistor is enabled on the TMS pin. Erased devices default to JTAGEN = 1. Applications requiring I/O pins in a high-impedance state (tri-state) in Reset should use pins other than TMS for this purpose.

FIGURE 30-19: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-40:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS


AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max.		Units	Conditions	
SP70	FscP	Maximum SCK2 Input Frequency	—	—	11	MHz	(Note 3)
SP72	TscF	SCK2 Input Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK2 Input Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns	
SP50	TssL2scH, TssL2scL	SS2 ↓ to SCK2 ↑ or SCK2 ↓ Input	120	—	_	ns	
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	(Note 4)
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 TCY + 40	—		ns	(Note 4)

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 91 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

FIGURE 30-29: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

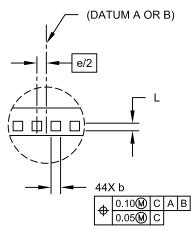
31.0 HIGH-TEMPERATURE ELECTRICAL CHARACTERISTICS

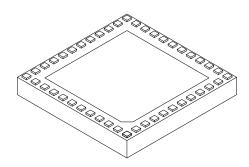
This section provides an overview of dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C.

The specifications between -40° C to $+150^{\circ}$ C are identical to those shown in **Section 30.0** "**Electrical Characteristics**" for operation between -40° C to $+125^{\circ}$ C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter DC10 in **Section 30.0 "Electrical Characteristics"** is the Industrial and Extended temperature equivalent of HDC10.

Absolute maximum ratings for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X high-temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.


Absolute Maximum Ratings⁽¹⁾


Ambient temperature under bias ⁽²⁾	40°C to +150°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽³⁾	0.3V to 3.6V
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(3)}$	0.3V to 5.5V
Maximum current out of Vss pin	60 mA
Maximum current into Vod pin ⁽⁴⁾	60 mA
Maximum junction temperature	+155°C
Maximum current sourced/sunk by any 4x I/O pin	10 mA
Maximum current sourced/sunk by any 8x I/O pin	15 mA
Maximum current sunk by all ports combined	70 mA
Maximum current sourced by all ports combined ⁽⁴⁾	70 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: AEC-Q100 reliability testing for devices intended to operate at +150°C is 1,000 hours. Any design in which the total operating time from +125°C to +150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
 - 3: Refer to the "Pin Diagrams" section for 5V tolerant pins.
 - 4: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).

44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL A

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Pins	Ν	44			
Number of Pins per Side		12			
Number of Pins per Side	NE	10			
Pitch	e 0.50 BSC				
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.025	-	0.075	
Overall Width	Е	6.00 BSC			
Exposed Pad Width	E2	4.40	4.55	4.70	
Overall Length			6.00 BSC		
Exposed Pad Length	D2	4.40	4.55	4.70	
Contact Width	b	0.20	0.25	0.30	
Contact Length	L	0.20	0.25	0.30	
Contact-to-Exposed Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-157C Sheet 2 of 2