

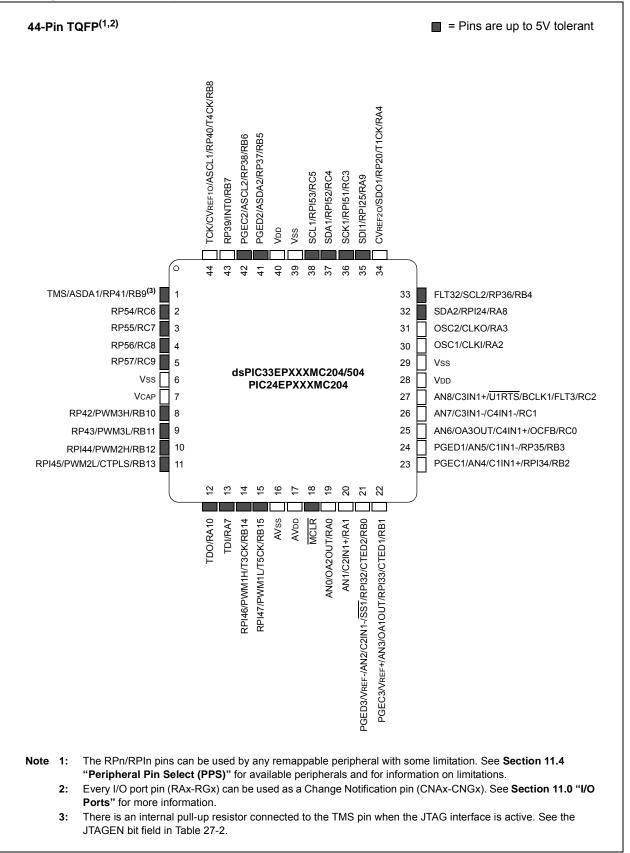
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

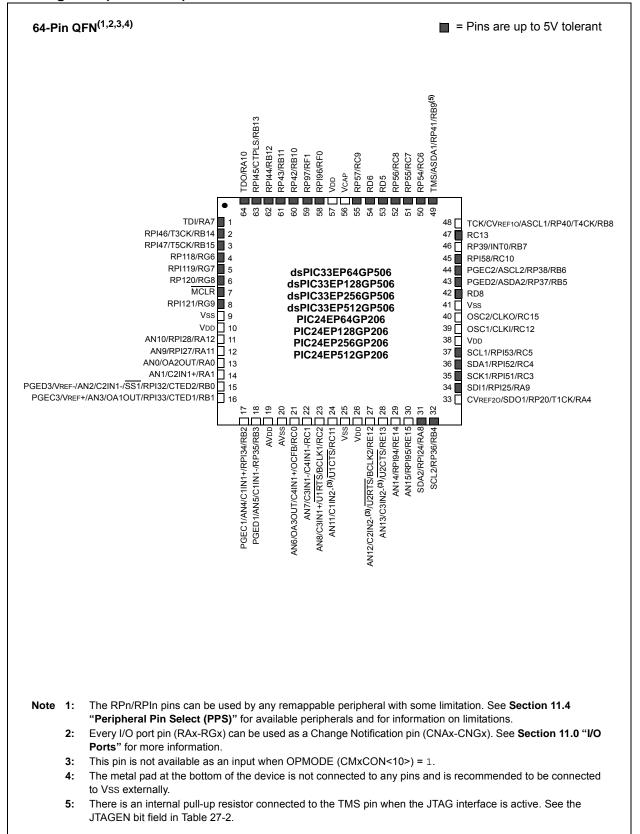
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

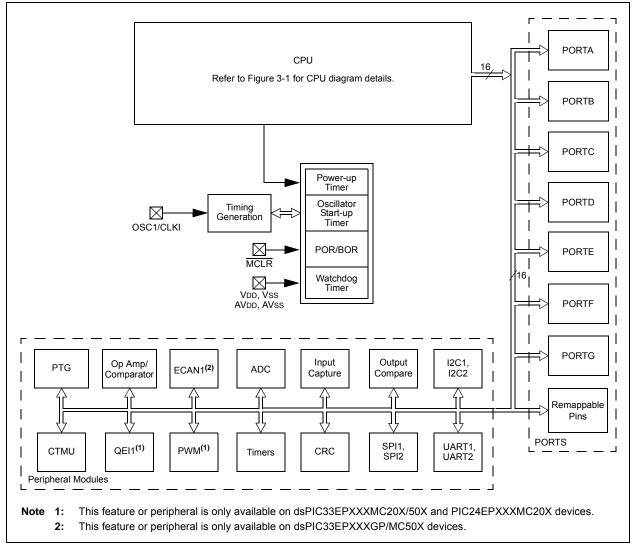
Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64mc504-e-mv


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

1.0 DEVICE OVERVIEW


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X Digital Signal Controller (DSC) and Microcontroller (MCU) devices.

dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X BLOCK DIAGRAM

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0			
VAR	—	US1 ⁽¹⁾	US0 ⁽¹⁾	EDT ^(1,2)	DL2 ⁽¹⁾	DL1 ⁽¹⁾	DL0 ⁽¹⁾			
bit 15							bit			
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0			
SATA ⁽¹⁾	SATB ⁽¹⁾	SATDW ⁽¹⁾	ACCSAT ⁽¹⁾	IPL3(3)	SFA	RND ⁽¹⁾	IF(1)			
bit 7	I				I	1	bit			
Legend:		C = Clearable	e bit							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	1 = Variable	le Exception Pro exception proce	essing latency	is enabled						
bit 14		nted: Read as '								
bit 13-12	-	SP Multiply Uns		Control bits ⁽¹⁾						
	01 = DSP er 00 = DSP er	ngine multiplies ngine multiplies ngine multiplies	are unsigned are signed							
bit 11	•	O Loop Terminatives executing Dot t			iteration					
bit 10-8		Loop Nesting oops are active		(1)						
	•									
	•									
	001 = 1 DO k 000 = 0 DO k	oop is active oops are active								
bit 7	SATA: ACCA	A Saturation En	able bit ⁽¹⁾							
		ator A saturatio ator A saturatio								
bit 6	SATB: ACCE	B Saturation En	able bit ⁽¹⁾							
		ator B saturatio ator B saturatio								
bit 5	SATDW: Dat	SATDW: Data Space Write from DSP Engine Saturation Enable bit ⁽¹⁾								
		ace write satura ace write satura		I						
bit 4		cumulator Satu		elect bit ⁽¹⁾						
		uration (super s uration (normal	,							
bit 3		nterrupt Priority								
		errupt Priority Le errupt Priority Le								
	nis bit is availabl		PXXXMC20X/	50X and dsPl	C33EPXXXGP	50X devices on	ly.			
2: Th	nis bit is always	reau as 0.								

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

4.2.5 X AND Y DATA SPACES

The dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X core has two Data Spaces, X and Y. These Data Spaces can be considered either separate (for some DSP instructions) or as one unified linear address range (for MCU instructions). The Data Spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X Data Space is used by all instructions and supports all addressing modes. X Data Space has separate read and write data buses. The X read data bus is the read data path for all instructions that view Data Space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y Data Space is used in concert with the X Data Space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y Data Spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X Data Space. Modulo Addressing and Bit-Reversed Addressing are not present in PIC24EPXXXGP/MC20X devices.

All data memory writes, including in DSP instructions, view Data Space as combined X and Y address space. The boundary between the X and Y Data Spaces is device-dependent and is not user-programmable.

4.3 Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

4.3.1 KEY RESOURCES

- "Program Memory" (DS70613) in the "dsPIC33/ PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_	_	_	_	_	—	_	_	—	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4		_	_	—	_	_		_	_	—	DAE	DOOVR	—	_	_		0000
INTCON4	08C6		_				Ι	_			—	_		—			SGHT	0000
INTTREG	08C8	_	_	_	_		ILR<	3:0>					VECNU	M<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

7.3 Interrupt Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

7.3.1 KEY RESOURCES

- "Interrupts" (DS70600) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

7.4 Interrupt Control and Status Registers

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- INTTREG

7.4.1 INTCON1 THROUGH INTCON4

Global interrupt control functions are controlled from INTCON1, INTCON2, INTCON3 and INTCON4.

INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS), as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior and also contains the Global Interrupt Enable bit (GIE).

INTCON3 contains the status flags for the DMA and DO stack overflow status trap sources.

The INTCON4 register contains the software generated hard trap status bit (SGHT).

7.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.4.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number bits (VECNUM<7:0>) and Interrupt Priority Level bits (ILR<3:0>) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

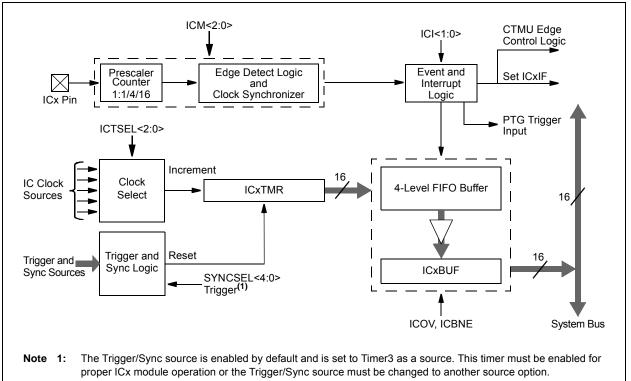
7.4.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers refer to "**CPU**" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual".

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-3 through Register 7-7 in the following pages.

14.0 INPUT CAPTURE


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Input Capture" (DS70352) in the "dsPIC33/dsPIC24 Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices support four input capture channels.

Key features of the input capture module include:

- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 19 user-selectable Trigger/Sync sources available
- A 4-level FIFO buffer for capturing and holding timer values for several events
- Configurable interrupt generation
- Up to six clock sources available for each module, driving a separate internal 16-bit counter

14.2 Input Capture Registers

REGISTER 14-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
_	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0		—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/HC/HS-0	R/HC/HS-0	R/W-0	R/W-0	R/W-0
—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0
bit 7							bit 0

Legend: HC = Hardware Clearable bit HS = Hardware Se		HS = Hardware Settable b	bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	ICSIDL: Input Capture Stop in Idle Control bit
	1 = Input capture will Halt in CPU Idle mode
	0 = Input capture will continue to operate in CPU Idle mode
bit 12-10	ICTSEL<2:0>: Input Capture Timer Select bits
	111 = Peripheral clock (FP) is the clock source of the ICx
	110 = Reserved
	101 = Reserved
	100 = T1CLK is the clock source of the ICx (only the synchronous clock is supported) 011 = T5CLK is the clock source of the ICx
	010 = T4CLK is the clock source of the ICx
	001 = T2CLK is the clock source of the ICx
	000 = T3CLK is the clock source of the ICx
bit 9-7	Unimplemented: Read as '0'
bit 6-5	ICI<1:0>: Number of Captures per Interrupt Select bits (this field is not used if ICM<2:0> = 001 or 111)
	11 = Interrupt on every fourth capture event
	10 = Interrupt on every third capture event
	01 = Interrupt on every second capture event 00 = Interrupt on every capture event
bit 4	ICOV: Input Capture Overflow Status Flag bit (read-only)
bit 4	1 = Input capture buffer overflow occurred
	0 = No input capture buffer overflow occurred
bit 3	ICBNE: Input Capture Buffer Not Empty Status bit (read-only)
	1 = Input capture buffer is not empty, at least one more capture value can be read
	0 = Input capture buffer is empty
bit 2-0	ICM<2:0>: Input Capture Mode Select bits
	111 = Input capture functions as interrupt pin only in CPU Sleep and Idle modes (rising edge detect only, all other control bits are not applicable)
	110 = Unused (module is disabled)
	101 = Capture mode, every 16th rising edge (Prescaler Capture mode)
	 100 = Capture mode, every 4th rising edge (Prescaler Capture mode) 011 = Capture mode, every rising edge (Simple Capture mode)
	010 = Capture mode, every falling edge (Simple Capture mode)
	001 = Capture mode, every edge rising and falling (Edge Detect mode (ICI<1:0>) is not used in this mode)
	000 = Input capture module is turned off

17.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Quadrature Encoder Interface (QEI)" (DS70601) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data.

The operational features of the QEI module include:

- 32-Bit Position Counter
- 32-Bit Index Pulse Counter
- 32-Bit Interval Timer
- 16-Bit Velocity Counter
- 32-Bit Position Initialization/Capture/Compare High register
- 32-Bit Position Compare Low register
- x4 Quadrature Count mode
- External Up/Down Count mode
- External Gated Count mode
- External Gated Timer mode
- Internal Timer mode

Figure 17-1 illustrates the QEI block diagram.

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0				
_	_		FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0				
bit 15	I	•					bit 8				
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0				
_	ICODE6	ICODE5	ICODE4	ICODE3	ICODE2	ICODE1	ICODE0				
bit 7							bit				
Logondi											
Legend: R = Readable	- hit		hit.		nonted hit rea	d aa 'O'					
-n = Value at		W = Writable		'0' = Bit is cle	mented bit, rea						
-n = value at	POR	'1' = Bit is set		0 = Bit is cie	ared	x = Bit is unkr	IOWN				
bit 15-13	Unimplemen	ted: Read as '	0'								
bit 12-8	=	Filter Hit Num									
		1 = Reserved									
	01111 = Filte	r 15									
	•										
	•										
	• 00001 = Filter 1										
	00001 = Filte										
bit 7			0'								
bit 6-0	Unimplemented: Read as '0' ICODE<6:0>: Interrupt Flag Code bits										
	1000101-1111111 = Reserved										
		IFO almost full									
		eceiver overflo									
	1000010 = K 1000001 = E	/ake-up interru rror interrupt	μ								
	1000000 = N										
	•										
	•										
	•										
		11111 = Rese									
	0001111 = RB15 buffer interrupt										
	•										
	0001001 = R										
		B8 buffer inter									
		RB7 buffer inte RB6 buffer inte									
		RB5 buffer inte									
		RB4 buffer inte									
	0000011 = T	RB3 buffer inte	errupt								
		RB2 buffer inte RB1 buffer inte									

REGISTER 21-3: CxVEC: ECANx INTERRUPT CODE REGISTER

22.2 CTMU Control Registers

REGISTER 2	22-1: CTM	UCON1: CTMU	J CONTROL	REGISTER	1		
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN ⁽¹⁾	CTTRIG
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		—	_		<u> </u>		_
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	oit	U = Unimplen	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	own		
bit 15	1 = Module	TMU Enable bit is enabled is disabled					
bit 14	Unimpleme	nted: Read as '0	3				
bit 13	1 = Disconti 0 = Continue	CTMU Stop in lo nues module ope es module opera	eration when a tion in Idle ma		lle mode		
bit 12	TGEN: Time	Generation Ena	ble bit				

REGISTER 22-1: CTMUCON1: CTMU CONTROL REGISTER 1

	 1 = Hardware modules are used to trigger edges (TMRx, CTEDx, etc.) 0 = Software is used to trigger edges (manual set of EDGxSTAT)
bit 10	EDGSEQEN: Edge Sequence Enable bit
	 1 = Edge 1 event must occur before Edge 2 event can occur 0 = No edge sequence is needed
bit 9	IDISSEN: Analog Current Source Control bit ⁽¹⁾
	 1 = Analog current source output is grounded 0 = Analog current source output is not grounded
bit 8	CTTRIG: ADC Trigger Control bit
	1 = CTMU triggers ADC start of conversion
	0 = CTMU does not trigger ADC start of conversion
bit 7-0	Unimplemented: Read as '0'

1 = Enables edge delay generation0 = Disables edge delay generation

EDGEN: Edge Enable bit

bit 11

Note 1: The ADC module Sample-and-Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitance measurement must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

	23-2: Al		CONTROL REG				
R/W-0	R/W-	-0 R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
VCFG2	VCFC	G1 VCFG0	—	—	CSCNA	CHPS1	CHPS0
bit 15							bit
R-0	R/W-	-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	SMP		SMPI2	SMPI1	SMPI0	BUFM	ALTS
bit 7	Sivil		SIVILIZ			BOTIM	bit
Logondi							
Legend:	. hit	VV - VV/ritable			montod hit roo		
R = Readable		W = Writable			mented bit, read		
-n = Value at	POR	'1' = Bit is se	et '()' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-13	VCFG<2	2:0>: Converter Vol	tage Reference C	onfiguration	bits		
	Value	VREFH	VREFL				
	000	Avdd	Avss				
	001	External VREF+	Avss				
	010	Avdd	External VREF-				
	011	External VREF+	External VREF-				
	1xx	Avdd	Avss				
bit 12-11	Unimple	emented: Read as	'0'				
bit 10	-	: Input Scan Select					
		ns inputs for CH0+		JXA			
		s not scan inputs	5 1				
bit 9-8	CHPS<1	1:0>: Channel Sele	ct bits				
	<u>In 12-bit</u>	mode (AD21B = 1	<u>), the CHPS<1:0></u>	bits are Uni	mplemented an	d are Read as	<u>'0':</u>
		nverts CH0, CH1, (
		nverts CH0 and CH nverts CH0	11				
L:1 7							
bit 7		Buffer Fill Status bit C is currently filling t		-	o ucor opplicat	ion chould coor	oo data in t
		half of the buffer	the second hall of	line buller, li	ie user applicat		
		C is currently filling	the first half of the	e buffer; the	e user applicatio	on should acce	ss data in t
		ond half of the buffe					
bit 6-2	SMPI<4	:0>: Increment Rat	e bits				
		DDMAEN = 0:					
		Generates interru					
	x1110 =	Generates interru	pt after completion	of every 15	oth sample/conv	ersion operation	on
	•						
	•						
		Generates interru					n
		 Generates interru 	pt after completior	of every sa	ample/conversion	n operation	
		$\frac{\text{DDMAEN} = 1}{\text{Increments the DN}}$	11 address offer a	omplation of	four 20rd of	male (een verei	on onoratio
		Increments the DI Increments the DI					
	•			ompletion (n every orac sa		
	•						
	•	- Increments the DI					

. . ACOND. ADCA CONTROL DECISTED 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	
bit 15				·	•	·	bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	
bit 7	-				•		bit (
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cl			eared	x = Bit is unk	nown			

REGISTER 23-8: AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW^(1,2)

bit 15-0 CSS<15:0>: ADC1 Input Scan Selection bits

1 = Selects ANx for input scan

0 = Skips ANx for input scan

Note 1: On devices with less than 16 analog inputs, all AD1CSSL bits can be selected by the user. However, inputs selected for scan, without a corresponding input on the device, convert VREFL.

2: CSSx = ANx, where x = 0-15.

DC CHARACTER	ISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Parameter No.	Тур.	Max.	Units	Conditions			
DC61d	8		μΑ	-40°C			
DC61a	10	—	μA	+25°C	2.21/		
DC61b	12	—	μA	+85°C	3.3V		
DC61c	13	—	μA	+125°C			

TABLE 30-9: DC CHARACTERISTICS: WATCHDOG TIMER DELTA CURRENT (Δ Iwdt)⁽¹⁾

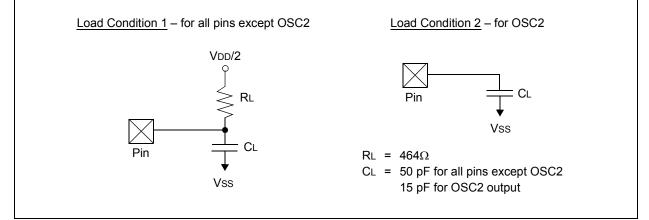
Note 1: The \triangle IwDT current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. All parameters are characterized but not tested during manufacturing.

TABLE 30-10: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTER	(unless oth	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Parameter No.	Doze Ratio	Units		Conditions					
Doze Current (IDC	Doze Current (IDOZE) ⁽¹⁾								
DC73a ⁽²⁾	35		1:2	mA	-40°C	3.3V	Fosc = 140 MHz		
DC73g	20	30	1:128	mA	-40 C				
DC70a ⁽²⁾	35	_	1:2	mA	+25°C	3.3V			
DC70g	20	30	1:128	mA	+25 C	3.3V	Fosc = 140 MHz		
DC71a ⁽²⁾	35	_	1:2	mA	105%0	2.21/			
DC71g	20	30	1:128	mA	+85°C	3.3V	Fosc = 140 MHz		
DC72a ⁽²⁾	28	—	1:2	mA	+125°C	2 21/	Fosc = 120 MHz		
DC72g	15	30	1:128	mA	+125 C	3.3V			

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

- Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- CPU is executing while(1) statement
- · JTAG is disabled
- 2: Parameter is characterized but not tested in manufacturing.


30.2 AC Characteristics and Timing Parameters

This section defines dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X AC characteristics and timing parameters.

TABLE 30-15: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	Characteristics".

FIGURE 30-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 30-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	_	—	15		In XT and HS modes, when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—		50	pF	EC mode
DO58	Св	SCLx, SDAx	_	_	400	pF	In I ² C™ mode

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Charao	cteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
TB10	TtxH	TxCK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TB15, N = prescale value (1, 8, 64, 256)
TB11	TtxL	TxCK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_		ns	Must also meet Parameter TB15, N = prescale value (1, 8, 64, 256)
TB15	TtxP	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	—	—	ns	N = prescale value (1, 8, 64, 256)
TB20	TCKEXTMRL	Delay from Clock Edge Increment	External TxCK to Timer	0.75 Tcy + 40	—	1.75 Tcy + 40	ns	

TABLE 30-24	TIMER2 AND TIM	IER4 (TYPE B TIMER	ER) EXTERNAL CLOCK TIMING REQUIREMENTS	j.
--------------------	----------------	--------------------	--	----

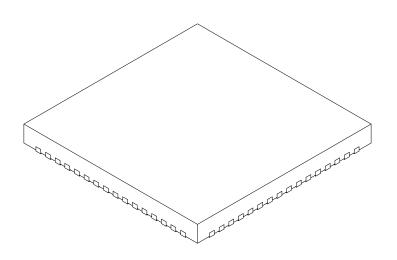
Note 1: These parameters are characterized, but are not tested in manufacturing.

TABLE 30-25: TIMER3 AND TIMER5 (TYPE C TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Charac	teristic ⁽¹⁾	Min. Typ. Max. Units Conditions				Conditions
TC10	TtxH	TxCK High Time	Synchronous	Tcy + 20			ns	Must also meet Parameter TC15
TC11	TtxL	TxCK Low Time	Synchronous	Тсү + 20	_	—	ns	Must also meet Parameter TC15
TC15	TtxP	TxCK Input Period	Synchronous, with prescaler	2 Tcy + 40	—	_	ns	N = prescale value (1, 8, 64, 256)
TC20	TCKEXTMRL	Delay from E Clock Edge t Increment	xternal TxCK o Timer	0.75 Tcy + 40 — 1.75 Tcy + 40 ns				

Note 1: These parameters are characterized, but are not tested in manufacturing.

AC CHA	RACTER	ISTICS		Standard Operatin (unless otherwise Operating tempera	stated) iture -40)°C ≤ Ta ≤	+85°C for Industrial	
Param No.	Symbol	Characte	eristic ⁽⁴⁾	Min. ⁽¹⁾ Max.		Units	Conditions	
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μS		
			400 kHz mode	TCY/2 (BRG + 2)		μ S		
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)		μs		
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 2)		μS		
			400 kHz mode	Tcy/2 (BRG + 2)		μs		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μS		
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	_	100	ns		
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾		300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250		ns		
		Setup Time	400 kHz mode	100		ns		
			1 MHz mode ⁽²⁾	40		ns		
IM26	26 THD:DAT Data	Data Input	100 kHz mode	0		μS		
	Hold Time	400 kHz mode	0	0.9	μs			
			1 MHz mode ⁽²⁾	0.2		μS		
IM30	TSU:STA	Start Condition	100 kHz mode	TCY/2 (BRG + 2)	—	μS	Only relevant for	
		Setup Time	400 kHz mode	TCY/2 (BRG + 2)	—	μS	Repeated Start	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)		μS	condition	
IM31	THD:STA	Start Condition	100 kHz mode	TCY/2 (BRG + 2)	—	μS	After this period, the	
		Hold Time	400 kHz mode	TCY/2 (BRG +2)	—	μS	first clock pulse is	
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)		μS	generated	
IM33	Tsu:sto	Stop Condition	100 kHz mode	TCY/2 (BRG + 2)	_	μS		
		Setup Time	400 kHz mode	TCY/2 (BRG + 2)		μS		
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)		μS		
IM34	THD:STO	Stop Condition	100 kHz mode	TCY/2 (BRG + 2)		μS		
		Hold Time	400 kHz mode	TCY/2 (BRG + 2)		μS		
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)		μS		
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns		
		From Clock	400 kHz mode		1000	ns		
			1 MHz mode ⁽²⁾		400	ns		
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be	
			400 kHz mode	1.3		μS	free before a new	
			1 MHz mode ⁽²⁾	0.5	—	μS	transmission can star	
IM50	Св	Bus Capacitive L	oading	—	400	pF		
IM51	Tpgd	Pulse Gobbler De	elay	65	390	ns	(Note 3)	


TABLE 30-49: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the l²C[™] Baud Rate Generator. Refer to "Inter-Integrated Circuit (l²C[™])" (DS70330) in the "dsPIC33/PIC24 Family Reference Manual". Please see the Microchip web site for the latest family reference manual sections.

- 2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
- **3:** Typical value for this parameter is 130 ns.
- 4: These parameters are characterized, but not tested in manufacturing.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

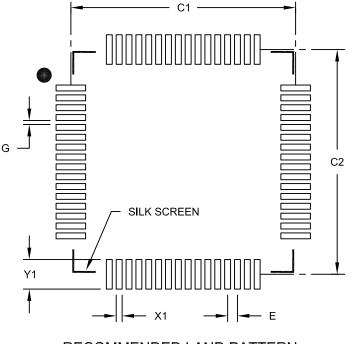
	Units			S
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		64	
Pitch	е		0.50 BSC	
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E		9.00 BSC	
Exposed Pad Width	E2	5.30	5.40	5.50
Overall Length	D		9.00 BSC	
Exposed Pad Length	D2	5.30	5.40	5.50
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units					
Dimensio	Dimension Limits			MAX		
Contact Pitch	E		0.50 BSC			
Contact Pad Spacing	C1		11.40			
Contact Pad Spacing	C2		11.40			
Contact Pad Width (X64)	X1			0.30		
Contact Pad Length (X64)	Y1			1.50		
Distance Between Pads	G	0.20				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B