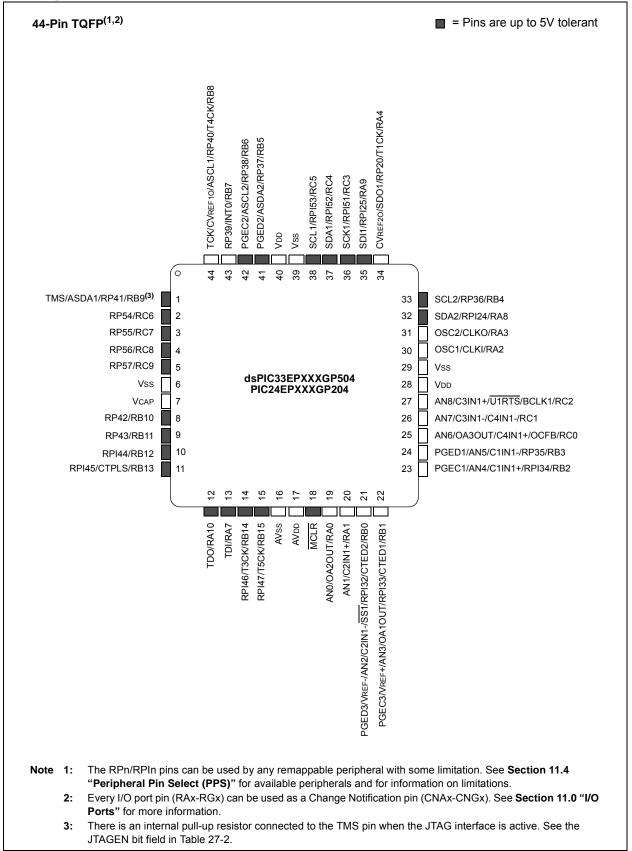


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Obsolete
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I²C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64mc504-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Pin Name ⁽⁴⁾	Pin Type	Buffer Type	PPS	Description			
C1IN1-	I	Analog	No	Op Amp/Comparator 1 Negative Input 1.			
C1IN2-	I	Analog	No	Comparator 1 Negative Input 2.			
C1IN1+	I	Analog	No	Op Amp/Comparator 1 Positive Input 1.			
OA1OUT	0	Analog	No	Op Amp 1 output.			
C1OUT	0	—	Yes	Comparator 1 output.			
C2IN1-	I	Analog	No	Op Amp/Comparator 2 Negative Input 1.			
C2IN2-	I	Analog	No	Comparator 2 Negative Input 2.			
C2IN1+	I	Analog	No	Op Amp/Comparator 2 Positive Input 1.			
OA2OUT	0	Analog	No	Op Amp 2 output.			
C2OUT	0		Yes	Comparator 2 output.			
C3IN1-	I	Analog	No	Op Amp/Comparator 3 Negative Input 1.			
C3IN2-	I	Analog	No	Comparator 3 Negative Input 2.			
C3IN1+	I	Analog	No	Op Amp/Comparator 3 Positive Input 1.			
OA3OUT	0	Analog	No	Op Amp 3 output.			
C3OUT	0		Yes	Comparator 3 output.			
C4IN1-	I.	Analog	No	Comparator 4 Negative Input 1.			
C4IN1+	I.	Analog	No	Comparator 4 Positive Input 1.			
C4OUT	0		Yes	Comparator 4 output.			
CVREF10	0	Analog	No	Op amp/comparator voltage reference output.			
CVREF20	0	Analog	No	Op amp/comparator voltage reference divided by 2 output.			
PGED1	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 1.			
PGEC1	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 1.			
PGED2	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 2.			
PGEC2	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 2.			
PGED3	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 3.			
PGEC3	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 3.			
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.			
AVDD	Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.			
AVss	Р	Р	No	Ground reference for analog modules. This pin must be connected at all times.			
Vdd	Р		No	Positive supply for peripheral logic and I/O pins.			
VCAP	Р		No	CPU logic filter capacitor connection.			
Vss	Р		No	Ground reference for logic and I/O pins.			
VREF+	1	Analog	No	Analog voltage reference (high) input.			
VREF-	Ι	Analog	No	Analog voltage reference (low) input.			
Legend: CMOS = C ST = Schn	nitt Trigg	jer input v	with CI	or output Analog = Analog input P = Power MOS levels O = Output I = Input			

Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.

PPS = Peripheral Pin Select

3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.

TTL = TTL input buffer

4: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

5: There is an internal pull-up resistor connected to the TMS pin when the JTAG interface is active. See the JTAGEN bit field in Table 27-2.

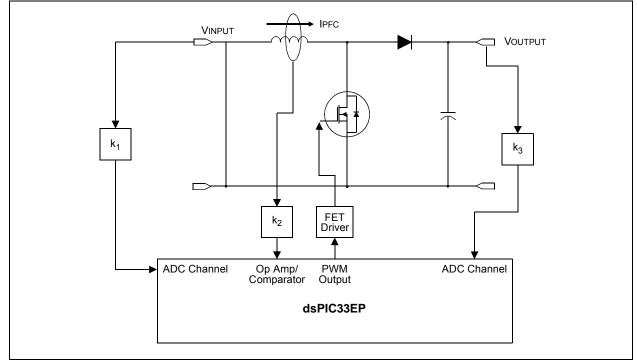
2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 3 MHz < F_{IN} < 5.5 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLFBD, to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.


Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

2.9 Application Examples

- · Induction heating
- Uninterruptable Power Supplies (UPS)
- DC/AC inverters
- · Compressor motor control
- · Washing machine 3-phase motor control
- BLDC motor control
- · Automotive HVAC, cooling fans, fuel pumps
- Stepper motor control
- · Audio and fluid sensor monitoring
- · Camera lens focus and stability control
- Speech (playback, hands-free kits, answering machines, VoIP)
- Consumer audio
- Industrial and building control (security systems and access control)
- · Barcode reading
- Networking: LAN switches, gateways
- Data storage device management
- · Smart cards and smart card readers

Examples of typical application connections are shown in Figure 2-4 through Figure 2-8.

FIGURE 2-4: BOOST CONVERTER IMPLEMENTATION

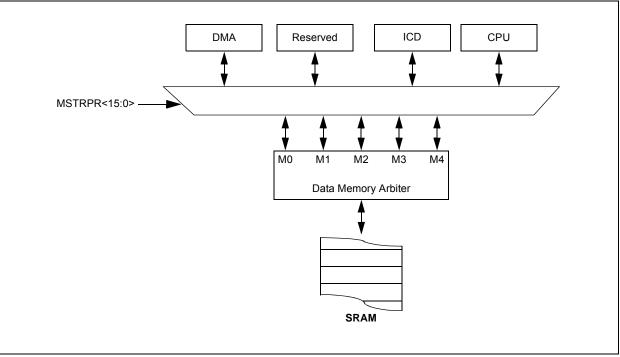
4.4.3 DATA MEMORY ARBITRATION AND BUS MASTER PRIORITY

EDS accesses from bus masters in the system are arbitrated.

The arbiter for data memory (including EDS) arbitrates between the CPU, the DMA and the ICD module. In the event of coincidental access to a bus by the bus masters, the arbiter determines which bus master access has the highest priority. The other bus masters are suspended and processed after the access of the bus by the bus master with the highest priority.

By default, the CPU is Bus Master 0 (M0) with the highest priority and the ICD is Bus Master 4 (M4) with the lowest priority. The remaining bus master (DMA Controller) is allocated to M3 (M1 and M2 are reserved and cannot be used). The user application may raise or lower the priority of the DMA Controller to be above that of the CPU by setting the appropriate bits in the EDS Bus Master Priority Control (MSTRPR) register. All bus masters with raised priorities will maintain the same priority relationship relative to each other (i.e., M1 being highest and M3 being lowest, with M2 in between). Also, all the bus masters with priorities below

FIGURE 4-18: ARBITER ARCHITECTURE


that of the CPU maintain the same priority relationship relative to each other. The priority schemes for bus masters with different MSTRPR values are tabulated in Table 4-62.

This bus master priority control allows the user application to manipulate the real-time response of the system, either statically during initialization or dynamically in response to real-time events.

TABLE 4-62:	DATA MEMORY BUS
	ARBITER PRIORITY

Drierity	MSTRPR<15:0> Bit Setting ⁽¹⁾				
Priority	0x0000	0x0020			
M0 (highest)	CPU	DMA			
M1	Reserved	CPU			
M2	Reserved	Reserved			
M3	DMA	Reserved			
M4 (lowest)	ICD	ICD			

Note 1: All other values of MSTRPR<15:0> are reserved.

	Vector	IRQ		Inte	Interrupt Bit Location		
Interrupt Source	# #		IVT Address	Flag	Enable	Priority	
QEI1 – QEI1 Position Counter Compare ⁽²⁾	66	58	0x000088	IFS3<10>	IEC3<10>	IPC14<10:8>	
Reserved	67-72	59-64	0x00008A-0x000094	_	_	_	
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>	
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4<2>	IEC4<2>	IPC16<10:8>	
CRC – CRC Generator Interrupt	75	67	0x00009A	IFS4<3>	IEC4<3>	IPC16<14:12>	
Reserved	76-77	68-69	0x00009C-0x00009E	—	_	—	
C1TX – CAN1 TX Data Request ⁽¹⁾	78	70	0x000A0	IFS4<6>	IEC4<6>	IPC17<10:8>	
Reserved	79-84	71-76	0x0000A2-0x0000AC	—	_	—	
CTMU – CTMU Interrupt	85	77	0x0000AE	IFS4<13>	IEC4<13>	IPC19<6:4>	
Reserved	86-101	78-93	0x0000B0-0x0000CE	—	_	—	
PWM1 – PWM Generator 1 ⁽²⁾	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>	
PWM2 – PWM Generator 2 ⁽²⁾	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>	
PWM3 – PWM Generator 3 ⁽²⁾	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>	
Reserved	105-149	97-141	0x0001D6-0x00012E	—	_	—	
ICD – ICD Application	150	142	0x000142	IFS8<14>	IEC8<14>	IPC35<10:8>	
JTAG – JTAG Programming	151	143	0x000130	IFS8<15>	IEC8<15>	IPC35<14:12>	
Reserved	152	144	0x000134	—	—	_	
PTGSTEP – PTG Step	153	145	0x000136	IFS9<1>	IEC9<1>	IPC36<6:4>	
PTGWDT – PTG Watchdog Time-out	154	146	0x000138	IFS9<2>	IEC9<2>	IPC36<10:8>	
PTG0 – PTG Interrupt 0	155	147	0x00013A	IFS9<3>	IEC9<3>	IPC36<14:12>	
PTG1 – PTG Interrupt 1	156	148	0x00013C	IFS9<4>	IEC9<4>	IPC37<2:0>	
PTG2 – PTG Interrupt 2	157	149	0x00013E	IFS9<5>	IEC9<5>	IPC37<6:4>	
PTG3 – PTG Interrupt 3	158	150	0x000140	IFS9<6>	IEC9<6>	IPC37<10:8>	
Reserved	159-245	151-245	0x000142-0x0001FE	—	—	_	
	Lowe	est Natura	I Order Priority				

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

Note 1: This interrupt source is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

2: This interrupt source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 4	MATHERR: Math Error Status bit
	1 = Math error trap has occurred
	0 = Math error trap has not occurred
bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred
	0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

Note 1: These bits are available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 8-9: DSADRH: DMA MOST RECENT RAM HIGH ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	-	—
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSADR	<23:16>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bi	t	U = Unimpler	nented bit, read	as '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8 Unimplemented: Read as '0'

bit 7-0 DSADR<23:16>: Most Recent DMA Address Accessed by DMA bits

REGISTER 8-10: DSADRL: DMA MOST RECENT RAM LOW ADDRESS REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAD	DR<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
	DSADR<7:0>						
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bit	bit U = Unimplemented bit, read as '0'				
-n = Value at PC	OR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown				own

bit 15-0 DSADR<15:0>: Most Recent DMA Address Accessed by DMA bits

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 11-26: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP118	3R<5:0>		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	_	_	—	_
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP118R<5:0>: Peripheral Output Function is Assigned to RP118 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-0 Unimplemented: Read as '0'

REGISTER 11-27: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP120R<5:0>					
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-6 Unimplemented: Read as '0'

bit 5-0 **RP120R<5:0>:** Peripheral Output Function is Assigned to RP120 Output Pin bits (see Table 11-3 for peripheral function numbers)

16.2 PWM Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

16.2.1 KEY RESOURCES

- "High-Speed PWM" (DS70645) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTHL	D<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTHL	D<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-0 INTHLD<31:16>: Hold Register for Reading and Writing INT1TMRH bits

REGISTER 17-20: INT1HLDL: INTERVAL 1 TIMER HOLD LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTHL	.D<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTH	_D<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unir			U = Unimpler	nented bit, read	d as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-0 INTHLD<15:0>: Hold Register for Reading and Writing INT1TMRL bits

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with the SCLREL bit. 1 = Enables software or receives clock stretching 0 = Disables software or receives clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit. Hardware is clear at the end of the master Acknowledge sequence. 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C. Hardware is clear at the end of the eighth bit of the master receive data byte. 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I^2C master)
511 2	1 = Initiates Stop condition on SDAx and SCLx pins. Hardware is clear at the end of the master Stop sequence.
h :+ 4	0 = Stop condition is not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiates Repeated Start condition on SDAx and SCLx pins. Hardware is clear at the end of the master Repeated Start sequence. 0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as l^2C master)
	 1 = Initiates Start condition on SDAx and SCLx pins. Hardware is clear at the end of the master Start sequence. 0 = Start condition is not in progress

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

	23-2: Al		CONTROL REG				
R/W-0	R/W-	-0 R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
VCFG2	VCFC	G1 VCFG0	—	—	CSCNA	CHPS1	CHPS0
bit 15							bit
R-0	R/W-	-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS	SMP		SMPI2	SMPI1	SMPI0	BUFM	ALTS
bit 7	Sivil		SIVILIZ			BOTIM	bit
Logondi							
Legend:	. hit	VV - VV/ritable			montod hit roo		
R = Readable		W = Writable			mented bit, read		
-n = Value at	POR	'1' = Bit is se	et '()' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-13	VCFG<2	2:0>: Converter Vol	tage Reference C	onfiguration	bits		
	Value	VREFH	VREFL				
	000	Avdd	Avss				
	001	External VREF+	Avss				
	010	Avdd	External VREF-				
	011	External VREF+	External VREF-				
	1xx	Avdd	Avss				
bit 12-11	Unimple	emented: Read as	'O'				
bit 10		: Input Scan Select					
		ns inputs for CH0+		JXA			
		s not scan inputs	5 1				
bit 9-8	CHPS<1	1:0>: Channel Sele	ct bits				
	<u>In 12-bit</u>	mode (AD21B = 1	<u>), the CHPS<1:0></u>	bits are Uni	mplemented an	d are Read as	<u>'0':</u>
		nverts CH0, CH1, (
		nverts CH0 and CH nverts CH0	11				
L:1 7							
bit 7		Buffer Fill Status bit C is currently filling t		-	o ucor opplicat	ion chould coor	oo data in t
		half of the buffer	the second hall of	line buller, li	ie user applicat		
		C is currently filling	the first half of the	e buffer; the	e user applicatio	on should acce	ss data in t
		ond half of the buffe					
bit 6-2	SMPI<4	:0>: Increment Rat	e bits				
		DDMAEN = 0:					
		Generates interru					
	x1110 =	Generates interru	pt after completion	of every 15	oth sample/conv	ersion operation	on
	•						
	•						
		Generates interru					n
		 Generates interru 	pt after completior	of every sa	ample/conversion	n operation	
		$\frac{\text{DDMAEN} = 1}{\text{Increments the DN}}$	11 address offer a	omplation of	four 20rd of	male (conversi	on onoratio
		Increments the DI Increments the DI					
	•			Simpletion	n every orac sa		
	•						
	•	- Increments the DI					

. . ACOND. ADCA CONTROL DECISTED 2

REGISTER 24-8: PTGC1LIM: PTG COUNTER 1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC1L	IM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC1L	IM<7:0>			
bit 7							bit C

Legena.				
R = Readable bit	Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-0 **PTGC1LIM<15:0>:** PTG Counter 1 Limit Register bits May be used to specify the loop count for the PTGJMPC1 Step command or as a limit register for the General Purpose Counter 1.

REGISTER 24-9: PTGHOLD: PTG HOLD REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PTGHOLD<15:8>								
bit 15								

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PTGHOLD<7:0>								
bit 7 k								

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGHOLD<15:0>:** PTG General Purpose Hold Register bits Holds user-supplied data to be copied to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 registers with the PTGCOPY command.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

oit 3-0	Step Command	OPTION<3:0>	Option Description					
	PTGCTRL(1)	0000	Reserved.					
		0001	Reserved.					
		0010	Disable Step Delay Timer (PTGSD).					
		0011	Reserved.					
		0100	Reserved.					
		0101	Reserved.					
		0110	Enable Step Delay Timer (PTGSD).					
		0111	Reserved.					
		1000	Start and wait for the PTG Timer0 to match the Timer0 Limit Register.					
		1001	Start and wait for the PTG Timer1 to match the Timer1 Limit Register.					
		1010	Reserved.					
		1011	Wait for the software trigger bit transition from low-to-high before continuing $(PTGSWT = 0 \text{ to } 1)$.					
		1100	Copy contents of the Counter 0 register to the AD1CHS0 register.					
		1101	Copy contents of the Counter 1 register to the AD1CHS0 register.					
		1110	Copy contents of the Literal 0 register to the AD1CHS0 register.					
		1111	Generate triggers indicated in the Broadcast Trigger Enable register (PTGBTE).					
	PTGADD ⁽¹⁾	0000	Add contents of the PTGADJ register to the Counter 0 Limit register (PTGC0LIM).					
		0001	Add contents of the PTGADJ register to the Counter 1 Limit register (PTGC1LIM).					
		0010	Add contents of the PTGADJ register to the Timer0 Limit register (PTGT0LIM).					
		0011	Add contents of the PTGADJ register to the Timer1 Limit register (PTGT1LIM).					
		0100	Add contents of the PTGADJ register to the Step Delay Limit register (PTGSDLIM)					
		0101	Add contents of the PTGADJ register to the Literal 0 register (PTGL0).					
		0110	Reserved.					
		0111	Reserved.					
	PTGCOPY ⁽¹⁾	1000	Copy contents of the PTGHOLD register to the Counter 0 Limit register (PTGC0LIM).					
		1001	Copy contents of the PTGHOLD register to the Counter 1 Limit register (PTGC1LIM).					
		1010	Copy contents of the PTGHOLD register to the Timer0 Limit register (PTGT0LIM).					
		1011	Copy contents of the PTGHOLD register to the Timer1 Limit register (PTGT1LIM).					
		1100	Copy contents of the PTGHOLD register to the Step Delay Limit register (PTGSDLIM).					
		1101	Copy contents of the PTGHOLD register to the Literal 0 register (PTGL0).					
		1110	Reserved.					
		1111	Reserved.					

TABLE 24-1: PTG STEP COMMAND FORMAT (CONTINUED)

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 24-2 for the trigger output descriptions.

3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

PTG Output Number	PTG Output Description
PTGO0	Trigger/Synchronization Source for OC1
PTGO1	Trigger/Synchronization Source for OC2
PTGO2	Trigger/Synchronization Source for OC3
PTGO3	Trigger/Synchronization Source for OC4
PTGO4	Clock Source for OC1
PTGO5	Clock Source for OC2
PTGO6	Clock Source for OC3
PTGO7	Clock Source for OC4
PTGO8	Trigger/Synchronization Source for IC1
PTGO9	Trigger/Synchronization Source for IC2
PTGO10	Trigger/Synchronization Source for IC3
PTGO11	Trigger/Synchronization Source for IC4
PTGO12	Sample Trigger for ADC
PTGO13	Sample Trigger for ADC
PTGO14	Sample Trigger for ADC
PTGO15	Sample Trigger for ADC
PTGO16	PWM Time Base Synchronous Source for PWM ⁽¹⁾
PTGO17	PWM Time Base Synchronous Source for PWM ⁽¹⁾
PTGO18	Mask Input Select for Op Amp/Comparator
PTGO19	Mask Input Select for Op Amp/Comparator
PTGO20	Reserved
PTGO21	Reserved
PTGO22	Reserved
PTGO23	Reserved
PTGO24	Reserved
PTGO25	Reserved
PTGO26	Reserved
PTGO27	Reserved
PTGO28	Reserved
PTGO29	Reserved
PTGO30	PTG Output to PPS Input Selection
PTGO31	PTG Output to PPS Input Selection

TABLE 24-2: PTG OUTPUT DESCRIPTIONS

Note 1: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

DC CHARACTE	RISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Parameter No.	Тур.	Max.	Units	Conditions				
Power-Down Cu	urrent (IPD) ⁽¹⁾ -	dsPIC33EP32GI	P50X, dsPIC33EF	32MC20X/50X and PIC2	4EP32GP/MC20X			
DC60d	30	100	μA	-40°C				
DC60a	35	100	μA	+25°C	3.3V			
DC60b	150	200	μA	+85°C	3.3V			
DC60c	250	500	μA	+125°C				
Power-Down Cu	urrent (IPD) ⁽¹⁾ –	dsPIC33EP64GI	P50X, dsPIC33EF	64MC20X/50X and PIC2	4EP64GP/MC20X			
DC60d	25	100	μA	-40°C				
DC60a	30	100	μΑ	+25°C	3.3V			
DC60b	150	350	μΑ	+85°C				
DC60c	350	800	μΑ	+125°C				
Power-Down Cu	urrent (IPD) ⁽¹⁾ –	dsPIC33EP128G	P50X, dsPIC33E	P128MC20X/50X and PIC	24EP128GP/MC20X			
DC60d	30	100	μΑ	-40°C				
DC60a	35	100	μΑ	+25°C	3.3V			
DC60b	150	350	μΑ	+85°C	5.57			
DC60c	550	1000	μΑ	+125°C				
Power-Down Cu	urrent (IPD) ⁽¹⁾ –	dsPIC33EP256G	P50X, dsPIC33E	P256MC20X/50X and PIC	24EP256GP/MC20X			
DC60d	35	100	μΑ	-40°C				
DC60a	40	100	μΑ	+25°C	3.3V			
DC60b	250	450	μΑ	+85°C	0.0 V			
DC60c	1000	1200	μΑ	+125°C				
Power-Down Cu	urrent (IPD) ⁽¹⁾ –	dsPIC33EP512G	P50X, dsPIC33E	P512MC20X/50X and PIC	24EP512GP/MC20X			
DC60d	40	100	μΑ	-40°C				
DC60a	45	100	μΑ	+25°C	3.3V			
DC60b	350	800	μΑ	+85°C	0.0 V			
DC60c	1100	1500	μA	+125°C				

TABLE 30-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: IPD (Sleep) current is measured as follows:

• CPU core is off, oscillator is configured in EC mode and external clock is active; OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all set)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- JTAG is disabled

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
		Cloci	k Parame	eters				
AD50	TAD	ADC Clock Period	76	_	_	ns		
AD51	tRC	ADC Internal RC Oscillator Period ⁽²⁾		250	_	ns		
	•	Conv	version F	Rate		•		
AD55	tCONV	Conversion Time		12 Tad	_			
AD56	FCNV	Throughput Rate	_	—	1.1	Msps	Using simultaneous sampling	
AD57a	TSAMP	Sample Time when Sampling any ANx Input	2 Tad	—	_	—		
AD57b	TSAMP	Sample Time when Sampling the Op Amp Outputs (Configuration A and Configuration B) ^(4,5)	4 Tad	_	—	—		
		Timin	g Param	eters				
AD60	tPCS	Conversion Start from Sample Trigger ^(2,3)	2 Tad	—	3 Tad	—	Auto-convert trigger is not selected	
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ^(2,3))	2 Tad	—	3 Tad	—		
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ^(2,3)	_	0.5 Tad		—		
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)		—	20	μs	(Note 6)	

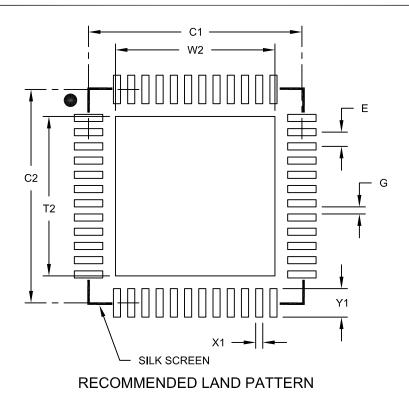
TABLE 30-61: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

- 2: Parameters are characterized but not tested in manufacturing.
- **3:** Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
- 4: See Figure 25-6 for configuration information.
- 5: See Figure 25-7 for configuration information.
- 6: The parameter, tDPU, is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (AD1CON1<15>) = 1). During this time, the ADC result is indeterminate.

TABLE 30-62: DMA MODULE TIMING REQUIREMENTS

		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
DM1	DMA Byte/Word Transfer Latency	1 Tcy (2)	-	_	ns		


Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because DMA transfers use the CPU data bus, this time is dependent on other functions on the bus.

^{© 2011-2013} Microchip Technology Inc.

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 6x6 mm Body [UQFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensior	Dimension Limits			MAX	
Contact Pitch	E	0.40 BSC			
Optional Center Pad Width	W2			4.45	
Optional Center Pad Length	T2			4.45	
Contact Pad Spacing	C1		6.00		
Contact Pad Spacing	C2		6.00		
Contact Pad Width (X28)	X1			0.20	
Contact Pad Length (X28)	Y1			0.80	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2153A

NOTES: