

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Detuns	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64mc506-e-pt

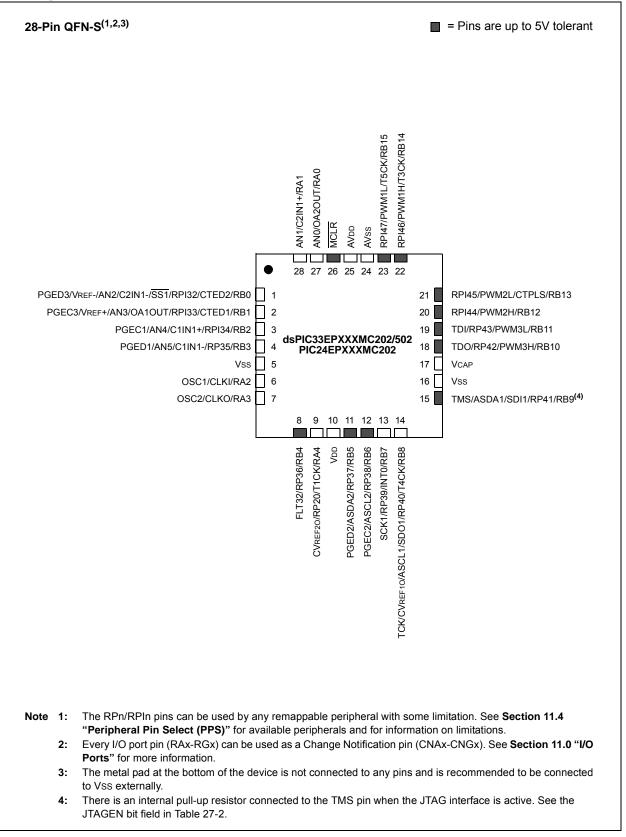
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X PRODUCT FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1 (General Purpose Families) and Table 2 (Motor Control Families). Their pinout diagrams appear on the following pages.

	â	(se			Rei	nappa	ble Pe	eriphe	rals										
Device	Page Erase Size (Instructions)	Program Flash Memory (Kbytes)	RAM (Kbyte)	16-Bit/32-Bit Timers	Input Capture	Output Compare	UART	SPI ⁽²⁾	ECAN TM Technology	External Interrupts ⁽³⁾	I²C™	CRC Generator	10-Bit/12-Bit ADC (Channels)	Op Amps/Comparators	CTMU	РТС	I/O Pins	Pins	Packages
PIC24EP32GP202	512	32	4																
PIC24EP64GP202	1024	64	8																SPDIP,
PIC24EP128GP202	1024	128	16	5	4	4	2	2	—	3	2	1	6	2/3(1)	Yes	Yes	21	28	SOIC, SSOP ⁽⁴⁾ ,
PIC24EP256GP202	1024	256	32																QFN-S
PIC24EP512GP202	1024	512	48																
PIC24EP32GP203	512	32	4	5	4	4	2	2		3	2	1	8	3/4	Vaa	Vaa	25	36	VTLA
PIC24EP64GP203	1024	64	8	5	4	4	2	2	_	3	2		0	3/4	Yes	Yes	25	30	VILA
PIC24EP32GP204	512	32	4																
PIC24EP64GP204	1024	64	8																VTLA ⁽⁴⁾ ,
PIC24EP128GP204	1024	128	16	5	4	4	2	2	_	3	2	1	9	3/4	Yes	Yes	35	44/ 48	TQFP, QFN,
PIC24EP256GP204	1024	256	32															40	UQFN
PIC24EP512GP204	1024	512	48																
PIC24EP64GP206	1024	64	8																
PIC24EP128GP206	1024	128	16	_							-			~ ~ ~				~ /	TQFP.
PIC24EP256GP206	1024	256	32	5	4	4	2	2	_	3	2	1	16	3/4	Yes	Yes	53	64	QFN
PIC24EP512GP206	1024	512	48																
dsPIC33EP32GP502	512	32	4																
dsPIC33EP64GP502	1024	64	8																SPDIP,
dsPIC33EP128GP502	1024	128	16	5	4	4	2	2	1	3	2	1	6	2/3(1)	Yes	Yes	21	28	SOIC, SSOP ⁽⁴⁾ .
dsPIC33EP256GP502	1024	256	32																QFN-S
dsPIC33EP512GP502	1024	512	48																
dsPIC33EP32GP503	512	32	4	_	_	_	_	_		_	_		_						
dsPIC33EP64GP503	1024	64	8	5	4	4	2	2	1	3	2	1	8	3/4	Yes	Yes	25	36	VTLA
dsPIC33EP32GP504	512	32	4											İ					
dsPIC33EP64GP504	1024	64	8																VTLA ⁽⁴⁾ ,
dsPIC33EP128GP504	1024	128	16	5	4	4	2	2	1	3	2	1	9	3/4	Yes	Yes	35	44/ 48	TQFP, QFN,
dsPIC33EP256GP504	1024	256	32															40	UQFN, UQFN
dsPIC33EP512GP504	1024	512	48																
dsPIC33EP64GP506	1024	64	8											1					
dsPIC33EP128GP506	1024	128	16																TQFP,
dsPIC33EP256GP506	1024	256	32	5	4	4	2	2	1	3	2	1	16	3/4	Yes	Yes	53	64	QFN
dsPIC33EP512GP506	1024	512	48																
		1				1	1	1			1	1	1						


TABLE 1: dsPIC33EPXXXGP50X and PIC24EPXXXGP20X GENERAL PURPOSE FAMILIES

Note 1: On 28-pin devices, Comparator 4 does not have external connections. Refer to Section 25.0 "Op Amp/Comparator Module" for details.

Only SPI2 is remappable.
 INT0 is not remappable.

4: The SSOP and VTLA packages are not available for devices with 512 Kbytes of memory.

Pin Diagrams (Continued)

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "CPU" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for digital signal processing. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

3.1 Registers

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can act as a data, address or address offset register. The 16th working register (W15) operates as a Software Stack Pointer for interrupts and calls.

3.2 Instruction Set

The instruction set for dsPIC33EPXXXGP50X and dsPIC33EPXXXMC20X/50X devices has two classes of instructions: the MCU class of instructions and the DSP class of instructions. The instruction set for PIC24EPXXXGP/MC20X devices has the MCU class of instructions only and does not support DSP instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

3.3 Data Space Addressing

The base Data Space can be addressed as 64 Kbytes (32K words).

The Data Space includes two ranges of memory, referred to as X and Y data memory. Each memory range is accessible through its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear Data Space. On dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y Data Spaces have memory locations that are device-specific, and are described further in the data memory maps in **Section 4.2 "Data Address Space"**.

The upper 32 Kbytes of the Data Space memory map can optionally be mapped into Program Space (PS) at any 32-Kbyte aligned program word boundary. The Program-to-Data Space mapping feature, known as Program Space Visibility (PSV), lets any instruction access Program Space as if it were Data Space. Moreover, the Base Data Space address is used in conjunction with a Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space (EDS) address. The EDS can be addressed as 8M words or 16 Mbytes. Refer to the "**Data Memory**" (DS70595) and "**Program Memory**" (DS70613) sections in the "*dsPIC33/PIC24 Family Reference Manual*" for more details on EDS, PSV and table accesses.

On the dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. The X AGU Circular Addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data re-ordering for radix-2 FFT algorithms. PIC24EPXXXGP/MC20X devices do not support Modulo and Bit-Reversed Addressing.

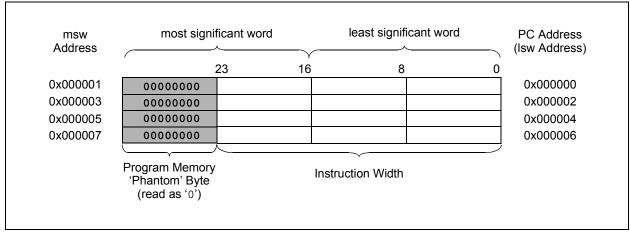
3.4 Addressing Modes

The CPU supports these addressing modes:

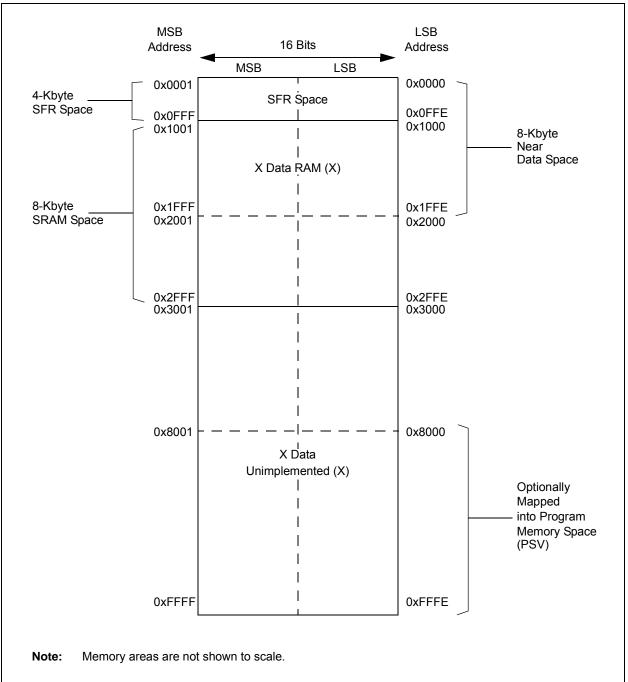
- Inherent (no operand)
- Relative
- Literal
- · Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined addressing mode group, depending upon its functional requirements. As many as six addressing modes are supported for each instruction.

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-6).

Program memory addresses are always word-aligned on the lower word and addresses are incremented, or decremented by two, during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.


4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices reserve the addresses between 0x000000 and 0x000200 for hardcoded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address, 0x000000, of Flash memory, with the actual address for the start of code at address, 0x000002, of Flash memory.

A more detailed discussion of the Interrupt Vector Tables (IVTs) is provided in **Section 7.1** "Interrupt Vector Table".

FIGURE 4-6: PROGRAM MEMORY ORGANIZATION

4.2.5 X AND Y DATA SPACES

The dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X core has two Data Spaces, X and Y. These Data Spaces can be considered either separate (for some DSP instructions) or as one unified linear address range (for MCU instructions). The Data Spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X Data Space is used by all instructions and supports all addressing modes. X Data Space has separate read and write data buses. The X read data bus is the read data path for all instructions that view Data Space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y Data Space is used in concert with the X Data Space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y Data Spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X Data Space. Modulo Addressing and Bit-Reversed Addressing are not present in PIC24EPXXXGP/MC20X devices.

All data memory writes, including in DSP instructions, view Data Space as combined X and Y address space. The boundary between the X and Y Data Spaces is device-dependent and is not user-programmable.

4.3 Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

4.3.1 KEY RESOURCES

- "Program Memory" (DS70613) in the "dsPIC33/ PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

TABLE 4-39: PMD REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD				I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	AD1MD	0000
PMD2	0762		_	_	-	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD			CRCMD	_	—	—		—	I2C2MD		0000
PMD4	0766	_	_	_	_	_	_			_	_	—	—	REFOMD	CTMUMD			0000
PMD6	076A	_		_	_	_				_		—	—		—			0000
													DMA0MD					
PMD7	076C												DMA1MD	PTGMD				0000
FIND/	0700	_	_	_	_	_	_	_	_	_	—	_	DMA2MD	FIGND	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-40: PMD REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	AD1MD	0000
PMD2	0762	_	—	—	—	IC4MD	IC3MD	IC2MD	IC1MD	_	—	—	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD	_	_	CRCMD	_	_	_	_	_	I2C2MD	_	0000
PMD4	0766	_	_	_	_	_	_	_	_	_	_	_	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	_	—		_	_	PWM3MD	PWM2MD	PWM1MD	—			_	—		—	-	0000
													DMA0MD					
PMD7	076C												DMA1MD	PTGMD				0000
FIVID7	0700	_	_	_	_	_	_	_	_	—	_	_	DMA2MD	FIGND	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657H-page 95

TABLE 4-42: OP AMP/COMPARATOR REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0A80	PSIDL	_	-	—	C4EVT	C3EVT	C2EVT	C1EVT	_	-	—	—	C4OUT	C3OUT	C2OUT	C10UT	0000
CVRCON	0A82		CVR2OE	_	_	_	VREFSEL	_	_	CVREN	CVR10E	CVRR	CVRSS		CVR<	3:0>		0000
CM1CON	0A84	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPOL	_<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM1MSKSRC	0A86		_	_	_		SELSR	CC<3:0>			SELSRC	B<3:0>			SELSRC	A<3:0>		0000
CM1MSKCON	0A88	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM1FLTR	0A8A		_	_	_	_	_	_	_	_	C	FSEL<2:0	>	CFLTREN	(CFDIV<2:0	>	0000
CM2CON	0A8C	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPOL	_<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM2MSKSRC	0A8E		_	_	_		SELSR	CC<3:0>			SELSRC	B<3:0>			SELSRC	A<3:0>		0000
CM2MSKCON	0A90	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM2FLTR	0A92	_	_	_	_	_	_	_	_		C	FSEL<2:0	>	CFLTREN	(CFDIV<2:0	>	0000
CM3CON ⁽¹⁾	0A94	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPOL	_<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM3MSKSRC(1)	0A96	_	_	_	_		SELSR	CC<3:0>			SELSRC	B<3:0>			SELSRC	A<3:0>		0000
CM3MSKCON ⁽¹⁾	0A98	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM3FLTR ⁽¹⁾	0A9A	_	_	_	_	_	_	_	_		C	FSEL<2:0	>	CFLTREN	(CFDIV<2:0	>	0000
CM4CON	0A9C	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPOL	_<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM4MSKSRC	0A9E	_	_		_		SELSR	CC<3:0>	-		SELSRC	B<3:0>	•		SELSRC	A<3:0>		0000
CM4MSKCON	0AA0	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM4FLTR	0AA2	_	_		_	_	_	_	_	—	C	FSEL<2:0	>	CFLTREN	(CFDIV<2:0	>	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers are unavailable on dsPIC33EPXXXGP502/MC502/MC502/MC202 and PIC24EP256GP/MC202 (28-pin) devices.

TABLE 4-43: CTMU REGISTER MAP

File N	lame	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CTMUC	CON1	033A	CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	_	_	_	_	_	_	_	_	0000
CTMUC	CON2	033C	EDG1MOD	EDG1POL		EDG1	SEL<3:0>		EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL		EDG2S	EL<3:0>		_	-	0000
CTMU	ICON	033E			ITRIM<5	5:0>			IRNG	<1:0>		_	_	_	_	_	-	_	0000

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-44: JTAG INTERFACE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
JDATAH	0FF0	_	—	_	_						JDATAH	<27:16>						xxxx
JDATAL	0FF2								JDATAL	<15:0>								0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657H-page 97

4.5.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions. which apply to dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices, and the DSP accumulator class of instructions, which apply to the dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.5.4 MAC INSTRUCTIONS (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X DEVICES ONLY)

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

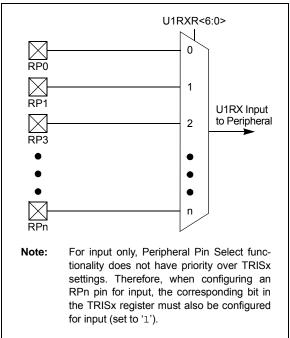
The Two-Source Operand Prefetch registers must be members of the set: {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must therefore, be valid addresses within X Data Space for W8 and W9, and Y Data Space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- · Register Indirect
- Register Indirect Post-Modified by 2
- · Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.5.5 OTHER INSTRUCTIONS


Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as a NOP, do not have any operands.

11.4.4 INPUT MAPPING

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-1 through Register 11-17). Each register contains sets of 7-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 7-bit value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selections supported by the device.

For example, Figure 11-2 illustrates remappable pin selection for the U1RX input.

FIGURE 11-2: REMAPPABLE INPUT FOR U1RX

11.4.4.1 Virtual Connections

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices support virtual (internal) connections to the output of the op amp/ comparator module (see Figure 25-1 in Section 25.0 "Op Amp/Comparator Module"), and the PTG module (see Section 24.0 "Peripheral Trigger Generator (PTG) Module").

In addition, dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices support virtual connections to the filtered QEI module inputs: FINDX1, FHOME1, FINDX2 and FHOME2 (see Figure 17-1 in Section 17.0 "Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)".

Virtual connections provide a simple way of interperipheral connection without utilizing a physical pin. For example, by setting the FLT1R<6:0> bits of the RPINR12 register to the value of `b0000001, the output of the analog comparator, C1OUT, will be connected to the PWM Fault 1 input, which allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

Virtual connection to the QEI module allows peripherals to be connected to the QEI digital filter input. To utilize this filter, the QEI module must be enabled and its inputs must be connected to a physical RPn pin. Example 11-2 illustrates how the input capture module can be connected to the QEI digital filter.

EXAMPLE 11-2: CONNECTING IC1 TO THE HOME1 QEI1 DIGITAL FILTER INPUT ON PIN 43 OF THE dsPIC33EPXXXMC206 DEVICE

RPINR15 = 0x2500;	/* Connect the QEI1 HOME1 input to RP37 (pin 43) */
RPINR7 = 0x009;	/* Connect the IC1 input to the digital filter on the FHOME1 input */
QEI1IOC = 0x4000;	/* Enable the QEI digital filter */
QEI1CON = 0x8000;	/* Enable the QEI module */

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	—	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL
bit 15	•	•	•	•		•	bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN
bit 7						onornen	bit
Legend:						(0)	
R = Readab		W = Writable		-	ented bit, read		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown
bit 15-12	Unimplemen	ted: Read as '	D'				
bit 11-8	-			urce Select bits			
	The selected	state blank sig	nal will block t	he current-limit	and/or Fault inp	out signals (if e	nabled via th
	BCH and BCI	L bits in the LEI			·	5 (
	1001 = Rese	rved					
	•						
	•						
	• • • 0100 = Rese	rved					
	• • 0100 = Rese 0011 = PWM	rved 3H selected as	state blank so	ource			
	0011 = PWM 0010 = PWM	3H selected as 2H selected as	state blank so	ource			
	0011 = PWM 0010 = PWM 0001 = PWM	3H selected as 2H selected as 1H selected as	state blank so	ource			
hit 7-6	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st	3H selected as 2H selected as 1H selected as ate blanking	state blank so state blank so	ource			
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '	state blank so state blank so o'	burce burce			
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab	state blank so state blank so o' op Clock Sour	burce burce	elected PWMx o	putputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab	state blank so state blank so o' op Clock Sour	burce burce rce Select bits	elected PWMx o	putputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab	state blank so state blank so o' op Clock Sour	burce burce rce Select bits	elected PWMx o	outputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab	state blank so state blank so o' op Clock Sour	burce burce rce Select bits	elected PWMx o	outputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab rved	state blank so state blank so o' op Clock Sour ole and disable	ource ource rce Select bits e (CHOP) the se	elected PWMx o	putputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '0 :0>: PWMx Ch signal will enab rved rved 3H selected as	state blank so state blank so op Clock Sour ole and disable	ource ource rce Select bits e (CHOP) the se source	elected PWMx o	outputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab rved 3H selected as 2H selected as	state blank so state blank so op Clock Sour ole and disable CHOP clock	source source	elected PWMx o	outputs.	
	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese • • • • • • • • • • • • • • • • • •	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab rved 3H selected as 2H selected as 1H selected as	state blank so state blank so op Clock Sour ole and disable CHOP clock s CHOP clock s CHOP clock s	source source		outputs.	
bit 7-6 bit 5-2 bit 1	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese • • • 0100 = Rese 0011 = PWM 0010 = PWM 0001 = PWM	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab rved 3H selected as 2H selected as 1H selected as	state blank so state blank so op Clock Sour- ole and disable cHOP clock so cHOP clock so cHOP clock so cHOP clock so	ource ource rce Select bits e (CHOP) the se source source source CHOP clock so		outputs.	
bit 5-2	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '0 :0>: PWMx Ch signal will enab rved 3H selected as 2H selected as 1H selected as clock generato	 state blank so state blank so op Clock Sour chOP clock so chopping Enso on is enabled 	ource ource rce Select bits e (CHOP) the se source source source CHOP clock so		outputs.	
bit 5-2	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese • • • • • • • • • • • • • • • • • •	3H selected as 2H selected as 1H selected as ate blanking ted: Read as 'f :0>: PWMx Ch signal will enab rved 3H selected as 2H selected as 1H selected as clock generato PWMxH Output chopping function	CHOP clock so or clock Sour- ole and disable cHOP clock so cHOP clock so cHOP clock so cHOP clock so chOP clock so chopping En- on is enabled on is disabled	source source source source source source CHOP clock so able bit		putputs.	
bit 5-2 bit 1	0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st Unimplemen CHOPSEL<3 The selected 1001 = Rese	3H selected as 2H selected as 1H selected as ate blanking ted: Read as '(:0>: PWMx Ch signal will enab rved 3H selected as 2H selected as 1H selected as clock generato PWMxH Output chopping function	CHOP clock so CHOP ing Ena	source source source source source source CHOP clock so able bit		putputs.	

REGISTER 16-18: AUXCONx: PWMx AUXILIARY CONTROL REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽²⁾	CKP	MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as	ʻ0'				
bit 12	DISSCK: Disa	able SCKx Pin	bit (SPIx Mas	ter modes only	/)		
	1 = Internal S	Plx clock is di	sabled, pin fun	ctions as I/O	-		
	0 = Internal S	PIx clock is er	nabled				
bit 11	DISSDO: Dis	able SDOx Pir	n bit				
			y the module; p	oin functions as	s I/O		
		is controlled b	•				
bit 10		,	nunication Sele	ect bit			
		ication is word ication is byte-	-wide (16 bits)				
bit 9		ata Input Sam	. ,				
bit 5	Master mode		pie i nase bit				
		-	t end of data o	utput time			
			t middle of data				
	Slave mode:						
			SPIx is used i	n Slave mode.			
bit 8		lock Edge Sele					
					clock state to lo ock state to activ		
bit 7			bit (Slave mo				
		s used for Slav					
				is controlled b	by port function		
bit 6		Polarity Select					
			nigh level; activ ow level; active				
bit 5		ter Mode Enal		C			
	1 = Master m	ode					
	0 = Slave mo	de					
Note 1: T	he CKE bit is not	used in Frame	d SPI modes I	Program this hi	it to '0' for Fram	ed SPI modes (FRMEN = ⁻
	his bit must be cl						
<u> </u>							

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1

- **3:** Do not set both primary and secondary prescalers to the value of 1:1.

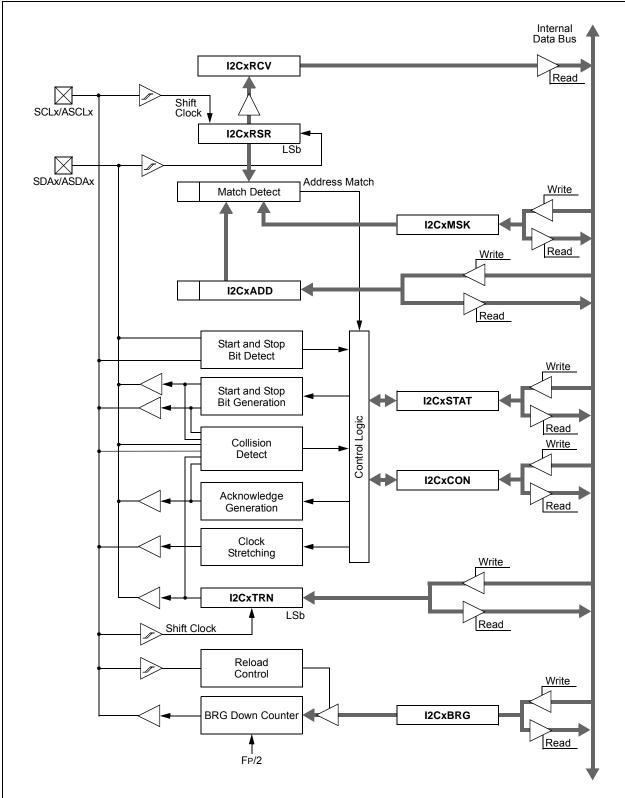


FIGURE 19-1: I2Cx BLOCK DIAGRAM (X = 1 OR 2)

20.3 UARTx Control Registers

REGISTER 20-1: UXMODE: UARTX MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹) _	USIDL	IREN ⁽²⁾	RTSMD		UEN1	UEN0
bit 15							bit
					D 444 A		
R/W-0, HC		R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7							bit
Legend:		HC = Hardwar	e Clearable b	it			
R = Readal	ole bit	W = Writable b	it	U = Unimplem	nented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	iown
bit 15	1 = UARTx is	ARTx Enable bit s enabled; all UA s disabled; all UA	ARTx pins are				
bit 14	Unimplemen	ted: Read as '0	,				
bit 13	USIDL: UAR	Tx Stop in Idle M	lode bit				
		nues module opera			le mode		
bit 12	1 = IrDA end	Encoder and De oder and decod oder and decod	er are enable	d			
bit 11	$1 = \overline{\text{UxRTS}} p$	le Selection for bin is in Simplex bin is in Flow Co	mode	t			
bit 10	Unimplemen	ted: Read as '0	,				
bit 9-8	11 = UxTX, U 10 = UxTX, U 01 = UxTX, U	JARTx Pin Enab JxRX and BCLK JxRX, UxCTS ar JxRX and UxRT nd UxRX pins a atches	x p <u>ins are</u> ena nd UxRTS pin S pins are ena	s are enabled a abled and used;	nd used ⁽⁴⁾ _UxCT <u>S pin is</u> c	controlled by PC	ORT latches ⁽⁴
bit 7	WAKE: Wake	e-up on Start bit	Detect During	Sleep Mode E	nable bit		
	in hardw	continues to sam are on the follow -up is enabled			generated on t	the falling edge	; bit is cleare
bit 6	LPBACK: UA	ARTx Loopback	Mode Select I	bit			
		Loopback mode k mode is disabl					
e	Refer to the " UAI enabling the UAF	RTx module for re	ceive or trans	mit operation.	-	<i>ce Manual"</i> for i	nformation or
2:	This feature is or	nly available for	the 16x BRG	mode (BRGH =	0).		
	This feature is or	-	=	-			
4	This fasture is ar	ly available on (24 nin dovice	-			

4: This feature is only available on 64-pin devices.

R/W-1	R/W-1 R/W-1		R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN15 FLTEN14		FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0
bit 7							bit 0
Legend:							

REGISTER 21-11: CxFEN1: ECANx ACCEPTANCE FILTER ENABLE REGISTER 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

FLTEN<15:0>: Enable Filter n to Accept Messages bits

1 = Enables Filter n

0 = Disables Filter n

REGISTER 21-12: CxBUFPNT1: ECANx FILTER 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F3BP<3:0>			F2BP<3:0>						
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F1BP<3:0>					F0BI	P<3:0>			
bit 7							bit (
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cleared x = Bit is unknown			nown		
bit 15-12	F3BP<3:0>: RX Buffer Mask for Filter 3 bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 • 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0								
bit 11-8	F2BP<3:0>: RX Buffer Mask for Filter 2 bits (same values as bits<15:12>)								
bit 7-4	F1BP<3:0>: RX Buffer Mask for Filter 1 bits (same values as bits<15:12>)								

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CH0NB		—	CH0SB4 ⁽¹⁾	CH0SB3 ⁽¹⁾	CH0SB2 ⁽¹⁾	CH0SB1 ⁽¹⁾	CH0SB0 ⁽¹⁾				
bit 15							bit 8				
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CH0NA		_	CH0SA4 ⁽¹⁾	CH0SA3 ⁽¹⁾	CH0SA2 ⁽¹⁾	CH0SA1 ⁽¹⁾	CH0SA0 ⁽¹⁾				
bit 7							bit C				
Legend:											
R = Reada		W = Writable I		•	nented bit, read						
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown				
hit 15		annal O Nagativa	Input Coloct for	r Comple MUX							
bit 15		nannel 0 Negative									
		1 = Channel 0 negative input is AN1 ⁽¹⁾ 0 = Channel 0 negative input is VREFL									
bit 14-13	Unimpleme	ented: Read as '0)'								
bit 12-8	CH0SB<4:0	CH0SB<4:0>: Channel 0 Positive Input Select for Sample MUXB bits ⁽¹⁾									
	11111 = Open; use this selection with CTMU capacitive and time measurement										
	11110 = Channel 0 positive input is connected to the CTMU temperature measurement diode (CTMU TEMP)										
	11101 = Reserved										
	11100 = Reserved 11011 = Reserved										
	11011 = Reserved 11010 = Channel 0 positive input is the output of OA3/AN6 ^(2,3)										
	11001 = Channel 0 positive input is the output of OA2/AN0 ⁽²⁾										
	11000 = Channel 0 positive input is the output of OA1/AN3 ⁽²⁾										
	10111 = Re	eserved									
	•										
	•										
	10000 = Reserved										
	01111 = Channel 0 positive input is AN15 ⁽³⁾										
	01110 = Channel 0 positive input is AN14 ⁽³⁾ 01101 = Channel 0 positive input is AN13 ⁽³⁾										
	•										
	•										
	•										
	00010 = Channel 0 positive input is $AN2^{(3)}$										
	00001 = Channel 0 positive input is AN1 ⁽³⁾ 00000 = Channel 0 positive input is AN0 ⁽³⁾										
bit 7	CHONA: Channel 0 Negative Input Select for Sample MUXA bit										
	1 = Channel 0 negative input select for Sample MUXA bit										
	1 = Channell	I 0 negative input	is $\Delta N 1(1)$								
		v .									
bit 6-5	0 = Channe	el 0 negative input el 0 negative input ented: Read as '0	is Vrefl								
	0 = Channe Unimpleme AN0 through A	el 0 negative input	is VREFL ,' ed when compa								

REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

3: See the "**Pin Diagrams**" section for the available analog channels for each device.

otherwise, the ANx input is used.

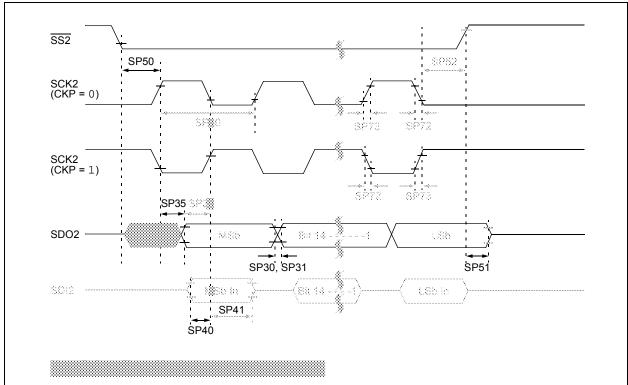
REGISTER 24-1: PTGCST: PTG CONTROL/STATUS REGISTER (CONTINUED)

- PTGITM<1:0>: PTG Input Trigger Command Operating Mode bits⁽¹⁾
 - 11 = Single level detect with Step delay not executed on exit of command (regardless of the PTGCTRL command)
 - 10 = Single level detect with Step delay executed on exit of command
 - 01 = Continuous edge detect with Step delay not executed on exit of command (regardless of the PTGCTRL command)
 - 00 = Continuous edge detect with Step delay executed on exit of command
- Note 1: These bits apply to the PTGWHI and PTGWLO commands only.

bit 1-0

- **2:** This bit is only used with the PTGCTRL step command software trigger option.
- **3:** Use of the PTG Single-Step mode is reserved for debugging tools only.

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.


The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the Program Counter is changed as a result of the instruction, or a PSV or Table Read is performed, or an SFR register is read. In these cases, the execution takes multiple instruction cycles with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157). For more information on instructions that take more than one instruction cycle to execute, refer to **"CPU"** (DS70359) in the *"dsPIC33/PIC24 Family Reference Manual"*, particularly the **"Instruction Flow Types"** section.

Field	Description					
#text	Means literal defined by "text"					
(text)	Means "content of text"					
[text]	Means "the location addressed by text"					
{}	Optional field or operation					
$a \in \{b, c, d\}$	a is selected from the set of values b, c, d					
<n:m></n:m>	Register bit field					
.b	Byte mode selection					
.d	Double-Word mode selection					
.S	Shadow register select					
.w	Word mode selection (default)					
Acc	One of two accumulators {A, B}					
AWB	Accumulator write back destination address register ∈ {W13, [W13]+ = 2}					
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$					
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero					
Expr	Absolute address, label or expression (resolved by the linker)					
f	File register address ∈ {0x00000x1FFF}					
lit1	1-bit unsigned literal $\in \{0,1\}$					
lit4	4-bit unsigned literal ∈ {015}					
lit5	5-bit unsigned literal ∈ {031}					
lit8	8-bit unsigned literal ∈ {0255}					
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode					
lit14	14-bit unsigned literal ∈ {016384}					
lit16	16-bit unsigned literal ∈ {065535}					
lit23	23-bit unsigned literal ∈ {08388608}; LSb must be '0'					
None	Field does not require an entry, can be blank					
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate					
PC	Program Counter					
Slit10	10-bit signed literal ∈ {-512511}					
Slit16	16-bit signed literal ∈ {-3276832767}					
Slit6	6-bit signed literal ∈ {-1616}					
Wb	Base W register ∈ {W0W15}					
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }					
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }					

TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

FIGURE 30-21: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

TABLE 30-47:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	—	—	15	MHz	(Note 3)
SP72	TscF	SCK1 Input Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns	
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	_	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	(Note 4)
SP52	TscH2ssH, TscL2ssH	SS1	1.5 Tcy + 40	—		ns	(Note 4)

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.