

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep64mc506-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 3 MHz < F_{IN} < 5.5 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLFBD, to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

2.9 Application Examples

- · Induction heating
- Uninterruptable Power Supplies (UPS)
- DC/AC inverters
- · Compressor motor control
- · Washing machine 3-phase motor control
- BLDC motor control
- · Automotive HVAC, cooling fans, fuel pumps
- Stepper motor control
- · Audio and fluid sensor monitoring
- · Camera lens focus and stability control
- Speech (playback, hands-free kits, answering machines, VoIP)
- Consumer audio
- Industrial and building control (security systems and access control)
- · Barcode reading
- Networking: LAN switches, gateways
- Data storage device management
- · Smart cards and smart card readers

Examples of typical application connections are shown in Figure 2-4 through Figure 2-8.

FIGURE 2-4: BOOST CONVERTER IMPLEMENTATION

3.6 CPU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

3.6.1 KEY RESOURCES

- "CPU" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
		_	_	_	_	_	PLLDIV8
bit 15		·					bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
PLLDIV7	PLLDIV6	PLLDIV5	PLLDIV4	PLLDIV3	PLLDIV2	PLLDIV1	PLLDIV0
bit 7		·					bit 0
Legend:							
R = Readable bit		W = Writable	bit	U = Unimplemented bit, rea		d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-9	Unimplemen	ted: Read as '	0'				
bit 8-0	PLLDIV<8:0	>: PLL Feedba	ck Divisor bits	(also denoted	as 'M', PLL mu	ltiplier)	
	111111111	= 513					
	•						
	•						
	•						
	000110000:	= 50 (default)					
	•						
	•						
	•						
	00000010:	= 4					
	000000001	= 3 = 2					
	0000000000000	-					

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

11.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports" (DS70598) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Many of the device pins are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

Generally, a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have eight registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Latch register (LATx) read the latch. Writes to the Latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device is disabled. This means the corresponding LATx and TRISx registers and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC2R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				IC1R<6:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-8	IC2R<6:0>: A (see Table 11	Assign Input Ca -2 for input pin	pture 2 (IC2) selection nur	to the Correspondent	onding RPn P	in bits	
	1111001 = I r	nput tied to RPI	121				
	•						
	0000001 = lr	nput tied to CM	P1				
	nl = 0000000	nput tied to Vss	;				
bit 7	Unimplemen	ted: Read as '	0'				
bit 6-0	IC1R<6:0>: A (see Table 11	Assign Input Ca -2 for input pin	pture 1 (IC1) selection nur	to the Correspondence	onding RPn P	in bits	
	1111001 = I r	nput tied to RPI	121				
	•						
	0000001 = lr	nput tied to CM	P1				
	0000000 = Ir	nput tied to Vss	;				

REGISTER 11-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

NOTES:

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QCAPEN	FLTREN	QFDIV2	QFDIV1	QFDIV0	OUTFNC1	OUTFNC0	SWPAB
bit 15					• •		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R-x	R-x	R-x	R-x
HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA
bit 7							bit 0
Legend:	a hit	\// - \//ritabla	h it	II – Unimploy	monted bit read	4 a.a. (0)	
n - Value at		vv = vvii(able	DIL	$0^{\circ} = 0$	nented bit, read	v – Ritic unkn	
		1 - Dit 13 36t			areu		
bit 15	OCAPEN: OF	-I Position Cou	nter Input Cap	ture Enable bit			
	1 = Index ma	tch event trigge	ers a position c	apture event			
	0 = Index ma	tch event does	not trigger a p	osition capture	event		
bit 14	FLTREN: QE	Ax/QEBx/INDX	x/HOMEx Digi	ital Filter Enabl	e bit		
	1 = Input pin	digital filter is e digital filter is d	nabled isabled (bypas	eed)			
hit 13_11			NDXv/HOMEv	Digital Input Fi	ilter Clock Divid	a Salact hits	
511 15-11	111 = 1:128 (clock divide		Digital Input I			
	110 = 1:64 cl	ock divide					
	101 = 1:32 cl	ock divide					
	100 = 1.16 cm 011 = 1:8 clo	ck divide					
	010 = 1:4 clo	ck divide					
	001 = 1:2 clo	ck divide ck divide					
hit 10₋9			Output Functi	ion Mode Sele	rt hits		
bit 10 5	11 = The CTN	VCMPx pin ace	s high when C	$EI1LEC \ge POS$	$S1CNT \ge QEI10$	GEC	
	10 = The CTM	NCMPx pin goe	s high when P	$OS1CNT \leq QE$	EIILEC		
	01 = The CT	NCMPx pin goe	s high when P	$OS1CNT \ge QE$	EI1GEC		
hit 8	SWPAB: Swa	OFA and OFA	B Inputs hit				
bit 0	1 = QEAx and	d QEBx are swa	apped prior to	quadrature de	coder logic		
	0 = QEAx and	d QEBx are not	swapped	1			
bit 7	HOMPOL: HO	OMEx Input Po	larity Select bit	t			
	1 = Input is in	iverted					
hit 6		ot inverted Vy Input Dolori	ty Soloot bit				
DILO	1 = Input is in	verted	ly Select bit				
	0 = Input is no	ot inverted					
bit 5	QEBPOL: QE	EBx Input Polar	ity Select bit				
	1 = Input is ir	nverted					
L:1 4		ot inverted	:				
DIT 4		EAX Input Polar	ity Select bit				
	1 = 10000000000000000000000000000000000	not inverted					
bit 3	HOME: Statu	s of HOMEx In	out Pin After P	olarity Control			
	1 = Pin is at I	logic '1'		-			
	0 = Pin is at	logic '0'					

REGISTER 17-2: QEI1IOC: QEI1 I/O CONTROL REGISTER

19.2 I²C Control Registers

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0				
I2CEN	_	I2CSIDL	SCLREL	IPMIEN ⁽¹⁾	A10M	DISSLW	SMEN				
bit 15					•		bit 8				
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN				
bit 7							bit 0				
Legend:	HC = Hardware Clearable bit										
R = Readable	e bit	W = Writable bit	t	U = Unimpler	mented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown				
bit 15	12CEN: 12Cx	Enable bit									
	1 = Enables t	he I2Cx module a	and configures	the SDAx and	SCLx pins as	serial port pins	;				
h it 4.4			all I-C ···· pins a	are controlled	by port function	15					
DIL 14		ted: Read as 0	da hit								
DIE 13	1 - Discontinu	x Stop in Idle Mo	de bli ation whon dow	ico ontore an l	dlo modo						
	0 = Continues	s module operation	on in Idle mode		die mode						
bit 12	SCLREL: SC	Lx Release Cont	rol bit (when or	perating as I ² C	slave)						
	1 = Releases	SCLx clock		U	,						
	0 = Holds SC	Lx clock low (cloo	ck stretch)								
	$\frac{\text{If STREN} = 1}{\text{Distance}}$	<u>:</u>			· · · · · · · · · · · · · · · · · · ·						
	Bit is R/W (i.e	., software can w	rite '0' to initiate o data byte tra	e stretch and w	rite '1' to relea	se clock). Harc	dware is clear				
	address byte	reception. Hardw	are is clear at	the end of eve	ry slave data b	yte reception.	l every slave				
	If STREN = 0	<u>:</u>			-						
	Bit is R/S (i.e.	, software can on	ly write '1' to re	elease clock). I	Hardware is cle	ar at the begin	ning of every				
	slave data by		Hardware is cle	ar at the end o	of every slave a	address byte re	eception.				
bit 11	IPMIEN: Intel	ligent Peripheral	Management I	nterface (IPMI)) Enable bit						
	1 = IPMI mod 0 = IPMI mod	e is enabled, all a		Acknowledged	I						
bit 10	A10M: 10-Bit	Slave Address b	it								
	1 = I2CxADD	= I2CxADD is a 10-bit slave address									
	0 = I2CxADD	is a 7-bit slave a	ddress								
bit 9	DISSLW: Disa	able Slew Rate C	Control bit								
	1 = Slew rate 0 = Slew rate	control is disable control is enable	ed d								
bit 8	SMEN: SMBL	us Input Levels bi	t								
	1 = Enables I 0 = Disables \$	/O pin thresholds SMBus input thre	compliant with sholds	SMBus speci	fication						
bit 7	GCEN: Gene	ral Call Enable bi	it (when operat	ing as I ² C slav	re)						
	1 = Enables in 0 = General c	terrupt when a ge all address disab	neral call addre	ss is received ir	12CxRSR (mo	dule is enabled	for reception)				

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

REGISTER 21-2: CxC1	RL2: ECANx CON	TROL REGISTER 2
---------------------	----------------	-----------------

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_	_	_	_	_	_
bit 15							bit 8
							,
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
—	—	—	DNCNT4	DNCNT3	DNCNT2	DNCNT1	DNCNT0
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-5	Unimplemen	ted: Read as '	0'				
bit 4-0	DNCNT<4:0>	: DeviceNet™	Filter Bit Num	ber bits			
	10010-1111	1 = Invalid sele	ection				
	10001 = Com	pares up to Da	ata Byte 3, bit	6 with EID<17	>		
	•						
	•						
	•						
	00001 = Com 00000 = Does	npares up to Da s not compare	ata Byte 1, bit data bytes	7 with EID<0>			

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0
bit 7							bit 0
Legend:							

REGISTER 21-11: CxFEN1: ECANx ACCEPTANCE FILTER ENABLE REGISTER 1

Legend				
R = Rea	dable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Valu	ie at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

FLTEN<15:0>: Enable Filter n to Accept Messages bits

1 = Enables Filter n

0 = Disables Filter n

REGISTER 21-12: CxBUFPNT1: ECANx FILTER 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F3BP<3:0>				F2B	P<3:0>		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F1BF	?<3:0>			F0B	P<3:0>		
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		nown	
bit 15-12	F3BP<3:0>:	RX Buffer Mas	k for Filter 3 b	pits				
	1111 = Filte	r hits received ir	n RX FIFO bu	uffer				
	1110 = Filte	r hits received ir	n RX Buffer 1	4				
	•							
	•							
	0001 = Filte	r hits received ir	n RX Buffer 1					
	0000 = Filte	r hits received ir	n RX Buffer 0					
bit 11-8	F2BP<3:0>:	RX Buffer Mas	k for Filter 2 k	oits (same value	s as bits<15:1	2>)		
bit 7-4	F1BP<3:0>:	RX Buffer Mas	k for Filter 1 k	oits (same value	s as bits<15:1	2>)		
bit 3-0	F0BP<3:0>:	RX Buffer Mas	k for Filter 0 k	oits (same value	s as bits<15:1	2>)		
						,		

REGISTER 21-26:	CxTRmnCON: ECANx TX/RX BUFFER mn CONTROL REGISTER	
	(m = 0,2,4,6; n = 1,3,5,7)	

R/W-0) R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXEN	n TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPRI1	TXnPRI0
bit 15						bit 8	
R/W-0) R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENr	m TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPRI1	TXmPRI0
bit 7							bit 0
r							
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-8	See Definition	n for bits<7:0>,	Controls Buffe	er n			
bit 7	TXENm: TX/	RX Buffer Sele	ction bit				
	1 = Buffer TR	Bn is a transm	it buffer				
	0 = Buffer IR	Bh is a receive					
DIT 6	IXABIM: Me	essage Abortec	1 DIT				
	⊥ = Message 0 = Message	was aborted	nsmission succ	ressfully			
bit 5		Vessage Lost A	visiting the second second)			
bito	1 = Message	lost arbitration	while being se	ent			
	0 = Message	did not lose ar	bitration while	being sent			
bit 4	TXERRm: Er	TXERRm: Error Detected During Transmission bit ⁽¹⁾					
	1 = A bus err	or occurred wh	ile the messag	je was being s	sent		
	0 = A bus erro	or did not occu	r while the me	ssage was be	ing sent		
bit 3	TXREQm: Me	TXREQm: Message Send Request bit					
	1 = Requests	s that a messag	ge be sent; the	bit automatic	ally clears wher	n the message i	s successfully
	o = Clearing	the bit to '0' wh	nile set reques	ts a message	abort		
bit 2	RTRFNm: A	ito-Remote Tra	insmit Enable	hit	abort		
5.12	1 = When a r	emote transmit	is received. T	XRFQ will be	set		
	0 = When a r	emote transmit	is received, T	XREQ will be	unaffected		
bit 1-0	TXmPRI<1:0	>: Message Tra	ansmission Pri	iority bits			
	11 = Highest	message priori	ity				
	10 = High inte	ermediate mes	sage priority				
	01 = Low interview	ermediate mess	age priority				
		nessage priori	r y				
Note 1:	This bit is cleared	when TXREQ i	s set.				

Note: The buffers, SID, EID, DLC, Data Field, and Receive Status registers are located in DMA RAM.

23.2 ADC Helpful Tips

- 1. The SMPIx control bits in the AD1CON2 register:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated, if enabled.
 - b) When the CSCNA bit in the AD1CON2 registers is set to '1', this determines when the ADC analog scan channel list, defined in the AD1CSSL/AD1CSSH registers, starts over from the beginning.
 - c) When the DMA peripheral is not used (ADDMAEN = 0), this determines when the ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0.
 - d) When the DMA peripheral is used (ADDMAEN = 1), this determines when the DMA Address Pointer is incremented after a sample/conversion operation. ADC1BUF0 is the only ADC buffer used in this mode. The ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0. The DMA address is incremented after completion of every 32nd sample/conversion operation. Conversion results are stored in the ADC1BUF0 register for transfer to RAM using DMA.
- 2. When the DMA module is disabled (ADDMAEN = 0), the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF, regardless of which analog inputs are being used subject to the SMPIx bits and the condition described in 1c) above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- 3. When the DMA module is enabled (ADDMAEN = 1), the ADC module has only 1 ADC result buffer (i.e., ADC1BUF0) per ADC peripheral and the ADC conversion result must be read, either by the CPU or DMA Controller, before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely, even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in Manual Sample mode, particularly where the user's code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.

5. Enabling op amps, comparator inputs and external voltage references can limit the availability of analog inputs (ANx pins). For example, when Op Amp 2 is enabled, the pins for ANO, AN1 and AN2 are used by the op amp's inputs and output. This negates the usefulness of Alternate Input mode since the MUXA selections use ANO-AN2. Carefully study the ADC block diagram to determine the configuration that will best suit your application. Configuration examples are available in the "Analog-to-Digital Converter (ADC)" (DS70621) section in the "dsPIC33/ PIC24 Family Reference Manual".

23.3 ADC Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

23.3.1 KEY RESOURCES

- "Analog-to-Digital Converter (ADC)" (DS70621) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER (CONTINUED)

bit 4-0	CH0SA<4:0>: Channel 0 Positive Input Select for Sample MUXA bits ⁽¹⁾							
	11111 = Open; use this selection with CTMU capacitive and time measurement							
	11110 = Channel 0 positive input is connected to the CTMU temperature measurement diode (CTMU TEMP) 11101 = Reserved							
	11101 = Reserved							
	11011 = Reserved							
	11010 = Channel 0 positive input is the output of OA3/AN6 ^(2,3)							
	11001 = Channel 0 positive input is the output of $OA2/AN0^{(2)}$							
	10110 = Channel U positive input is the output of OA1/AN3 ⁽⁻⁾							
	•							
	•							
	•							
	10000 = Reserved							
	01111 = Channel 0 positive input is AN15 ^(1,3)							
	01110 = Channel 0 positive input is AN14 ^(1,3)							
	01101 = Channel 0 positive input is AN13 ^(1,3)							
	•							
	•							
	• (1 2)							
	00010 = Channel 0 positive input is AN2 ^(1,3)							
	00001 = Channel 0 positive input is AN1(1,3)							
	00000 = Channel 0 positive input is AN0(',3)							

- **Note 1:** AN0 through AN7 are repurposed when comparator and op amp functionality is enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.
 - 3: See the "Pin Diagrams" section for the available analog channels for each device.

REGISTER 24-8: PTGC1LIM: PTG COUNTER 1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC1L	IM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC1L	_IM<7:0>			
bit 7							bit 0
Logondy							

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGC1LIM<15:0>:** PTG Counter 1 Limit Register bits May be used to specify the loop count for the PTGJMPC1 Step command or as a limit register for the General Purpose Counter 1.

REGISTER 24-9: PTGHOLD: PTG HOLD REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGHOL	_D<15:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	PTGHOLD<7:0>						
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGHOLD<15:0>:** PTG General Purpose Hold Register bits Holds user-supplied data to be copied to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 registers with the PTGCOPY command.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT CONTROL REGISTER (CONTINUED)

- bit 3-0 SELSRCA<3:0>: Mask A Input Select bits
 - 1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H 0010 = PWM2L 0001 = PWM1H 0000 = PWM1L

FIGURE 30-23: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

TABLE 30-42: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency	—		15	MHz	(Note 3)
SP20	TscF	SCK1 Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdiV2scH, TdiV2scL	SDO1 Data Output Setup to First SCK1 Edge	30			ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

FIGURE 30-26: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

FIGURE 30-29: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

FIGURE 30-36: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000, SSRCG = 0)

APPENDIX A: REVISION HISTORY

Revision A (April 2011)

This is the initial released version of the document.

Revision B (July 2011)

This revision includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table A-1.

TABLE A-1: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Digital Signal Controllers and Microcontrollers"	Changed all pin diagrams references of VLAP to TLA.
Section 4.0 "Memory Organization"	Updated the All Resets values for CLKDIV and PLLFBD in the System Control Register Map (see Table 4-35).
Section 5.0 "Flash Program Memory"	Updated "one word" to "two words" in the first paragraph of Section 5.2 "RTSP Operation" .
Section 9.0 "Oscillator Configuration"	Updated the PLL Block Diagram (see Figure 9-2). Updated the Oscillator Mode, Fast RC Oscillator (FRC) with divide-by-N and PLL (FRCPLL), by changing (FRCDIVN + PLL) to (FRCPLL).
	Changed (FRCDIVN + PLL) to (FRCPLL) for COSC<2:0> = 001 and NOSC<2:0> = 001 in the Oscillator Control Register (see Register 9-1).
	Changed the POR value from 0 to 1 for the DOZE<1:0> bits, from 1 to 0 for the FRCDIV<0> bit, and from 0 to 1 for the PLLPOST<0> bit; Updated the default definitions for the DOZE<2:0> and FRCDIV<2:0> bits and updated all bit definitions for the PLLPOST<1:0> bits in the Clock Divisor Register (see Register 9-2).
	Changed the POR value from 0 to 1 for the PLLDIV<5:4> bits and updated the default definitions for all PLLDIV<8:0> bits in the PLL Feedback Division Register (see Register 9-2).
Section 22.0 "Charge Time Measurement Unit (CTMU)"	Updated the bit definitions for the IRNG<1:0> bits in the CTMU Current Control Register (see Register 22-3).
Section 25.0 "Op amp/ Comparator Module"	Updated the voltage reference block diagrams (see Figure 25-1 and Figure 25-2).