

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep128gp202-h-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33/PIC24 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note 1: To access the documents listed below, browse to the documentation section of the dsPIC33EP64MC506 product page of the Microchip web site (www.microchip.com) or select a family reference manual section from the following list.

> In addition to parameters, features and other documentation, the resulting page provides links to the related family reference manual sections.

- "Introduction" (DS70573)
- "CPU" (DS70359)
- "Data Memory" (DS70595)
- "Program Memory" (DS70613)
- "Flash Programming" (DS70609)
- "Interrupts" (DS70600)
- "Oscillator" (DS70580)
- "Reset" (DS70602)
- "Watchdog Timer and Power-Saving Modes" (DS70615)
- "I/O Ports" (DS70598)
- "Timers" (DS70362)
- "Input Capture" (DS70352)
- "Output Compare" (DS70358)
- "High-Speed PWM" (DS70645)
- "Quadrature Encoder Interface (QEI)" (DS70601)
- "Analog-to-Digital Converter (ADC)" (DS70621)
- "UART" (DS70582)
- "Serial Peripheral Interface (SPI)" (DS70569)
- "Inter-Integrated Circuit (I²C[™])" (DS70330)
- "Enhanced Controller Area Network (ECAN™)" (DS70353)
- "Direct Memory Access (DMA)" (DS70348)
- "CodeGuard™ Security" (DS70634)
- "Programming and Diagnostics" (DS70608)
- "Op Amp/Comparator" (DS70357)
- "Programmable Cyclic Redundancy Check (CRC)" (DS70346)
- "Device Configuration" (DS70618)
- "Peripheral Trigger Generator (PTG)" (DS70669)
- "Charge Time Measurement Unit (CTMU)" (DS70661)

3.7 CPU Control Registers

R/W-0) R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0	
0A ⁽¹⁾	OB ⁽¹⁾	SA ^(1,4)	SB ^(1,4)	OAB ⁽¹⁾	SAB ⁽¹⁾	DA ⁽¹⁾	DC	
bit 15							bit 8	
R/W-0 ⁽²	R/W-0 ^(2,3)	R/W-0 ^(2,3)	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
IPL2	IPL1	IPL0	RA	N	OV	Z	С	
bit 7							bit 0	
Legend:		C = Clearable	bit					
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value	e at POR	'1'= Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15	OA: Accumu	lator A Overflow	v Status bit ⁽¹⁾					
	1 = Accumula	ator A has over	flowed					
	0 = Accumula	ator A has not c	verflowed					
bit 14	OB: Accumu	lator B Overflov	v Status bit ⁽¹⁾					
	1 = Accumula	ator B has over	flowed					
hit 13		lator A Saturatio	n 'Sticky' Sta	tue hit(1,4)				
DIL 15	$1 = \Delta c cumula$	ator A is saturat	ed or has her	n saturated at	some time			
	0 = Accumula	ator A is not sat	urated		Some time			
bit 12	SB: Accumu	lator B Saturatio	on 'Sticky' Sta	tus bit ^(1,4)				
	1 = Accumula	ator B is satura	ed or has bee	en saturated at	some time			
	0 = Accumula	ator B is not sat	urated					
bit 11	OAB: OA (OB Combined A	ccumulator O	verflow Status	bit ⁽¹⁾			
	1 = Accumula	ators A or B have	ve overflowed					
	0 = Neither A	Accumulators A	or B have ove	erflowed	(1)			
bit 10	SAB: SA S	B Combined A	cumulator 'Si	icky Status bit		1		
	1 = Accumula 0 = Neither A	ators A or B are	or B are satur	nave been sat	urated at some	time		
hit 9		Active hit(1)		alou				
bit 0	1 = DO loop is	s in progress						
	0 = DO loop is	s not in progres	S					
bit 8	DC: MCU ALU Half Carry/Borrow bit							
	1 = A carry-o	out from the 4th	low-order bit (for byte-sized o	data) or 8th low-	order bit (for wo	ord-sized data)	
	of the re	sult occurred						
	0 = No carry	-out from the 4	th low-order t	bit (for byte-siz	ed data) or 8th	low-order bit (1	for word-sized	
	uala) U							
Note 1:	This bit is availabl	e on dsPIC33E	PXXXMC20X	/50X and dsPl	C33EPXXXGP	50X devices on	ly.	
2:	The IPL<2:0> bits	are concatenat	ed with the IF	PL<3> bit (COR	RCON<3>) to fo	rm the CPU Inte	errupt Priority	
	Level. The value I IPL< $3 > = 1$.	n parentheses i	naicates the I	PL, IT IPL<3> =	= ⊥. User interru	ipts are disable	a wnen	

REGISTER 3-1: SR: CPU STATUS REGISTER

- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
- **4:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

TADLL 4-2		LUANT	IL GIGI				ICINE	1<02) -	· • • • • .	I I OK US			IC/GFJ					
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	_	—	CSIDL	ABAT	CANCKS	R	EQOP<2:0)>	OPN	NODE<2:0	>	_	CANCAP	_	_	WIN	0480
C1CTRL2	0402	_	—	_	—	—	—	_	_	_	—	_		D	NCNT<4:0	>		0000
C1VEC	0404	_	_	_		F	ILHIT<4:0>			_				ICODE<6:0	>			0040
C1FCTRL	0406	[DMABS<2:0	>	—	—		—	_	_	—	—			FSA<4:0>			0000
C1FIFO	0408	_	_			FBP<	5:0>			_	_			FNRB	<5:0>			0000
C1INTF	040A	_	_	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C	_	_	_	—	—	_	_	_	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E				TERRCN	T<7:0>							RERRCM	NT<7:0>				0000
C1CFG1	0410	_	_	_	—	—	_	_	_	SJW<	1:0>			BRP	<5:0>			0000
C1CFG2	0412	_	WAKFIL	_	—	_	SI	EG2PH<2:(0>	SEG2PHTS	SAM	S	EG1PH<2	::0>	P	RSEG<2:0	>	0000
C1FEN1	0414	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C1FMSKSEL1	0418	F7MS	K<1:0>	F6MS	K<1:0>	F5MS	K<1:0>	F4MS	K<1:0>	F3MSK	<1:0>	F2MS	K<1:0>	F1MSł	<<1:0>	F0MS	<<1:0>	0000
C1FMSKSEL2	041A	F15MS	SK<1:0>	F14MS	K<1:0>	F13MS	SK<1:0>	F12MS	SK<1:0>	F11MSK	<1:0>	F10MS	K<1:0>	F9MSł	<<1:0>	F8MS	< <1:0>	0000

TABLE 4-21: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 0 OR 1 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 0 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E							S	ee definition	when WIN	= x							
C1RXFUL1	0420	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C1RXFUL2	0422	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C1RXOVF1	0428	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C1RXOVF2	042A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PF	RI<1:0>	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PF	RI<1:0>	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PF	RI<1:0>	0000
C1TR67CON	0436	TXEN7	TXABT7	TXLARB7	TXERR7	R7 TXREQ7 RTREN7 TX7PRI<1:0> TXEN6 TXABAT6 TXLARB6 TXERR6 TXREQ6 RTREN6 TX6PRI<1:0> xxx							xxxx					
C1RXD	0440							E	CAN1 Rece	eive Data Wo	ord							xxxx
C1TXD	0442		ECAN1 Transmit Data Word xxxx															

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

IADLE 4-2	:s: ⊏	CANTI	REGISI			IN WIIN		<li<u></li<u>	$y = \perp r c$		SSELV		POUX D	EVICES	UNLT	CONTI	NUED)	
File Name	Addr	Bit 15	15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9					Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
C1RXF11EID	046E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF12SID	0470		SID<10:3>						SID<2:0> — EXIDE — EID<17:16>							7:16>	xxxx	
C1RXF12EID	0472		EID<15:8>						EID<7:0>								xxxx	
C1RXF13SID	0474				SID<	<10:3>					SID<2:0> — EXIDE — EID<1						7:16>	xxxx
C1RXF13EID	0476				EID<	<15:8>				EID<7:0>							xxxx	
C1RXF14SID	0478				SID<	<10:3>				SID<2:0> — EXIDE — EID<17:16>						7:16>	xxxx	
C1RXF14EID	047A		EID<15:8>					EID<7:0>							xxxx			
C1RXF15SID	047C		SID<10:3>						SID<2:0> — EXIDE — EID<17:16>						7:16>	xxxx		
C1RXF15EID	047E		EID<15:8>						EID<7:0>					xxxx				

ECANI DECISTED MAD WHEN WIN (CICTDI 1 -0.) 1 EOD doDIC22EDXXXMC/CDE0X DEVICES ONLY (CONTINUED) 1 22.

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-59: PORTA REGISTER MAP FOR PIC24EPXXXGP/MC202 AND dsPIC33EPXXXGP/MC202/502 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00		—	—				—			—		TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	001F
PORTA	0E02		—	_		_		—			—		RA4	RA3	RA2	RA1	RA0	0000
LATA	0E04		—	—				—			—		LATA4	LATA3	LATA2	LA1TA1	LA0TA0	0000
ODCA	0E06		—	—				—			—		ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
CNENA	0E08		—	—				—			—		CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	0000
CNPUA	0E0A		—	—				—			—		CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
CNPDA	0E0C		—	—				—			—		CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
ANSELA	0E0E	-	—	—			-	—		_	_		ANSA4	_	—	ANSA1	ANSA0	0013

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-60: PORTB REGISTER MAP FOR PIC24EPXXXGP/MC202 AND dsPIC33EPXXXGP/MC202/502 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	0E16	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E			_	-	—	—	—	ANSB8		_	—		ANSB3	ANSB2	ANSB1	ANSB0	010F

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4.2 EXTENDED X DATA SPACE

The lower portion of the base address space range, between 0x0000 and 0x7FFF, is always accessible regardless of the contents of the Data Space Page registers. It is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS Page 0 (i.e., EDS address range of 0x000000 to 0x007FFF with the base address bit, EA<15> = 0, for this address range). However, Page 0 cannot be accessed through the upper 32 Kbytes, 0x8000 to 0xFFFF, of base Data Space, in combination with DSRPAG = 0x000 or DSWPAG = 0x000. Consequently, DSRPAG and DSWPAG are initialized to 0x001 at Reset.

- Note 1: DSxPAG should not be used to access Page 0. An EDS access with DSxPAG set to 0x000 will generate an address error trap.
 - 2: Clearing the DSxPAG in software has no effect.

The remaining pages, including both EDS and PSV pages, are only accessible using the DSRPAG or DSWPAG registers in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where base address bit, EA<15> = 1.

For example, when DSRPAG = 0x001 or DSWPAG = 0x001, accesses to the upper 32 Kbytes, 0x8000 to 0xFFFF, of the Data Space will map to the EDS address range of 0x008000 to 0x00FFFF. When DSRPAG = 0x002 or DSWPAG = 0x002, accesses to the upper 32 Kbytes of the Data Space will map to the EDS address range of 0x010000 to 0x017FFF and so on, as shown in the EDS memory map in Figure 4-17.

For more information on the PSV page access using Data Space Page registers, refer to the "**Program Space Visibility from Data Space**" section in "**Program Memory**" (DS70613) of the "*dsPIC33/ PIC24 Family Reference Manual*".

FIGURE 4-17: EDS MEMORY MAP

4.6.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than, or greater than, the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed but the contents of the register remain unchanged.

4.7 Bit-Reversed Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X Devices Only)

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.7.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled when all these conditions are met:

- BWMx bits (W register selection) in the MODCON register are any value other than '1111' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^{N}$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XBREV<14:0> is the Bit-Reversed Addressing modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word-sized data (LSb of every EA is always
	clear). The XBREVx value is scaled
	accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XBREVx) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note: Modulo Addressing and Bit-Reversed Addressing can be enabled simultaneously using the same W register, but Bit-Reversed Addressing operation will always take precedence for data writes when enabled.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Oscillator" (DS70580) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X oscillator system provides:

- On-chip Phase-Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources
- On-the-fly clock switching between various clock sources
- · Doze mode for system power savings
- Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- Configuration bits for clock source selection
- A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: OSCILLATOR SYSTEM DIAGRAM

2: The term, FP, refers to the clock source for all peripherals, while FCY refers to the clock source for the CPU. Throughout this document, FCY and FP are used interchangeably, except in the case of Doze mode. FP and FCY will be different when Doze mode is used with a doze ratio of 1:2 or lower.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				SCK2INR<6:0	>		
bit 15	·						bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				SDI2R<6:0>			
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown
1.11.4 F			- ¹				
DIT 15	Unimpleme	nted: Read as	0.				
bit 14-8	SCK2INR<6 (see Table 1	5:0>: Assign SPI 1-2 for input pin	2 Clock Input selection nur	t (SCK2) to the mbers)	Correspondin	g RPn Pin bits	
	1111001 =	Input tied to RPI	121				
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input fied to Vss					
bit 7	Unimpleme	nted: Read as	0'				
bit 6-0	SDI2R<6:0> (see Table 1	 Assign SPI2 D 1-2 for input pin 	ata Input (SE selection nur	012) to the Corre nbers)	esponding RP	n Pin bits	
	1111001 =	Input tied to RPI	121				
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss					

REGISTER 11-12: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is cleared only by software
- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits
 - 111 = Center-Aligned PWM mode: Output set high when OCxTMR = OCxR and set low when OCxTMR = OCxRS⁽¹⁾
 - 110 = Edge-Aligned PWM mode: Output set high when OCxTMR = 0 and set low when OCxTMR = OCxR⁽¹⁾
 - 101 = Double Compare Continuous Pulse mode: Initializes OCx pin low, toggles OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initializes OCx pin low, toggles OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare mode: Compare event with OCxR, continuously toggles OCx pin
 - 010 = Single Compare Single-Shot mode: Initializes OCx pin high, compare event with OCxR, forces OCx pin low
 - 001 = Single Compare Single-Shot mode: Initializes OCx pin low, compare event with OCxR, forces OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: OCxR and OCxRS are double-buffered in PWM mode only.
 - 2: Each Output Compare x module (OCx) has one PTG clock source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.
 - PTGO4 = OC1 PTGO5 = OC2
 - PTGO6 = OC3 PTGO7 = OC4

16.0 HIGH-SPEED PWM MODULE (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed PWM" (DS70645) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices support a dedicated Pulse-Width Modulation (PWM) module with up to 6 outputs.

The high-speed PWMx module consists of the following major features:

- Three PWM generators
- Two PWM outputs per PWM generator
- · Individual period and duty cycle for each PWM pair
- Duty cycle, dead time, phase shift and frequency resolution of Tcy/2 (7.14 ns at Fcy = 70MHz)
- Independent Fault and current-limit inputs for six PWM outputs
- · Redundant output
- Center-Aligned PWM mode
- Output override control
- Chop mode (also known as Gated mode)
- Special Event Trigger
- Prescaler for input clock
- PWMxL and PWMxH output pin swapping
- Independent PWM frequency, duty cycle and phase-shift changes for each PWM generator
- Dead-time compensation
- Enhanced Leading-Edge Blanking (LEB) functionality
- Frequency resolution enhancement
- PWM capture functionality

Note: In Edge-Aligned PWM mode, the duty cycle, dead time, phase shift and frequency resolution are 8.32 ns.

The high-speed PWMx module contains up to three PWM generators. Each PWM generator provides two PWM outputs: PWMxH and PWMxL. The master time base generator provides a synchronous signal as a common time base to synchronize the various PWM outputs. The individual PWM outputs are available on the output pins of the device. The input Fault signals and current-limit signals, when enabled, can monitor and protect the system by placing the PWM outputs into a known "safe" state.

Each PWMx can generate a trigger to the ADC module to sample the analog signal at a specific instance during the PWM period. In addition, the high-speed PWMx module also generates a Special Event Trigger to the ADC module based on either of the two master time bases.

The high-speed PWMx module can synchronize itself with an external signal or can act as a synchronizing source to any external device. The SYNCI1 input pin that utilizes PPS, can synchronize the high-speed PWMx module with an external signal. The SYNCO1 pin is an output pin that provides a synchronous signal to an external device.

Figure 16-1 illustrates an architectural overview of the high-speed PWMx module and its interconnection with the CPU and other peripherals.

16.1 PWM Faults

The PWMx module incorporates multiple external Fault inputs to include FLT1 and FLT2 which are remappable using the PPS feature, FLT3 and FLT4 which are available only on the larger 44-pin and 64-pin packages, and FLT32 which has been implemented with Class B safety features, and is available on a fixed pin on all dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

These Faults provide a safe and reliable way to safely shut down the PWM outputs when the Fault input is asserted.

16.1.1 PWM FAULTS AT RESET

During any Reset event, the PWMx module maintains ownership of the Class B Fault, FLT32. At Reset, this Fault is enabled in Latched mode to ensure the fail-safe power-up of the application. The application software must clear the PWM Fault before enabling the highspeed motor control PWMx module. To clear the Fault condition, the FLT32 pin must first be pulled low externally or the internal pull-down resistor in the CNPDx register can be enabled.

Note: The Fault mode may be changed using the FLTMOD<1:0> bits (FCLCON<1:0>), regardless of the state of FLT32.

18.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Serial Peripheral Interface (SPI)" (DS70569) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The SPI module is a synchronous serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, ADC Converters, etc. The SPI module is compatible with Motorola[®] SPI and SIOP interfaces. The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X device family offers two SPI modules on a single device. These modules, which are designated as SPI1 and SPI2, are functionally identical. Each SPI module includes an eight-word FIFO buffer and allows DMA bus connections. When using the SPI module with DMA, FIFO operation can be disabled.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 and SPI2 modules.

The SPI1 module uses dedicated pins which allow for a higher speed when using SPI1. The SPI2 module takes advantage of the Peripheral Pin Select (PPS) feature to allow for greater flexibility in pin configuration of the SPI2 module, but results in a lower maximum speed for SPI2. See **Section 30.0** "**Electrical Characteristics**" for more information.

The SPIx serial interface consists of four pins, as follows:

- SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx/FSYNCx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPIx module can be configured to operate with two, three or four pins. In 3-pin mode, SSx is not used. In 2-pin mode, neither SDOx nor SSx is used.

Figure 18-1 illustrates the block diagram of the SPIx module in Standard and Enhanced modes.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ITRIM	5 ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0			
bit 15	·	·					bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	—	—	_	_	_			
bit 7							bit 0			
Legend:										
R = Read	able bit	W = Writable b	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown			
bit 15-10	ITRIM<5:0>:	Current Source	Trim bits							
	011111 = Ma	aximum positive	change from	nominal curren	t + 62%					
	011110 = Ma	011110 = Maximum positive change from nominal current + 60%								
	•									
	•									
	•									
	000010 = Mii	nimum positive (change from r	nominal current	+ 4% + 2%					
	000000 = No	minal current ou	utput specified	bv IRNG<1:0>	>					
	111111 = Mir	nimum negative	change from	nominal curren	nt – 2%					
	111110 = Mi i	nimum negative	change from	nominal curren	nt – 4%					
	•									
	•									
	•									
	100010 = Maximum negative change from nominal current – 60% 100001 = Maximum negative change from nominal current – 62%									
bit 9-8	IRNG<1:0>: Current Source Range Select bits									
	11 = 100 × Ba	ase Current ⁽²⁾								
	$10 = 10 \times Bas$	se Current ⁽²⁾								
	$01 = Base CL00 = 1000 \times F$	Base Current(1,2)							
bit 7-0	Unimplemen	ted: Read as '0	3							
Note 1:	This current range	e is not available	a to be used w	with the internal	temperature n	neasurement di	ode			
						icasurement u	000.			

REGISTER 22-3: CTMUICON: CTMU CURRENT CONTROL REGISTER

2: Refer to the CTMU Current Source Specifications (Table 30-56) in Section 30.0 "Electrical Characteristics" for the current range selection values.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0
bit 7	·						bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplei	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 23-8: AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW^(1,2)

bit 15-0 CSS<15:0>: ADC1 Input Scan Selection bits

1 = Selects ANx for input scan

0 = Skips ANx for input scan

Note 1: On devices with less than 16 analog inputs, all AD1CSSL bits can be selected by the user. However, inputs selected for scan, without a corresponding input on the device, convert VREFL.

2: CSSx = ANx, where x = 0-15.

REGISTER 25-5:	CMxMSKCON: COMPARATOR x MASK GATING
	CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
HLMS		OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN			
bit 7							bit 0			
Legend:										
R = Readabl	e hit	W = Writable	hit	= Inimple	mented hit read	1 as 'N'				
-n = Value at	POR	'1' = Rit is set	bit F	0 - 0 = Bit is cleared $x = Bit is unknown$						
		1 - Dit 13 3C			carca					
bit 15	HLMS: High	or Low-Level	Masking Select	t bits						
	1 = The mask	king (blanking)	function will pre	event any asse	erted ('0') compa	arator signal fro	m propagating			
	0 = The masł	king (blanking)	function will pre	event any asse	erted ('1') compa	arator signal from	m propagating			
bit 14	Unimplemer	nted: Read as	'0'							
bit 13	OCEN: OR O	Gate C Input Er	nable bit							
	1 = MCI is co	onnected to OF	R gate							
	0 = MCI is no	ot connected to	OR gate							
bit 12	OCNEN: OR	Gate C Input	Inverted Enable	e bit						
	1 = Inverted	MCI is connect	ted to OR gate	ate						
bit 11 OREN: OR Gate B Input Enable bit										
Sit II	1 = MRL is connected to OR gate									
	0 = MBI is no	ot connected to	OR gate							
bit 10	OBNEN: OR	OBNEN: OR Gate B Input Inverted Enable bit								
1 = Inverted MBI is connected to OR gate										
	0 = Inverted	0 = Inverted MBI is not connected to OR gate								
bit 9	OAEN: OR O	OR Gate A Input Enable bit								
	1 = MAI is co	onnected to OF	l gate							
hit 8	0 = MAI is not connected to OR gate									
DILO	1 = Inverted MAL is connected to OR gate									
	0 = Inverted MAI is not connected to OR gate									
bit 7	NAGS: AND Gate Output Inverted Enable bit									
	1 = Inverted	ANDI is conne	cted to OR gat	e						
	0 = Inverted	ANDI is not co		gate						
bit 6		Gate Output E	nable bit							
	0 = ANDI is r	not connected to O	to OR gate							
bit 5	ACEN: AND	Gate C Input E	Enable bit							
	1 = MCI is co	onnected to AN	ID gate							
	0 = MCI is no	ot connected to	AND gate							
bit 4	ACNEN: AN	D Gate C Input	Inverted Enat	ole bit						
	1 = Inverted	MCI is connect	ted to AND gat	te						
	0 = Inverted	IVICI IS NOT CON	nected to AND	gate						

FIGURE 30-13: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-32: QEI INDEX PULSE TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Max.	Units	Conditions
TQ50	TqiL	Filter Time to Recognize Low, with Digital Filter	3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)
TQ51	TqiH	Filter Time to Recognize High, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)
TQ55	Tqidxr	Index Pulse Recognized to Position Counter Reset (ungated index)	3 TCY	—	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but index pulse recognition occurs on the falling edge.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Ν	IILLIMETER	S	
Dimension	MIN	NOM	MAX		
Number of Pins	N	44			
Pitch	е	0.65 BSC			
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	E	8.00 BSC			
Exposed Pad Width	E2	6.25	6.45	6.60	
Overall Length	D	8.00 BSC			
Exposed Pad Length	D2	6.25	6.45	6.60	
Terminal Width	b	0.20	0.30	0.35	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed-Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension. usually without tolerance. for information purposes only.

Microchip Technology Drawing C04-103C Sheet 2 of 2

Revision D (December 2011)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table A-3.

TABLE A-3: MAJOR SECTION UPDATES

Section Name	Update Description
"16-bit Microcontrollers and Digital Signal Controllers (up to 512-Kbyte Flash and 48-Kbyte SRAM) with High- Speed PWM, Op amps, and Advanced Analog"	Removed the Analog Comparators column and updated the Op amps/Comparators column in Table 1 and Table 2.
Section 21.0 "Enhanced CAN (ECAN™) Module (dsPIC33EPXXXGP/MC50X Devices Only)"	Updated the CANCKS bit value definitions in CiCTRL1: ECAN Control Register 1 (see Register 21-1).
Section 30.0 "Electrical Characteristics"	Updated the VBOR specifications and/or its related note in the following electrical characteristics tables: • Table 30-1 • Table 30-4 • Table 30-12 • Table 30-14 • Table 30-15 • Table 30-16 • Table 30-56 • Table 30-57 • Table 30-58 • Table 30-59 • Table 30-60

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Tradema Architecture — Flash Memory Fam Program Memory S Product Group — Pin Count — Tape and Reel Flag Temperature Range Package Pattern	rk ily ize (Kb (if app	dsPI	C 33 EP 64 MC5 04 T 1/PT - XXX	Examples: dsPIC33EP64MC504-I/PT: dsPIC33, Enhanced Performance, 64-Kbyte Program Memory, Motor Control, 44-Pin, Industrial Temperature, TQFP package.
Architecture:	33 24	= =	16-bit Digital Signal Controller 16-bit Microcontroller	
Flash Memory Family:	EP	=	Enhanced Performance	
Product Group:	GP MC	= =	General Purpose family Motor Control family	
Pin Count:	02 03 04 06	= = =	28-pin 36-pin 44-pin 64-pin	
Temperature Range:	I E	= =	-40°C to+85°C (Industrial) -40°C to+125°C (Extended)	
Package:	ML MR MV PT SO SP SS TL TL		Plastic Quad, No Lead Package - (44-pin) 8x8 mm body (QFN) Plastic Quad, No Lead Package - (28-pin) 6x6 mm body (QFN-S) Plastic Quad, No Lead Package - (64-pin) 9x9 mm body (QFN) Thin Quad, No Lead Package - (64-pin) 9x9 mm body (UQFN) Plastic Thin Quad Flatpack - (64-pin) 10x10 mm body (TQFP) Plastic Thin Quad Flatpack - (64-pin) 10x10 mm body (TQFP) Plastic Small Outline, Wide - (28-pin) 7.50 mm body (SOIC) Skinny Plastic Dual In-Line - (28-pin) 300 mil body (SPDIP) Plastic Shrink Small Outline - (28-pin) 5.30 mm body (SOP) Very Thin Leadless Array - (36-pin) 5x5 mm body (VTLA) Very Thin Leadless Array - (44-pin) 6x6 mm body (VTLA)	