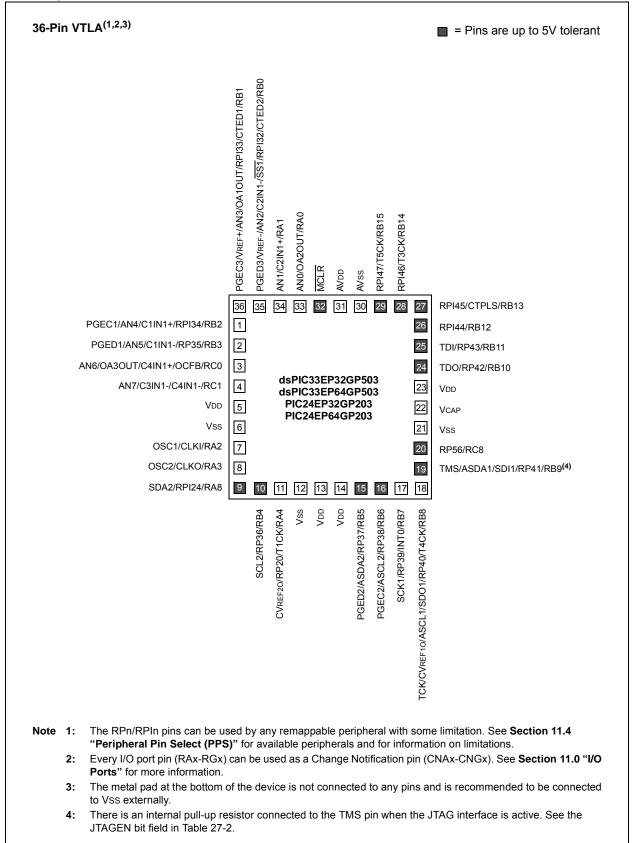


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep128gp202-h-sp

Email: info@E-XFL.COM

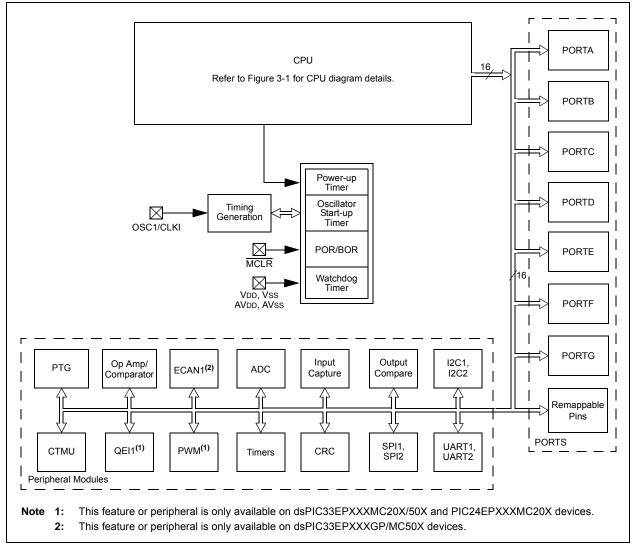
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-bit Digital Signal Controllers and Microcontrollers	29
3.0	CPU	35
4.0	Memory Organization	45
5.0	Flash Program Memory	119
6.0	Resets	
7.0	Interrupt Controller	127
8.0	Direct Memory Access (DMA)	139
9.0	Oscillator Configuration	
10.0	Power-Saving Features	163
11.0	I/O Ports	173
12.0	Timer1	203
13.0	Timer2/3 and Timer4/5	207
14.0	Input Capture	213
	Output Compare	
	High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)	
	Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)	
	Serial Peripheral Interface (SPI)	
	Inter-Integrated Circuit™ (I ² C™)	
	Universal Asynchronous Receiver Transmitter (UART)	
	Enhanced CAN (ECAN™) Module (dsPIC33EPXXXGP/MC50X Devices Only)	
	Charge Time Measurement Unit (CTMU)	
	10-Bit/12-Bit Analog-to-Digital Converter (ADC)	
	Peripheral Trigger Generator (PTG) Module	
25.0	Op Amp/Comparator Module	
	Programmable Cyclic Redundancy Check (CRC) Generator	
27.0		
29.0	Development Support	
	Electrical Characteristics	
	High-Temperature Electrical Characteristics	
	DC and AC Device Characteristics Graphs	
	Packaging Information	
	ndix A: Revision History	
	(
	Vicrochip Web Site	
	omer Change Notification Service	
	omer Support	
Produ	uct Identification System	527

1.0 DEVICE OVERVIEW


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X Digital Signal Controller (DSC) and Microcontroller (MCU) devices.

dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X BLOCK DIAGRAM

3.5 **Programmer's Model**

The programmer's model for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X is shown in Figure 3-2. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.

In addition to the registers contained in the programmer's model, the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/

MC20X devices contain control registers for Modulo Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only), Bit-Reversed Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only) and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory mapped, as shown in Table 4-1.

Register(s) Name	Description
W0 through W15	Working Register Array
ACCA, ACCB	40-Bit DSP Accumulators
PC	23-Bit Program Counter
SR	ALU and DSP Engine STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
DSRPAG	Extended Data Space (EDS) Read Page Register
DSWPAG	Extended Data Space (EDS) Write Page Register
RCOUNT	REPEAT Loop Count Register
DCOUNT ⁽¹⁾	DO Loop Count Register
DOSTARTH ^(1,2) , DOSTARTL ^(1,2)	DO Loop Start Address Register (High and Low)
DOENDH ⁽¹⁾ , DOENDL ⁽¹⁾	DO Loop End Address Register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

TABLE 3-1: PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Note 1: This register is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.

2: The DOSTARTH and DOSTARTL registers are read-only.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	_		_	_	_		_	_		IC4IF	IC3IF	DMA3IF	_	—	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	_	_	_	QEI1IF	PSEMIF	_	_	_	_	_	_	MI2C2IF	SI2C2IF	—	0000
IFS4	0808	-	_	CTMUIF	_	_		—	_	_		_	_	CRCIF	U2EIF	U1EIF		0000
IFS5	080A	PWM2IF	PWM1IF	_	_	_		—	_	_		_	_	_	_	_		0000
IFS6	080C	_	_	_	_	_		—	_	_		_	_	_	_	_	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	_	_	_		—	_	_		_	_	_	_	_	_	0000
IFS9	0812	_	_	_	-	_		_	—	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF		0000
IEC0	0820	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	—	_	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	_	—	-	_		—	—	_	IC4IE	IC3IE	DMA3IE		_	SPI2IE	SPI2EIE	0000
IEC3	0826	_	_	_	-	_	QEI1IE	PSEMIE	—	_	_	—	—	-	MI2C2IE	SI2C2IE	—	0000
IEC4	0828	_	_	CTMUIE	-	_		—	—	_	_	—	_	CRCIE	U2EIE	U1EIE		0000
IEC5	082A	PWM2IE	PWM1IE	—	-	_		_	—	_	_	—	_		_	—		0000
IEC6	082C	_	_	_	-	_		_	—	_	_	—	_	-	_	_	PWM3IE	0000
IEC8	0830	JTAGIE	ICDIE	_	-	_		_	—	_	_	—	_	-	_	_	—	0000
IEC9	0832	_	_	_	-	_		_	—	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE		0000
IPC0	0840	_		T1IP<2:0>		_		OC1IP<2:0)>	_		IC1IP<2:0>				INT0IP<2:0>		4444
IPC1	0842	_		T2IP<2:0>		_		OC2IP<2:0)>	_		IC2IP<2:0>		-	[DMA0IP<2:0>		4444
IPC2	0844	_	-	U1RXIP<2:0	>	_	:	SPI1IP<2:0)>	_		SPI1EIP<2:0	>	-		T3IP<2:0>		4444
IPC3	0846	_	_	—	—	_	C	MA1IP<2:	0>	_		AD1IP<2:0>		-		U1TXIP<2:0>		0444
IPC4	0848	_		CNIP<2:0>		_		CMIP<2:0	>	_		MI2C1IP<2:0	>	-	5	SI2C1IP<2:0>		4444
IPC5	084A	_	_	—	—	_		—	—	_	_	—	—	-		INT1IP<2:0>		0004
IPC6	084C	_		T4IP<2:0>		_		OC4IP<2:0)>			OC3IP<2:0>			[DMA2IP<2:0>		4444
IPC7	084E	_		U2TXIP<2:0	>	_	ι	J2RXIP<2:	0>			INT2IP<2:0>	•			T5IP<2:0>		4444
IPC8	0850	_	_	—	—	_		—	—	_		SPI2IP<2:0>	•	-	5	SPI2EIP<2:0>		0044
IPC9	0852	_	_	_	-	_		IC4IP<2:0	>	_	IC3IP<2:0> — DMA3IP<2:0>			0444				
IPC12	0858	_	_	_	-	_	N	112C2IP<2:	0>	_	SI2C2IP<2:0>			0440				
IPC14	085C	_	_	_	_	_	(QEI1IP<2:0)>	_	PSEMIP<2:0>		_	0440				
IPC16	0860	_		CRCIP<2:0	>	_		U2EIP<2:0	>	_		U1EIP<2:0>		_	_	_	_	4440
IPC19	0866	_	_	—	—	_	—	—	_	_		CTMUIP<2:0	>	_	_	_	_	0040
IPC23	086E	_	F	PWM2IP<2:0)>	_	P	WM1IP<2:	0>	_	_	_	—	_	_	_	_	4400
IPC24	0870	_	_			_		_			_	_	_	_	F	PWM3IP<2:0>		4004

TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-41: PMD REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	_	AD1MD	0000
PMD2	0762	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	—	—	_	CMPMD	_	_	CRCMD	_	—	_	—	—	I2C2MD	_	0000
PMD4	0766	_		_	_	_	_	_	_	_	_	_	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	_		_	_	_	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_	_	_	_	0000
													DMA0MD					
PMD7	076C												DMA1MD	PTGMD				0000
PIVID7	0760	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	FIGMD	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

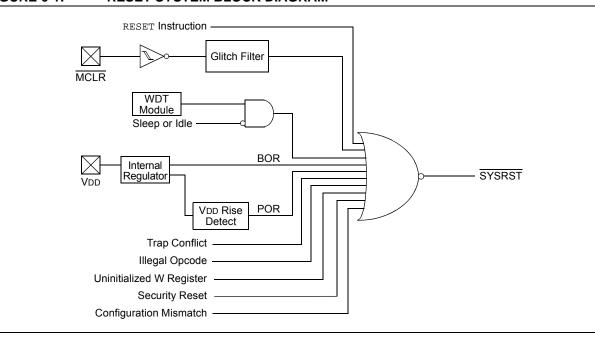
- · POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
- Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this manual for register Reset states.


All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR and BOR bits (RCON<1:0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

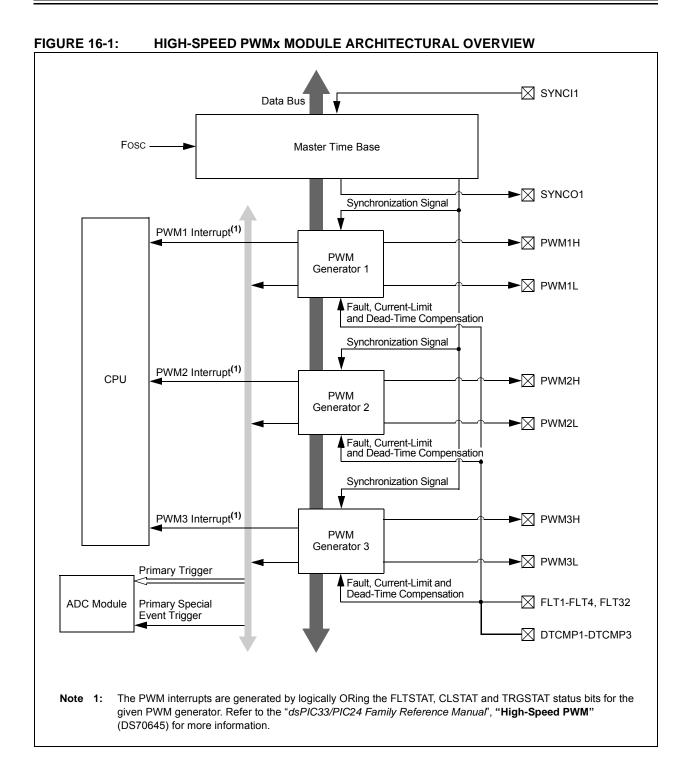
Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

For all Resets, the default clock source is determined by the FNOSC<2:0> bits in the FOSCSEL Configuration register. The value of the FNOSC<2:0> bits is loaded into NOSC<2:0> (OSCCON<10:8>) on Reset, which in turn, initializes the system clock.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0
Logondi							

REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 15-6 Unimplemented: Read as '0'

bit 5-0 **TUN<5:0>:** FRC Oscillator Tuning bits 011111 = Maximum frequency deviation of 1.453% (7.477 MHz) 011110 = Center frequency + 1.406% (7.474 MHz) •••• 000001 = Center frequency + 0.047% (7.373 MHz) 000000 = Center frequency (7.37 MHz nominal) 111111 = Center frequency - 0.047% (7.367 MHz) ••• 100001 = Center frequency - 1.453% (7.263 MHz) 100000 = Minimum frequency deviation of -1.5% (7.259 MHz)

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Input Source Select for Synchronization and Trigger Operation bits⁽⁴⁾
 - 11111 = No Sync or Trigger source for ICx
 - 11110 = Reserved
 - 11101 = Reserved
 - 11100 = CTMU module synchronizes or triggers ICx
 - 11011 = ADC1 module synchronizes or triggers $ICx^{(5)}$
 - 11010 = CMP3 module synchronizes or triggers $ICx^{(5)}$
 - $11001 = CMP2 \text{ module synchronizes or triggers ICx}^{(5)}$
 - 11000 = CMP1 module synchronizes or triggers $ICx^{(5)}$
 - 10111 = Reserved
 - 10110 = Reserved
 - 10101 = Reserved
 - 10100 = Reserved
 - 10011 = IC4 module synchronizes or triggers ICx
 - 10010 = IC3 module synchronizes or triggers ICx
 - 10001 = IC2 module synchronizes or triggers ICx
 - 10000 = IC1 module synchronizes or triggers ICx
 - 01111 = Timer5 synchronizes or triggers ICx
 - 01110 = Timer4 synchronizes or triggers ICx
 - 01101 = Timer3 synchronizes or triggers ICx (default)
 - 01100 = Timer2 synchronizes or triggers ICx
 - 01011 = Timer1 synchronizes or triggers ICx
 - 01010 = PTGOx module synchronizes or triggers $ICx^{(6)}$
 - 01001 = Reserved
 - 01000 = Reserved
 - 00111 = Reserved
 - 00110 = Reserved
 - 00101 = Reserved
 - 00100 = OC4 module synchronizes or triggers ICx
 - 00011 = OC3 module synchronizes or triggers ICx
 - 00010 = OC2 module synchronizes or triggers ICx
 - 00001 = OC1 module synchronizes or triggers ICx
 - 00000 = No Sync or Trigger source for ICx
- **Note 1:** The IC32 bit in both the Odd and Even IC must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits). It can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own Sync or Trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.
 - Each Input Capture x (ICx) module has one PTG input source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.
 PTGO8 = IC1

PTGO9 = IC2 PTGO10 = IC3 PTGO11 = IC4

REGISTER 16-2:	PTCON2: PWMx PRIMARY MASTER CLOCK DIVIDER SELECT REGISTER 2
----------------	---

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	—	_	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
—	—	—	-	—	PCLKDIV2 ⁽¹⁾	PCLKDIV1 ⁽¹⁾	PCLKDIV0(1)	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-3	Unimplemen	ted: Read as '	י'					

bit 15-3 Unimplemented: Read as '0'

bit 2-0 PCLKDIV<2:0>: PWMx Input Clock Prescaler (Divider) Select bits⁽¹⁾

- 111 = Reserved 110 = Divide-by-64 101 = Divide-by-32
- 100 = Divide-by-32100 = Divide-by-16
- 011 = Divide-by-8
- 010 = Divide-by-4
- 001 = Divide-by-2
- 000 = Divide-by-1, maximum PWMx timing resolution (power-on default)
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

19.0 INTER-INTEGRATED CIRCUIT[™] (I²C[™])

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated Circuit™ (I²C™)" (DS70330) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.
 - 3: There are minimum bit rates of approximately FCY/512. As a result, high processor speeds may not support 100 Kbit/second operation. See timing specifications, IM10 and IM11, and the "Baud Rate Generator" in the "dsPIC33/PIC24 Family Reference Manual".

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X family of devices contains two Inter-Integrated Circuit (I²C) modules: I2C1 and I2C2.

The l^2C module provides complete hardware support for both Slave and Multi-Master modes of the l^2C serial communication standard, with a 16-bit interface.

The I^2C module has a 2-pin interface:

- · The SCLx pin is clock
- The SDAx pin is data

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation
- I²C Slave mode supports 7 and 10-bit addressing
- I²C Master mode supports 7 and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly
- Intelligent Platform Management Interface (IPMI)
 support
- System Management Bus (SMBus) support

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	F15B	P<3:0>		F14BP<3:0>							
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
1010 0		P<3:0>				P<3:0>	1010 0				
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit			bit	U = Unimplen	U = Unimplemented bit, read as '0'						
-n = Value at	t POR	'1' = Bit is set	:	'0' = Bit is clea	ared	x = Bit is unknown					
<pre>bit 15-12 F15BP<3:0>: RX Buffer Mask for Filter 15 bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14</pre>											
bit 11-8	F14BP<3:0;	RX Buffer Ma	sk for Filter 1	4 bits (same val	ues as bits<15	:12>)					
bit 7-4	F13BP<3:0;	RX Buffer Ma	sk for Filter 1	3 bits (same val	ues as bits<15	:12>)					
bit 3-0 F12BP<3:0>: RX Buffer Mask for Filter 12 bits (same values as bits<15:12>)											

REGISTER 21-15: CxBUFPNT4: ECANx FILTER 12-15 BUFFER POINTER REGISTER 4

NOTES:

REGISTER 24-1: PTGCST: PTG CONTROL/STATUS REGISTER (CONTINUED)

- PTGITM<1:0>: PTG Input Trigger Command Operating Mode bits⁽¹⁾
 - 11 = Single level detect with Step delay not executed on exit of command (regardless of the PTGCTRL command)
 - 10 = Single level detect with Step delay executed on exit of command
 - 01 = Continuous edge detect with Step delay not executed on exit of command (regardless of the PTGCTRL command)
 - 00 = Continuous edge detect with Step delay executed on exit of command
- Note 1: These bits apply to the PTGWHI and PTGWLO commands only.

bit 1-0

- **2:** This bit is only used with the PTGCTRL step command software trigger option.
- **3:** Use of the PTG Single-Step mode is reserved for debugging tools only.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
ADCTS4	ADCTS3	ADCTS2	ADCTS1	IC4TSS	IC3TSS	IC2TSS	IC1TSS					
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
OC4CS		OC2CS	OC1CS	OC4TSS	OC3TSS	OC2TSS	OC1TSS					
bit 7							bit (
Legend:												
R = Reada	ble bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'						
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown					
bit 15	ADCTS4: Sa	mple Trigger P	TGO15 for AE	OC bit								
	1 = Generate	1 = Generates Trigger when the broadcast command is executed										
	0 = Does not	0 = Does not generate Trigger when the broadcast command is executed										
bit 14		mple Trigger P										
		es Trigger wher				al						
bit 13					mand is execute	a						
DIE 13		mple Trigger P es Trigger wher			evecuted							
					mand is execute	ed						
bit 12		ADCTS1: Sample Trigger PTGO12 for ADC bit										
	1 = Generate	 1 = Generates Trigger when the broadcast command is executed 0 = Does not generate Trigger when the broadcast command is executed 										
					mand is execute	ed						
bit 11	-	C4TSS: Trigger/Synchronization Source for IC4 bit = Generates Trigger/Synchronization when the broadcast command is executed										
					ast command is broadcast con		ited					
bit 10	IC3TSS: Trig	SS: Trigger/Synchronization Source for IC3 bit										
					ast command is broadcast con		ited					
bit 9	IC2TSS: Trig	SS: Trigger/Synchronization Source for IC2 bit										
					ast command is broadcast con		ited					
bit 8		ger/Synchroniz										
					ast command is broadcast con		ited					
bit 7		ck Source for C	-									
	 1 = Generates clock pulse when the broadcast command is executed 0 = Does not generate clock pulse when the broadcast command is executed 											
bit 6		ck Source for C	-									
		es clock pulse v aenerate clock			d is executed command is exe	cuted						
bit 5		ck Source for C	-									
	1 = Generate	es clock pulse v	when the broad		d is executed command is exe	cuted						
	This register is rea PTGSTRT = 1).	-					and					
	This register is on	lv used with the	PTGCTRI. OI	PTION = 1111	Step command	L						
		.,			c.op commune	•						

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2)

REGISTER 25-5:	CMxMSKCON: COMPARATOR x MASK GATING
	CONTROL REGISTER

R/W-0									
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
HLMS	—	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN		
bit 15							bit		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN		
bit 7							bit		
Legend:									
R = Readable bit		W = Writable	bit	U = Unimple	mented bit, read	l as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle		x = Bit is unknown			
bit 15	HLMS: High	or Low-Level N	Asking Select	bits					
	•		-		erted ('0') compa	rator signal from	n propagatin		
					erted ('1') compa				
bit 14	Unimplemented: Read as '0'								
bit 13	OCEN: OR G	Sate C Input Er	able bit						
	1 = MCI is co	nnected to OR	gate						
	0 = MCI is no	ot connected to	OR gate						
bit 12	OCNEN: OR Gate C Input Inverted Enable bit								
		MCI is connect							
		MCI is not conr	-	jate					
bit 11		Sate B Input En							
	1 = MBI is connected to OR gate								
bit 10	0 = MBI is not connected to OR gate								
	OBNEN: OR Gate B Input Inverted Enable bit 1 = Inverted MBI is connected to OR gate								
		-		e dit					
	1 = Inverted I	-	ed to OR gate						
bit 9	1 = Inverted 0 = Inverted	MBI is connect	ed to OR gate nected to OR g						
bit 9	1 = Inverted I 0 = Inverted I OAEN: OR G	MBI is connect MBI is not conr	ed to OR gate nected to OR g able bit						
bit 9	1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co	MBI is connect MBI is not conr Gate A Input En	ed to OR gate nected to OR g able bit gate						
bit 9 bit 8	1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no	MBI is connect MBI is not conr Gate A Input En nnected to OR	ed to OR gate nected to OR g hable bit gate OR gate	jate					
	1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I	MBI is connect MBI is not conr Gate A Input En Innected to OR of connected to Gate A Input I MAI is connect	ed to OR gate nected to OR g able bit gate OR gate nverted Enable ed to OR gate	jate e bit					
bit 8	1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I	MBI is connect MBI is not conr Gate A Input En Innected to OR of connected to Gate A Input I MAI is connect MAI is not conr	ed to OR gate nected to OR g hable bit OR gate OR gate nverted Enable ed to OR gate nected to OR g	jate e bit jate					
	1 = Inverted I 0 = Inverted I OAEN: OR G 1 = MAI is co 0 = MAI is no OANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND	MBI is connect MBI is not conr Gate A Input En Innected to OR It connected to Gate A Input I MAI is connect MAI is not conr Gate Output Ir	ed to OR gate nected to OR g hable bit OR gate OR gate nverted Enable nected to OR gate nected to OR g	pate e bit pate e bit					
bit 8	1 = Inverted I 0 = Inverted I 0AEN: OR 0 1 = MAI is co 0 = MAI is no 0ANEN: OR 1 = Inverted I 0 = Inverted I NAGS: AND 1 = Inverted I	MBI is connect MBI is not conr Gate A Input En Innected to OR of connected to Gate A Input I MAI is connect MAI is not conr Gate Output Ir ANDI is connect	ed to OR gate nected to OR g hable bit OR gate NVerted Enable nected to OR gate nected to OR gate nected to OR gate	pate e bit pate e bit e					
bit 8 bit 7	1 = Inverted I 0 = Inverted I 0AEN: OR 0 1 = MAI is co 0 = MAI is no 0 = MAI is no 0 = Inverted I 0 = Inverted I 1 = Inverted I 0 = Inverted I 0 = Inverted I	MBI is connect MBI is not conr Gate A Input En Innected to OR of connected to Gate A Input In MAI is connect MAI is not conr Gate Output In ANDI is connect ANDI is not cor	ed to OR gate nected to OR g able bit gate OR gate nverted Enable nected to OR gate nected to OR gate nected to OR gat nuected to OR gat	pate e bit pate e bit e					
bit 8	1 = Inverted I 0 = Inverted I 0AEN: OR 0 1 = MAI is co 0 = MAI is no 0 = MAI is no 0 = Inverted I 0 = Inverted I 0 = Inverted J 0 = Inverted J 0 = Inverted J	MBI is connect MBI is not conr Gate A Input En Innected to OR of connected to Gate A Input I MAI is connect MAI is not conr Gate Output Ir ANDI is connect	ed to OR gate nected to OR g nable bit gate OR gate nverted Enable nected to OR gate nected to OR gate nected to OR gat nected to OR gat nected to OR gat	pate e bit pate e bit e					
bit 8 bit 7	1 = Inverted I 0 = Inverted I 0AEN: OR 0 1 = MAI is co 0 = MAI is no 0 = MAI is no 0 = Inverted I 0 = Inverted I 1 = ANDI is co	MBI is connect MBI is not conr Gate A Input En Innected to OR of connected to Gate A Input I MAI is connect MAI is not conr Gate Output Ir ANDI is not cor Gate Output E	ed to OR gate nected to OR g able bit gate OR gate nverted Enable d to OR gate nected to OR g nverted Enable cted to OR gat nected to OR gat nected to OR gat nected to OR gat nected to OR gat	pate e bit pate e bit e					
bit 8 bit 7	1 = Inverted I 0 = Inverted I 0 AEN: OR G 1 = MAI is co 0 = MAI is no 0 ANEN: OR 1 = Inverted I 0 = ANDI is co 0 = ANDI is co 0 = ANDI is co 0 = ANDI is co	MBI is connect MBI is not conn Gate A Input En innected to OR of connected to Gate A Input In MAI is connect MAI is not connect ANDI is not connect Gate Output En connected to O not connected t Gate C Input En	ed to OR gate nected to OR g able bit gate OR gate nverted Enable d to OR gate nected to OR gate nected to OR gate to OR gate nable bit R gate o OR gate finable bit	pate e bit pate e bit e					
bit 8 bit 7 bit 6	1 = Inverted I 0 = Inverted I 0 AEN: OR G 1 = MAI is co 0 = MAI is no 0 = MAI is no 0 = Inverted I 0 = Inverted I 1 = ANDI is co 0 = ANDI is co 1 = MCI is co	MBI is connect MBI is not conn Gate A Input En Innected to OR of connected to Gate A Input In MAI is connect MAI is not connect ANDI is not connected ANDI is not connected to Gate Output En Connected to On Gate C Input En Innected to AN	ed to OR gate nected to OR g nable bit gate OR gate nverted Enable ed to OR gate nected to OR gate nected to OR gat the data to OR gate nected to OR gate nable bit R gate o OR gate finable bit D gate	pate e bit pate e bit e					
bit 8 bit 7 bit 6 bit 5	1 = Inverted I 0 = Inverted I 0 AEN: OR G 1 = MAI is co 0 = MAI is no 0 ANEN: OR 1 = Inverted I 0 = ANDI is co 0 = ANDI is co 0 = MCI is no	MBI is connect MBI is not conn Gate A Input En innected to OR of connected to Gate A Input I MAI is connect MAI is not connect ANDI is not connect ANDI is not connected to Gate Output En connected to On to connected to AN of connected to AN of connected to AN	ed to OR gate nected to OR g able bit gate OR gate nverted Enable det to OR gate nected to OR gate nected to OR gate the dto OR gate the dto OR gate shable bit R gate o OR gate finable bit D gate AND gate	ate e bit ate bit e gate					
bit 8 bit 7 bit 6	1 = Inverted I 0 = Inverted I 0 AEN: OR G 1 = MAI is co 0 = MAI is no 0 ANEN: OR 1 = Inverted I 0 = ANDI is co 0 = ANDI is co 0 = MCI is co 0 = MCI is co 0 = MCI is co	MBI is connect MBI is not conn Gate A Input En Innected to OR of connected to Gate A Input In MAI is connect MAI is not connect ANDI is not connected ANDI is not connected to Gate Output En Connected to On Gate C Input En Innected to AN	ed to OR gate nected to OR g able bit gate OR gate nverted Enable de to OR gate nected to OR gate nected to OR gate the to OR gate the bit R gate o OR gate able bit D gate AND gate Inverted Enable	pate e bit pate e bit gate					

27.2 User ID Words

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices contain four User ID Words, located at addresses, 0x800FF8 through 0x800FFE. The User ID Words can be used for storing product information such as serial numbers, system manufacturing dates, manufacturing lot numbers and other application-specific information.

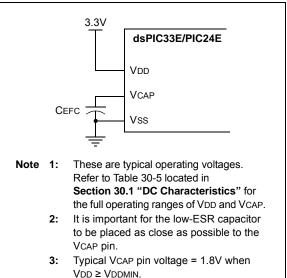
The User ID Words register map is shown in Table 27-3.

TABLE 27-3:USER ID WORDS REGISTER
MAP

File Name	Address	Bits 23-16	Bits 15-0
FUID0	0x800FF8	_	UID0
FUID1	0x800FFA	_	UID1
FUID2	0x800FFC	_	UID2
FUID3	0x800FFE	_	UID3

Legend: — = unimplemented, read as '1'.

27.3 On-Chip Voltage Regulator


All of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X devices power their core digital logic at a nominal 1.8V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family incorporate an onchip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. A low-ESR (less than 1 Ohm) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 27-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 30-5 located in **Section 30.0 "Electrical Characteristics"**.

Note: It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin.

FIGURE 27-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE

REGULATOR^(1,2,3)

27.4 Brown-out Reset (BOR)

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to Parameter SY35 in Table 30-22 of **Section 30.0 "Electrical Characteristics"** for specific TFSCM values.

The BOR status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
CTMU Curr	rent Source	9					
CTMUI1	Ιουτ1	Base Range ⁽¹⁾	0.29		0.77	μA	CTMUICON<9:8> = 01
CTMUI2	IOUT2	10x Range ⁽¹⁾	3.85		7.7	μA	CTMUICON<9:8> = 10
CTMUI3	Ιουτ3	100x Range ⁽¹⁾	38.5	_	77	μA	CTMUICON<9:8> = 11
CTMUI4	IOUT4	1000x Range ⁽¹⁾	385	_	770	μA	CTMUICON<9:8> = 00
CTMUFV1	VF	Temperature Diode Forward Voltage ^(1,2)	_	0.598	_	V	TA = +25°C, CTMUICON<9:8> = 01
			_	0.658	_	V	TA = +25°C, CTMUICON<9:8> = 10
			_	0.721	_	V	TA = +25°C, CTMUICON<9:8> = 11
CTMUFV2	VFVR		_	-1.92	_	mV/ºC	CTMUICON<9:8> = 01
		Change ^(1,2,3)	_	-1.74	_	mV/ºC	CTMUICON<9:8> = 10
				-1.56	_	mV/ºC	CTMUICON<9:8> = 11

TABLE 30-56: CTMU CURRENT SOURCE SPECIFICATIONS

Note 1: Nominal value at center point of current trim range (CTMUICON<15:10> = 000000).

2: Parameters are characterized but not tested in manufacturing.

3: Measurements taken with the following conditions:

- VREF+ = AVDD = 3.3V
- ADC configured for 10-bit mode
- ADC module configured for conversion speed of 500 ksps
- All PMDx bits are cleared (PMDx = 0)
- Executing a while(1) statement
- · Device operating from the FRC with no PLL

Section Name	Update Description
Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)"	Updated the High-Speed PWM Module Register Interconnection Diagram (see Figure 16-2). Added the TRGCONx and TRIGx registers (see Register 16-12 and Register 16-14, respectively).
Section 21.0 "Enhanced CAN (ECAN™) Module (dsPIC33EPXXXGP/MC50X Devices Only)"	Updated the CANCKS bit value definitions in CiCTRL1: ECAN Control Register 1 (see Register 21-1).
Section 22.0 "Charge Time Measurement Unit (CTMU)"	Updated the IRNG<1:0> bit value definitions and added Note 2 in the CTMU Current Control Register (see Register 22-3).
Section 25.0 "Op amp/ Comparator Module"	Updated the Op amp/Comparator I/O Operating Modes Diagram (see Figure 25-1). Updated the User-programmable Blanking Function Block Diagram (see Figure 25-3). Updated the Digital Filter Interconnect Block Diagram (see Figure 25-4). Added Section 25.1 "Op amp Application Considerations ". Added Note 2 to the Comparator Control Register (see Register 25-2). Updated the bit definitions in the Comparator Mask Gating Control Register (see Register 25-5).
Section 27.0 "Special Features"	Updated the FICD Configuration Register, updated Note 1, and added Note 3 in the Configuration Byte Register Map (see Table 27-1). Added Section 27.2 "User ID Words" .
Section 30.0 "Electrical Characteristics"	 Updated the following Absolute Maximum Ratings: Maximum current out of Vss pin Maximum current into VDD pin Added Note 1 to the Operating MIPS vs. Voltage (see Table 30-1).
	Updated all Idle Current (IIDLE) Typical and Maximum DC Characteristics values (see Table 30-7).
	Updated all Doze Current (IDOZE) Typical and Maximum DC Characteristics values (see Table 30-9).
	Added Note 2, removed Parameter CM24, updated the Typical values Parameters CM10, CM20, CM21, CM32, CM41, CM44, and CM45, and updated the Minimum values for CM40 and CM41, and the Maximum value for CM40 in the AC/DC Characteristics: Op amp/Comparator (see Table 30-14).
	Updated Note 2 and the Typical value for Parameter VR310 in the Op amp/ Comparator Reference Voltage Settling Time Specifications (see Table 30-15).
	Added Note 1, removed Parameter VRD312, and added Parameter VRD314 to the Op amp/Comparator Voltage Reference DC Specifications (see Table 30-16).
	Updated the Minimum, Typical, and Maximum values for Internal LPRC Accuracy (see Table 30-22).
	Updated the Minimum, Typical, and Maximum values for Parameter SY37 in the Reset, Watchdog Timer, Oscillator Start-up Timer, Power-up Timer Timing Requirements (see Table 30-24).
	The Maximum Data Rate values were updated for the SPI2 Maximum Data/Clock Rate Summary (see Table 30-35)

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)