

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep128gp202t-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.5 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3, or MPLAB REAL ICE[™].

For more information on MPLAB ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB[®] ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) DS51749

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency Primary Oscillator and a low-frequency Secondary Oscillator. For details, see **Section 9.0 "Oscillator Configuration"** for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0		
VAR		US1 ⁽¹⁾	US0 ⁽¹⁾	EDT ^(1,2)	DL2 ⁽¹⁾	DL1 ⁽¹⁾	DL0 ⁽¹⁾		
bit 15							bit 8		
									
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0		
SATA(1)	SATB	SATDW ⁽¹⁾	ACCSAT(1)	IPL3(3)	SFA	RND ⁽¹⁾	IF ⁽¹⁾		
bit 7							bit 0		
Legend:		C - Clearable	hit						
R = Reada	hle hit	W = Writable	hit	U = Unimple	mented hit read	1 as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
			1						
bit 15	VAR: Variable	e Exception Pro	ocessing Later	ncy Control bit					
	1 = Variable e	exception proce	essing latency	is enabled					
	0 = Fixed exc	eption process	ing latency is	enabled					
bit 14	Unimplemen	ted: Read as '	0'						
bit 13-12	US<1:0>: DS	P Multiply Uns	igned/Signed (Control bits ⁽¹⁾					
	11 = Reserve	ed nine multiplies	are mixed sign	,					
	01 = DSP eng	10 = 0 SP engine multiplies are mixed-sign 0.1 = DSP engine multiplies are unsigned							
	00 = DSP eng	gine multiplies	are signed						
bit 11	EDT: Early DO	D Loop Termina	ation Control bi	it(1,2)					
	1 = Terminate 0 = No effect	es executing DO	loop at end o	f current loop	iteration				
bit 10-8	DL<2:0>: DO	Loop Nesting I	Level Status bi	ts ⁽¹⁾					
	111 = 7 do lo	ops are active							
	•								
	•								
	001 = 1 DO IO	on is active							
	000 = 0 DO lo	ops are active							
bit 7	SATA: ACCA	Saturation En	able bit ⁽¹⁾						
	1 = Accumula 0 = Accumula	ator A saturatio ator A saturatio	n is enabled n is disabled						
bit 6	SATB: ACCB	Saturation En	able bit ⁽¹⁾						
	1 = Accumula	ator B saturatio	n is enabled						
	0 = Accumula	ator B saturatio	n is disabled						
bit 5	SATDW: Data	a Space Write f	from DSP Eng	ine Saturation	Enable bit ⁽¹⁾				
	1 = Data Space	ce write satura ce write satura	tion is enabled tion is disabled	1					
bit 4	ACCSAT: Acc	cumulator Satu	ration Mode S	elect bit ⁽¹⁾					
	1 = 9.31 satu	ration (super sa	aturation)						
	0 = 1.31 satu	ration (normal	saturation)						
bit 3	IPL3: CPU In	terrupt Priority	Level Status b	oit 3 (3)					
	1 = CPU Inter	rrupt Priority Le	evel is greater	than 7					
	0 = CPU inter	riupt Priority Le	evel is / or less	5					
Note 1: 2:	This bit is available This bit is always r	e on dsPIC33E read as '0'.	PXXXMC20X/	50X and dsPI	C33EPXXXGP	50X devices on	ly.		

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100	Timer1 Register									xxxx							
PR1	0102								Period F	Register 1								FFFF
T1CON	0104	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	TSYNC	TCS	—	0000
TMR2	0106								Timer2	Register								xxxx
TMR3HLD	0108						Time	er3 Holding	Register (fo	r 32-bit time	r operations	only)						xxxx
TMR3	010A	Timer3 Register xxxx								xxxx								
PR2	010C	Period Register 2 FFFF								FFFF								
PR3	010E	Period Register 3 FFF							FFFF									
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	T32	_	TCS	—	0000
T3CON	0112	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	_	TCS	—	0000
TMR4	0114								Timer4	Register								xxxx
TMR5HLD	0116						Т	imer5 Holdii	ng Register	(for 32-bit o	perations on	ly)						xxxx
TMR5	0118								Timer5	Register								xxxx
PR4	011A								Period F	Register 4								FFFF
PR5	011C								Period F	Register 5								FFFF
T4CON	011E	TON	_	TSIDL	_	—	—	_	_	_	TGATE	TCKP	S<1:0>	T32	—	TCS	—	0000
T5CON	0120	TON		TSIDL	—	—	—	_	_	_	TGATE	TCKP	S<1:0>	—	_	TCS	—	0000

TABLE 4-8: TIMER1 THROUGH TIMER5 REGISTER MAP

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	_	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	PWCOL3	PWCOL2	PWCOL1	PWCOL0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-4	Unimplemen	ted: Read as '	0'				
bit 3	PWCOL3: DN	VA Channel 3 F	Peripheral Wri	te Collision Fla	ag bit		
	1 = Write col	lision is detecte	ed				
	0 = No write	collision is dete	ected				
bit 2	PWCOL2: DN	MA Channel 2 I	Peripheral Wri	te Collision Fla	ag bit		
	1 = Write col	lision is detecte	ed				
	0 = No write	collision is dete	ected				
bit 1	PWCOL1: DMA Channel 1 Peripheral Write Collision Flag bit						
	1 = Write col	lision is detecte	ed				
h:+ 0					h-14		
DIT U			Peripheral vvri	te Collision Fla	ag dit		
	$\perp = \text{VVrite COI}$	collision is detected	eted				

REGISTER 8-11: DMAPWC: DMA PERIPHERAL WRITE COLLISION STATUS REGISTER

NOTES:

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 4 Unimplemented: Read as '0'
- bit 3 **CF:** Clock Fail Detect bit⁽³⁾
 - 1 = FSCM has detected clock failure
 - 0 = FSCM has not detected clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Requests oscillator switch to selection specified by the NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- **Note 1:** Writes to this register require an unlock sequence. Refer to **"Oscillator"** (DS70580) in the *"dsPIC33/ PIC24 Family Reference Manual"* (available from the Microchip web site) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
 - **3:** This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and trigger an oscillator failure trap.

INE OID LEN										
U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0			
	—	—	—	—	CMPMD	—	—			
bit 15							bit 8			
R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0			
CRCMD	—	—	—	—	—	I2C2MD	—			
bit 7		•				•	bit 0			
Legend:										
R = Readable	e bit	W = Writable I	bit	U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknow			iown				
bit 15-11	Unimplement	ted: Read as 'o)'							

REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3

bit 10	CMPMD: Comparator Module Disable bit
	1 = Comparator module is disabled
	0 = Comparator module is enabled
bit 9-8	Unimplemented: Read as '0'
bit 7	CRCMD: CRC Module Disable bit
	1 = CRC module is disabled
	0 = CRC module is enabled
bit 6-2	Unimplemented: Read as '0'
bit 1	I2C2MD: I2C2 Module Disable bit
	1 = I2C2 module is disabled
	0 = I2C2 module is enabled
bit 0	Unimplemented: Read as '0'

REGISTER 10-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—		—	—
						bit 8
U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0
	—	—	REFOMD	CTMUMD	—	—
		•	•			bit 0
	U-0 — U-0 —	U-0 U-0 — — U-0 U-0 — —	U-0 U-0 U-0 — — — — U-0 U-0 U-0 — — — —	U-0 U-0 U-0 U-0 	U-0 U-0 U-0 U-0 - - - - - U-0 U-0 U-0 U-0 - U-0 U-0 U-0 R/W-0 R/W-0 - - - REFOMD CTMUMD	U-0 U-0 U-0 U-0 U-0 - - - - - U-0 U-0 R/W-0 R/W-0 U-0 U-0 U-0 R/W-0 R/W-0 U-0 - - - REFOMD CTMUMD

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	REFOMD: Reference Clock Module Disable bit
	1 = Reference clock module is disabled
	0 = Reference clock module is enabled
bit 2	CTMUMD: CTMU Module Disable bit
	1 = CTMU module is disabled
	0 = CTMU module is enabled
bit 1-0	Unimplemented: Read as '0'

 $\ensuremath{\textcircled{}^\circ}$ 2011-2013 Microchip Technology Inc.

14.2 Input Capture Registers

REGISTER 14-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
—	—	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/HC/HS-0	R/HC/HS-0	R/W-0	R/W-0	R/W-0
—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	ICSIDL: Input Capture Stop in Idle Control bit
	1 = Input capture will Halt in CPU Idle mode
	0 = Input capture will continue to operate in CPU Idle mode
bit 12-10	ICTSEL<2:0>: Input Capture Timer Select bits
	111 = Peripheral clock (FP) is the clock source of the ICx
	110 = Reserved
	101 = Reserved
	100 - 11 CLR is the clock source of the ICx (only the synchronous clock is supported) 011 = T5CLK is the clock source of the ICx
	010 = T4CLK is the clock source of the ICx
	001 = T2CLK is the clock source of the ICx
	000 = T3CLK is the clock source of the ICx
bit 9-7	Unimplemented: Read as '0'
bit 6-5	ICI<1:0>: Number of Captures per Interrupt Select bits (this field is not used if ICM<2:0> = 001 or 111)
	11 = Interrupt on every fourth capture event
	10 = Interrupt on every third capture event
	01 = Interrupt on every second capture event
hit 4	ICOV: Input Capture Overflow Status Flag bit (read-only)
Dit 4	1 = Input capture buffer overflow occurred
	0 = No input capture buffer overflow occurred
bit 3	ICBNE: Input Capture Buffer Not Empty Status bit (read-only)
	1 = Input capture buffer is not empty, at least one more capture value can be read
	0 = Input capture buffer is empty
bit 2-0	ICM<2:0>: Input Capture Mode Select bits
	111 = Input capture functions as interrupt pin only in CPU Sleep and Idle modes (rising edge detect only, all other control bits are not applicable)
	110 = Unused (module is disabled)
	101 = Capture mode, every 16th rising edge (Prescaler Capture mode)
	100 = Capture mode, every 4th rising edge (Prescaler Capture mode)
	011 = Capture mode, every falling edge (Simple Capture mode)
	001 = Capture mode, every edge rising and falling (Edge Detect mode (ICI<1:0>) is not used in this mode)
	000 = Input capture module is turned off

NOTES:

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0
bit 7							bit 0
Legend:							

REGISTER 21-11: CxFEN1: ECANx ACCEPTANCE FILTER ENABLE REGISTER 1

Legend				
R = Rea	dable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Valu	ie at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

FLTEN<15:0>: Enable Filter n to Accept Messages bits

1 = Enables Filter n

0 = Disables Filter n

REGISTER 21-12: CxBUFPNT1: ECANx FILTER 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F3BP<3:0>				F2BP<3:0>				
bit 15						bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F1BF	?<3:0>			F0B	P<3:0>			
bit 7							bit 0		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimplen	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-12	F3BP<3:0>:	RX Buffer Mas	k for Filter 3 b	pits					
	1111 = Filte	r hits received ir	n RX FIFO bu	uffer					
	1110 = Filte	r hits received ir	n RX Buffer 1	4					
	•								
	•								
	0001 = Filte	r hits received ir	n RX Buffer 1						
	0000 = Filte	r hits received ir	n RX Buffer 0						
bit 11-8	F2BP<3:0>:	RX Buffer Mas	k for Filter 2 k	oits (same value	s as bits<15:1	2>)			
bit 7-4	F1BP<3:0>:	RX Buffer Mas	k for Filter 1 k	oits (same value	s as bits<15:1	2>)			
bit 3-0	F0BP<3:0>:	RX Buffer Mas	k for Filter 0 k	oits (same value	s as bits<15:1	2>)			
						,			

NOTES:

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	—	—	_	—	—		ADDMAEN
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	DMABL2	DMABL1	DMABL0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	pit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
L							
bit 15-9	Unimplemen	ted: Read as 'o)'				
bit 8	ADDMAEN: /	ADC1 DMA Ena	able bit				
	1 = Conversio	on results are st	ored in the Al	DC1BUF0 regi	ster for transfer	to RAM using	DMA
	0 = Conversio	on results are st	ored in ADC1	BUF0 through	ADC1BUFF reg	gisters; DMA w	vill not be used
bit 7-3	Unimplemen	ted: Read as '0)'				
bit 2-0	DMABL<2:0>	Selects Number Selects Number	per of DMA Bu	uffer Locations	per Analog Inp	ut bits	
	111 = Allocat	es 128 words o	f buffer to eac	h analog input	t		
	110 = Allocat	es 64 words of	buffer to each	analog input			
	101 = Allocat	es 32 words of	buffer to each	analog input			
	100 = Allocat	es 16 words of	buffer to each	analog input			
		es 8 words of b	uffer to each a	analog input			
		es 2 words of h	uffer to each :	analog input			
	000 = Allocat	es 1 word of bu	ffer to each a	nalog input			

REGISTER 23-4: AD1CON4: ADC1 CONTROL REGISTER 4

REGISTER 23-5: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	CH123NB1	CH123NB0	CH123SB
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0

0-0	0-0	0-0	0-0	0-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	CH123NA1	CH123NA0	CH123SA
bit 7							bit 0

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'

bit 10-9

CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample MUXB bits

In 12-bit mode (AD21B = 1), CH123NB is Unimplemented and is Read as '0':

Value	ADC Channel						
	CH1	CH2	CH3				
11	AN9	AN10	AN11				
10 (1,2)	OA3/AN6	AN7	AN8				
0x	VREFL	VREFL	VREFL				

bit 8 **CH123SB:** Channel 1, 2, 3 Positive Input Select for Sample MUXB bit In 12-bit mode (AD21B = 1), CH123SB is Unimplemented and is Read as '0':

Value		ADC Channel	
value	CH1	CH2	СНЗ
1 (2)	OA1/AN3	OA2/AN0	OA3/AN6
0 (1,2)	OA2/AN0	AN1	AN2

bit 7-3 Unimplemented: Read as '0'

bit 2-1 **CH123NA<1:0>:** Channel 1, 2, 3 Negative Input Select for Sample MUXA bits In 12-bit mode (AD21B = 1), CH123NA is Unimplemented and is Read as '<u>0</u>':

Value	ADC Channel						
	CH1	CH2	CH3				
11	AN9	AN10	AN11				
10 (1,2)	OA3/AN6	AN7	AN8				
0x	VREFL	VREFL	VREFL				

- **Note 1:** AN0 through AN7 are repurposed when comparator and op amp functionality is enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_				—		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0
bit 7							bit 0
Logondi							
R = Reada	able hit	W = Writable	hit	= Inimpler	mented hit read	ae 'O'	
-n = Value	at POR	(1) = Rit is set	bit	'0' = Bit is cle	ared	x = Rit is unkr	nown
II Value		1 Bit lo oot					
bit 15-7	Unimplemen	nted: Read as '	0'				
bit 6-4	CFSEL<2:0>	Comparator I	-ilter Input Clo	ck Select bits			
	111 = T5CLK	(1) (1)					
	110 = T4CLK	< ⁽²⁾					
	101 = T3CLK	<(1) <(2)					
	100 = 12CLP	ved					
	010 = SYNC	01 ⁽³⁾					
	001 = Fosc ⁽⁴	4)					
	000 = FP ⁽⁴⁾						
bit 3	CFLTREN: C	Comparator Filte	er Enable bit				
	1 = Digital filt	er is enabled					
hit 2-0		Comparator F	ilter Clock Div	ide Select hits			
511 2-0	111 = Clock	Divide 1.128					
	110 = Clock	Divide 1:64					
	101 = Clock	Divide 1:32					
	100 = Clock	Divide 1:16					
	011 = Clock	Divide 1:8					
	001 = Clock	Divide 1:2					
	000 = Clock	Divide 1:1					
Note 1:	See the Type C Ti	mer Block Diac	ram (Figure 1	3-2).			
2:	See the Type B Tir	mer Block Diag	ram (Figure 1	ý 3-1).			

REGISTER 25-6: CMxFLTR: COMPARATOR x FILTER CONTROL REGISTER

- 3: See the High-Speed PWMx Module Register Interconnection Diagram (Figure 16-2).
 - 4: See the Oscillator System Diagram (Figure 9-1).

28.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. То complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Familv Reference Manual', which is available from the Microchip web site (www.microchip.com).

The dsPIC33EP instruction set is almost identical to that of the dsPIC30F and dsPIC33F. The PIC24EP instruction set is almost identical to that of the PIC24F and PIC24H.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- · Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- · Control operations

Table 28-1 lists the general symbols used in describing the instructions.

The dsPIC33E instruction set summary in Table 28-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- · The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the Table Read and Table Write instructions

TABLE 30-18: PLL CLOCK TIMING SPECIFICATIONS

АС СНА	RACTERI	STICS	Standar (unless Operatir	d Operat otherwis ng temper	ing Cond e stated) ature -4 -4	itions: 3 0°C ≤ TA 0°C ≤ TA	.0V to 3.6V A \leq +85°C for Industrial A \leq +125°C for Extended
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8	_	8.0	MHz	ECPLL, XTPLL modes
OS51	Fvco	On-Chip VCO System Frequency	120	_	340	MHz	
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	ms	
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%	

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases, or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Time Base or Communication Clock}}}$$

For example, if Fosc = 120 MHz and the SPIx bit rate = 10 MHz, the effective jitter is as follows:

Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 30-19: INTERNAL FRC ACCURACY

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$							
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditio	ons
Internal	FRC Accuracy @ FRC Fre	equency =	7.37 MHz	<u>(</u> 1)			
F20a	FRC	-1.5	0.5	+1.5	%	$-40^{\circ}C \le TA \le -10^{\circ}C$	VDD = 3.0-3.6V
		-1	0.5	+1	%	$-10^{\circ}C \leq TA \leq +85^{\circ}C$	VDD = 3.0-3.6V
F20b	FRC	-2	1	+2	%	$+85^{\circ}C \le TA \le +125^{\circ}C$	VDD = 3.0-3.6V

Note 1: Frequency is calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.

TABLE 30-20: INTERNAL LPRC ACCURACY

AC CH	ARACTERISTICS	Standard Operating	Operating temperation	g Conditic ure -40° -40°	ons: 3.0V C ≤ TA ≤ + C ≤ TA ≤ +	to 3.6V (unless otherw 85°C for Industrial 125°C for Extended	ise stated)
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditio	ons
LPRC (@ 32.768 kHz ⁽¹⁾						
F21a	LPRC	-30		+30	%	$-40^\circ C \le T A \le -10^\circ C$	VDD = 3.0-3.6V
		-20		+20	%	$-10^{\circ}C \le TA \le +85^{\circ}C$	VDD = 3.0-3.6V
F21b	LPRC	-30		+30	%	$+85^{\circ}C \leq TA \leq +125^{\circ}C$	VDD = 3.0-3.6V

Note 1: The change of LPRC frequency as VDD changes.

TADLE 30-23. THERE EXTERNAL CLOCK THENING REQUIREMENTS	TABLE 30-23:	TIMER1 EXTERNAL	CLOCK TIMING	REQUIREMENTS ⁽¹⁾
--	--------------	-----------------	---------------------	------------------------------------

AC CHARACTERISTICS			Standard Ope (unless otherv Operating tem	rating C vise sta perature	conditions: 3.0 ted) -40°C ≤ TA ≤ -40°C ≤ TA ≤	V to 3.6 +85°C +125°C	V for Industrial C for Extended	
Param No.	Symbol	Charao	cteristic ⁽²⁾	Min.	Тур.	Max.	Units	Conditions
TA10	ТтхН	T1CK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	—	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)
			Asynchronous	35	—	—	ns	
TA11	ΤτxL	T1CK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)
			Asynchronous	10	—	—	ns	
TA15	ΤτχΡ	T1CK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_		ns	N = prescale value (1, 8, 64, 256)
OS60	Ft1	T1CK Oscillator Input Frequency Range (oscillator enabled by setting bit, TCS (T1CON<1>))		DC		50	kHz	
TA20	TCKEXTMRL	(I1CON<1>)) Delay from External T1CK Clock Edge to Timer Increment		0.75 Tcy + 40		1.75 Tcy + 40	ns	

Note 1: Timer1 is a Type A.

2: These parameters are characterized, but are not tested in manufacturing.

DC CHAI	RACTERIS	STICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$				
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
HDO10	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾	_	—	0.4	V	IOL ≤ 5 mA, VDD = 3.3V (Note 1)
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	—	_	0.4	V	IOL ≤ 8 mA, VDD = 3.3V (Note 1)
HDO20	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4	—		V	IOH ≥ -10 mA, VDD = 3.3V (Note 1)
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	—		V	IOH ≥ 15 mA, VDD = 3.3V (Note 1)
HDO20A	Voh1	Output High Voltage 4x Source Driver Pins ⁽²⁾	1.5	—	_	V	IOH ≥ -3.9 mA, VDD = 3.3V (Note 1)
			2.0	—			IOH ≥ -3.7 mA, VDD = 3.3V (Note 1)
			3.0	—			IOH ≥ -2 mA, VDD = 3.3V (Note 1)
		Output High Voltage 8x Source Driver Pins ⁽³⁾	1.5	_		V	IOH ≥ -7.5 mA, VDD = 3.3V (Note 1)
			2.0	_			IOH ≥ -6.8 mA, VDD = 3.3V (Note 1)
			3.0	_	_		IOH ≥ -3 mA, VDD = 3.3V (Note 1)

TABLE 31-8: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

2: Includes all I/O pins that are not 8x Sink Driver pins (see below).

Includes the following pins:
For devices with less than 64 pins: RA3, RA4, RA9, RB<15:7> and RC3
For 64-pin devices: RA4, RA9, RB<15:7>, RC3 and RC15

Ρ

Packaging	
Details	505
Marking	. 479, 481
Peripheral Module Disable (PMD)	
Peripheral Pin Select (PPS)	175
Available Peripherals	175
Available Pins	175
Control	175
Control Registers	183
Input Mapping	176
Output Selection for Remappable Pins	
Pin Selection for Selectable Input Sources	178
Selectable Input Sources	177
Peripheral Trigger Generator (PTG) Module	
PICkit 3 In-Circuit Debugger/Programmer	
Pinout I/O Descriptions (table)	
Power-Saving Features	163
Clock Frequency	
Clock Switching	163
Instruction-Based Modes	163
Idle	
Interrupts Coincident with Power	
Save Instructions	
Sleep	
Resources	
Program Address Space	45
Construction	117
Data Access from Program Memory Using	
Table Instructions	118
Memory Map (dsPIC33EP128GP50X,	
dsPIC33EP128MC20X/50X,	
PIC24EP128GP/MC20X Devices)	47
Memory Map (dsPIC33EP256GP50X,	
dsPIC33EP256MC20X/50X,	
PIC24EP256GP/MC20X Devices)	48
Memory Map (dsPIC33EP32GP50X,	
dsPIC33EP32MC20X/50X,	
PIC24EP32GP/MC20X Devices)	45
Memory Map (dsPIC33EP512GP50X,	
dsPIC33EP512MC20X/50X,	
PIC24EP512GP/MC20X Devices)	
Memory Map (dsPIC33EP64GP50X,	
dsPIC33EP64MC20X/50X,	
PIC24EP64GP/MC20X Devices)	
Table Read High Instructions	
TBLRDH	118
Table Read Low Instructions (TBLRDL)	
Program Memory	
Organization	
Reset Vector	
Programmable CRC Generator	
Control Registers	
Overview	
Resources	
Programmer's Model	
Register Descriptions	
PTG	
Control Registers	
Introduction	
Output Descriptions	
Resources	
Step Commands and Format	

Q OFI

QLI		
	Control Registers	252
	Resources	251
Quad	Irature Encoder Interface (QEI)	249

R

Register Maps	
ADC1	84
CPU Core (dsPIC33EPXXXMC20X/50X,	
dsPIC33EPXXXGP50X Devices)	63
CPU Core (PIC24EPXXXGP/MC20X Devices)	65
CRC	88
CTMU	97
DMAC	. 98
ECAN1 (When WIN (C1CTRL1) = 0 or 1)	
for dsPIC33EPXXXMC/GP50X Devices	85
ECAN1 (When WIN (C1CTRL1) = 0) for	
dsPIC33EPXXXMC/GP50X Devices	85
FCAN1 (WIN (C1CTRI 1) = 1) for	
dsPIC33EPXXXMC/GP50X Devices	86
12C1 and 12C2	82
Input Capture 1 through Input Capture 4	76
Interrunt Controller	
	69
Interrupt Controller	05
	71
	/ 1
	73
(USFIC35EFXXXIVIC30X Devices)	75
	66
Interrupt Controller	00
(DIC24EDXXXMC20X Dovision)	67
	07
	97 02
NVM	93
Output Compare 1 through Output Compare 4	97
Derinherel Din Select Innut	//
	04
(dSPIC33EPXXXGP50X Devices)	91
Peripheral Pin Select Input	00
(dsPIC33EPXXXIIIC20X Devices)	92
	~
(dsPIC33EPXXXMC50X Devices)	91
	~~
(PIC24EPXXXGP20X Devices)	90
	~~
(PIC24EPXXXMC20X Devices)	90
	~~
PIC24EPXXXGP/MC202 Devices)	88
Peripheral Pin Select Output	
(dsPIC33EPXXXGP/MC203/503,	
PIC24EPXXXGP/MC203 Devices)	88
Peripheral Pin Select Output	
(dsPIC33EPXXXGP/MC204/504,	
PIC24EPXXXGP/MC204 Devices)	89
Peripheral Pin Select Output	
(dsPIC33EPXXXGP/MC206/506,	<i>.</i> .
PIC24EPXXGP/MC206 Devices)	89
PMD (dsPIC33EPXXXGP50X Devices)	95
PMD (dsPIC33EPXXXMC20X Devices)	96
PMD (dsPIC33EPXXXMC50X Devices)	95
PMD (PIC24EPXXXGP20X Devices)	94