

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

•XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep128gp202t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33/PIC24 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note 1: To access the documents listed below, browse to the documentation section of the dsPIC33EP64MC506 product page of the Microchip web site (www.microchip.com) or select a family reference manual section from the following list.

> In addition to parameters, features and other documentation, the resulting page provides links to the related family reference manual sections.

- "Introduction" (DS70573)
- "CPU" (DS70359)
- "Data Memory" (DS70595)
- "Program Memory" (DS70613)
- "Flash Programming" (DS70609)
- "Interrupts" (DS70600)
- "Oscillator" (DS70580)
- "Reset" (DS70602)
- "Watchdog Timer and Power-Saving Modes" (DS70615)
- "I/O Ports" (DS70598)
- "Timers" (DS70362)
- "Input Capture" (DS70352)
- "Output Compare" (DS70358)
- "High-Speed PWM" (DS70645)
- "Quadrature Encoder Interface (QEI)" (DS70601)
- "Analog-to-Digital Converter (ADC)" (DS70621)
- "UART" (DS70582)
- "Serial Peripheral Interface (SPI)" (DS70569)
- "Inter-Integrated Circuit (I²C[™])" (DS70330)
- "Enhanced Controller Area Network (ECAN™)" (DS70353)
- "Direct Memory Access (DMA)" (DS70348)
- "CodeGuard™ Security" (DS70634)
- "Programming and Diagnostics" (DS70608)
- "Op Amp/Comparator" (DS70357)
- "Programmable Cyclic Redundancy Check (CRC)" (DS70346)
- "Device Configuration" (DS70618)
- "Peripheral Trigger Generator (PTG)" (DS70669)
- "Charge Time Measurement Unit (CTMU)" (DS70661)

2.5 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3, or MPLAB REAL ICE[™].

For more information on MPLAB ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB[®] ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) DS51749

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency Primary Oscillator and a low-frequency Secondary Oscillator. For details, see **Section 9.0 "Oscillator Configuration"** for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	-	—	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	—	—	—		—	_	_	_		IC4IF	IC3IF	DMA3IF	_	—	SPI2IF	SPI2EIF	0000
IFS3	0806	—	—	—		—	—	_	_		—	—	_	—	MI2C2IF	SI2C2IF	—	0000
IFS4	0808	_	_	CTMUIF		_	_	_	_		—	_	—	CRCIF	U2EIF	U1EIF	_	0000
IFS8	0810	JTAGIF	ICDIF	—	_	—	—	—	—	_	—	—	—	—	—	—	—	0000
IFS9	0812	—	—	—	_	—	—	—	—	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF	—	0000
IEC0	0820	—	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	—	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	—	—	—	_	—	—	—	—	_	IC4IE	IC3IE	DMA3IE	—	—	SPI2IE	SPI2EIE	0000
IEC3	0826	—	—	—	_	—	—	—	—		—	_	—	—	MI2C2IE	SI2C2IE	—	0000
IEC4	0828	—	—	CTMUIE	_	—	—	—	—	_	—	—	—	CRCIE	U2EIE	U1EIE	—	0000
IEC8	0830	JTAGIE	ICDIE	—	_	—	—	—	—		—	_	—	—	—	—	—	0000
IEC9	0832	—	—	—	_	—	—	—	_	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	—	0000
IPC0	0840	—		T1IP<2:0>		—		OC1IP<2:0)>	_		IC1IP<2:0>		—		INT0IP<2:0>		4444
IPC1	0842	—		T2IP<2:0>		—		OC2IP<2:0)>			IC2IP<2:0>		—	0	0MA0IP<2:0>		4444
IPC2	0844	—	ι	J1RXIP<2:0	>	—	:	SPI1IP<2:0)>	_		SPI1EIP<2:0	>	—		T3IP<2:0>		4444
IPC3	0846	—	—	—	—	—	0)MA1IP<2:	0>			AD1IP<2:0>	•	—	ι	J1TXIP<2:0>		0444
IPC4	0848	—		CNIP<2:0>		—		CMIP<2:0	>	_		MI2C1IP<2:0	>	—	5	SI2C1IP<2:0>		4444
IPC5	084A	—	—	—	_	—	—	—	—	_	—	—	—	—		INT1IP<2:0>		0004
IPC6	084C	—		T4IP<2:0>		—		OC4IP<2:0)>	_		OC3IP<2:0>	•	—	0	0MA2IP<2:0>		4444
IPC7	084E	—	l	J2TXIP<2:0	>	—	ι	J2RXIP<2:	0>	_		INT2IP<2:0>	>	—		T5IP<2:0>		4444
IPC8	0850	—	—	—	_	—	—	—	—	_		SPI2IP<2:0>	>	—	S	SPI2EIP<2:0>		0044
IPC9	0852	—	—	—	_	—		IC4IP<2:0	>	_		IC3IP<2:0>		—	0	0MA3IP<2:0>		0444
IPC12	0858	—	—	—	_	—	N	112C2IP<2:	0>	_		SI2C2IP<2:0	>	—	—	—	—	0440
IPC16	0860	—		CRCIP<2:0	>	—		U2EIP<2:0	>	_		U1EIP<2:0>		—	—	—	—	4440
IPC19	0866	—	—	—	_	—	—	—	—	_		CTMUIP<2:0	>	—	—	—	—	0040
IPC35	0886	—		JTAGIP<2:0	>	—		ICDIP<2:0	>	_	—	—	—	—	—	—	—	4400
IPC36	0888	—	F	PTG0IP<2:0	>	—	PT	GWDTIP<	2:0>	_	P	TGSTEPIP<2	2:0>	—	—	—	—	4440
IPC37	088A	—	—	—		—	F	PTG3IP<2:	0>			PTG2IP<2:0	>	—	F	PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	_	—	—	—	—	_	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	—	_	—	—	_	—	_	_	—	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	—	—	_	—	_	—	—	_	—	DAE	DOOVR	—	_	—	—	0000
INTCON4	08C6	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	SGHT	0000
INTTREG	08C8	_	_	_	—		ILR<	3:0>					VECN	JM<7:0>				0000

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

TABLE 4	4-31:	PER	IPHERA	L PIN S	ELECT	INPUT F	REGISTI	ER MAP	FOR ds	sPIC33E	PXXXG	P50X D	EVICES	3 ONLY	

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—				INT1R<6:0>					—	—	—	—	_			0000
RPINR1	06A2		_			_	_		—					INT2R<6:0>				0000
RPINR3	06A6		_			_	_		—				-	T2CKR<6:0>	>			0000
RPINR7	06AE					IC2R<6:0>								IC1R<6:0>				0000
RPINR8	06B0	_				IC4R<6:0>				_				IC3R<6:0>				0000
RPINR11	06B6	_	_	_	_	_	-	_	_	_			(DCFAR<6:0	>			0000
RPINR18	06C4	_	_	_	_	_	-	_	_	_			l	J1RXR<6:0	>			0000
RPINR19	06C6	_	_	_	_	_	-	_	_	_			l	J2RXR<6:0	>			0000
RPINR22	06CC	_		SCK2INR<6:0>										SDI2R<6:0>				0000
RPINR23	06CE	_	_	_	_	_	-	_	_	_	— SS2R<6:0>							0000
RPINR26	06D4	_	_	_		_	—		_		- C1RXR<6:0>							0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—				INT1R<6:0>	>			_	—	—	—			_	_	0000
RPINR1	06A2	_	_	_	_	_	_	_	_	_				INT2R<6:0>				0000
RPINR3	06A6	_	_	_	_	_	_	_	_	_			-	T2CKR<6:0>	>			0000
RPINR7	06AE	_				IC2R<6:0>				_				IC1R<6:0>				0000
RPINR8	06B0	_				IC4R<6:0>				_				IC3R<6:0>				0000
RPINR11	06B6	_	_							_			(DCFAR<6:0	>			0000
RPINR12	06B8	_				FLT2R<6:0>	>			_				FLT1R<6:0>	•			0000
RPINR14	06BC	_			(QEB1R<6:0	>			_			(QEA1R<6:0	>			0000
RPINR15	06BE	_			Н	OME1R<6:()>			_			I	NDX1R<6:0	>			0000
RPINR18	06C4	_	_	_	_	_	_	_	_	_			ι	J1RXR<6:0	>			0000
RPINR19	06C6	_	_	_	_	_	_	_	_	_			ι	J2RXR<6:0	>			0000
RPINR22	06CC	_			S	CK2INR<6:	0>			_				SDI2R<6:0>				0000
RPINR23	06CE	_	_	_	_	_	-	_	_	_				SS2R<6:0>				0000
RPINR26	06D4	_							_	_			(C1RXR<6:0	>			0000
RPINR37	06EA	_		SYNCI1R<6:0>							_	—			—	_	_	0000
RPINR38	06EC	—		DTCMP1R<6:0>							_	—	_		—	—	—	0000
RPINR39	06EE	_		DTCMP3R<6:0>									D	CMP2R<6:	0>			0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

TABLE 4-46: PORTA REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	—	—	—	TRISA12	TRISA11	TRISA10	TRISA9	TRISA8	TRISA7	—	—	TRISA4	-	—	TRISA1	TRISA0	1F93
PORTA	0E02	_	_	_	RA12	RA11	RA10	RA9	RA8	RA7	_	_	RA4	_	_	RA1	RA0	0000
LATA	0E04	_	_	_	LATA12	LATA11	LATA10	LATA9	LATA8	LATA7	_	_	LATA4	_	_	LA1TA1	LA0TA0	0000
ODCA	0E06	_	_	_	ODCA12	ODCA11	ODCA10	ODCA9	ODCA8	ODCA7	_	_	ODCA4	_	_	ODCA1	ODCA0	0000
CNENA	0E08	_	_	_	CNIEA12	CNIEA11	CNIEA10	CNIEA9	CNIEA8	CNIEA7	_	_	CNIEA4	_	_	CNIEA1	CNIEA0	0000
CNPUA	0E0A	_	_	_	CNPUA12	CNPUA11	CNPUA10	CNPUA9	CNPUA8	CNPUA7	_	_	CNPUA4	_	_	CNPUA1	CNPUA0	0000
CNPDA	0E0C	_	_	_	CNPDA12	CNPDA11	CNPDA10	CNPDA9	CNPDA8	CNPDA7	_	_	CNPDA4	_	_	CNPDA1	CNPDA0	0000
ANSELA	0E0E	_	_	—	ANSA12	ANSA11	—	_	_	—		—	ANSA4	-	_	ANSA1	ANSA0	1813

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-47: PORTB REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	0E16	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E	_	_	_	_	-	_	_	ANSB8		—	-		ANSB3	ANSB2	ANSB1	ANSB0	010F

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-48: PORTC REGISTER MAP FOR PIC24EPXXXGP/MC206 AND dsPIC33EPXXXGP/MC206/506 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	TRISC15	_	TRISC13	TRISC12	TRISC11	TRISC10	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	BFFF
PORTC	0E22	RC15	-	RC13	RC12	RC11	RC10	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx
LATC	0E24	LATC15		LATC13	LATC12	LATC11	LATC10	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
ODCC	0E26	ODCC15	_	ODCC13	ODCC12	ODCC11	ODCC10	ODCC9	ODCC8	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000
CNENC	0E28	CNIEC15	_	CNIEC13	CNIEC12	CNIEC11	CNIEC10	CNIEC9	CNIEC8	CNIEC7	CNIEC6	CNIEC5	CNIEC4	CNIEC3	CNIEC2	CNIEC1	CNIEC0	0000
CNPUC	0E2A	CNPUC15	_	CNPUC13	CNPUC12	CNPUC11	CNPUC10	CNPUC9	CNPUC8	CNPUC7	CNPUC6	CNPUC5	CNPUC4	CNPUC3	CNPUC2	CNPUC1	CNPUC0	0000
CNPDC	0E2C	CNPDC15	_	CNPDC13	CNPDC12	CNPDC11	CNPDC10	CNPDC9	CNPDC8	CNPDC7	CNPDC6	CNPDC5	CNPDC4	CNPDC3	CNPDC2	CNPDC1	CNPDC0	0000
ANSELC	0E2E		-	-	—	ANSC11	_		_	—	—	_		_	ANSC2	ANSC1	ANSC0	0807

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4.1 PAGED MEMORY SCHEME

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X architecture extends the available Data Space through a paging scheme, which allows the available Data Space to be accessed using MOV instructions in a linear fashion for pre-modified and post-modified Effective Addresses (EA). The upper half of the base Data Space address is used in conjunction with the Data Space Page registers, the 10-bit Read Page register (DSRPAG) or the 9-bit Write Page register (DSWPAG), to form an Extended Data Space (EDS) address or Program Space Visibility (PSV) address. The Data Space Page registers are located in the SFR space.

Construction of the EDS address is shown in Example 4-1. When DSRPAG<9> = 0 and the base address bit, EA<15> = 1, the DSRPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS read address. Similarly, when base address bit, EA<15> = 1, DSWPAG<8:0> are concatenated onto EA<14:0> to form the 24-bit EDS write address.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

		11.0	11.0		11.0		
		0-0	0-0	VREGSE	0-0		VREGS
hit 15		—		VNEGSF	—	Civi	bit 8
bit 10							Dit 0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7						.1	bit 0
Legend:							
R = Reada	able bit	W = Writable I	oit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	TRAPR: Trap	Reset Flag bit					
	$1 = A \operatorname{Trap} Co$	onflict Reset ha	s occurred	d			
hit 11			s not occurre		ot Elog bit		
DIL 14	1 = An illega	l oncode deter	viinniiaiizeu	v Access Res	et Flay Dit ode or Uninitial	lized W registe	er used as an
	Address	Pointer caused	a Reset			ized w regiote	
	0 = An illegal	l opcode or Uni	nitialized W r	egister Reset h	as not occurred	t	
bit 13-12	Unimplemen	ted: Read as 'o)'				
bit 11	VREGSF: Fla	ish Voltage Reg	ulator Stand	by During Slee	p bit		
	1 = Flash vol	tage regulator i	s active durin	ng Sleep			
bit 10		tage regulator (naby mode dui	ing Sleep		
bit Q	CM: Configur	ation Mismatch	, Elac bit				
bit 5	1 = A Configur	ration Mismatch	h Reset has	occurred			
	0 = A Configu	ration Mismatc	h Reset has	not occurred			
bit 8	VREGS: Volta	age Regulator S	Standby Durii	ng Sleep bit			
	1 = Voltage r	egulator is activ	e during Sle	ер			
	0 = Voltage r	egulator goes in	nto Standby i	mode during SI	еер		
bit 7	EXTR: Extern	nal Reset (MCL	R) Pin bit				
	\perp = A Master 0 = A Master	Clear (pin) Res Clear (pin) Res	et has occur et has not or	rea ccurred			
bit 6	SWR: Softwa	re RESET (Instr	uction) Flag	bit			
	1 = A reset	instruction has	been execut	ed			
	0 = A RESET	instruction has	not been exe	ecuted			
bit 5	SWDTEN: So	oftware Enable/	Disable of W	DT bit ⁽²⁾			
	1 = WDT is er	nabled					
bit 4		ISADIEU hdog Timor Tim	o out Elog b	:+			
DIL 4	1 = WDT time		e-oul Flay D	IL			
	0 = WDT time	e-out has not oc	curred				
Note 1.	All of the Peset sta	itus hits can bo	set or cleare	d in software S	Setting one of th	ese hits in soft	vara does not
	cause a device Re	set.					
2:	If the FWDTEN Co SWDTEN bit settin	onfiguration bit i	s '1' (unprog	rammed), the V	VDT is always e	enabled, regard	less of the

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Notes
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	0.0	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

9.2 Oscillator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

9.2.1 KEY RESOURCES

- "Oscillator" (DS70580) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- · Development Tools

16.2 PWM Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

16.2.1 KEY RESOURCES

- "High-Speed PWM" (DS70645) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 17-17: INT1TMRH: INTERVAL 1 TIMER HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	R<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	R<23:16>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable bi	t	U = Unimplen	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 INTTMR<31:16>: High Word Used to Form 32-Bit Interval Timer Register (INT1TMR) bits

REGISTER 17-18: INT1TMRL: INTERVAL 1 TIMER LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	1R<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTT	/IR<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 INTTMR<15:0>: Low Word Used to Form 32-Bit Interval Timer Register (INT1TMR) bits

23.2 ADC Helpful Tips

- 1. The SMPIx control bits in the AD1CON2 register:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated, if enabled.
 - b) When the CSCNA bit in the AD1CON2 registers is set to '1', this determines when the ADC analog scan channel list, defined in the AD1CSSL/AD1CSSH registers, starts over from the beginning.
 - c) When the DMA peripheral is not used (ADDMAEN = 0), this determines when the ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0.
 - d) When the DMA peripheral is used (ADDMAEN = 1), this determines when the DMA Address Pointer is incremented after a sample/conversion operation. ADC1BUF0 is the only ADC buffer used in this mode. The ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0. The DMA address is incremented after completion of every 32nd sample/conversion operation. Conversion results are stored in the ADC1BUF0 register for transfer to RAM using DMA.
- 2. When the DMA module is disabled (ADDMAEN = 0), the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF, regardless of which analog inputs are being used subject to the SMPIx bits and the condition described in 1c) above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- 3. When the DMA module is enabled (ADDMAEN = 1), the ADC module has only 1 ADC result buffer (i.e., ADC1BUF0) per ADC peripheral and the ADC conversion result must be read, either by the CPU or DMA Controller, before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely, even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in Manual Sample mode, particularly where the user's code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.

5. Enabling op amps, comparator inputs and external voltage references can limit the availability of analog inputs (ANx pins). For example, when Op Amp 2 is enabled, the pins for ANO, AN1 and AN2 are used by the op amp's inputs and output. This negates the usefulness of Alternate Input mode since the MUXA selections use AN0-AN2. Carefully study the ADC block diagram to determine the configuration that will best suit your application. Configuration examples are available in the "Analog-to-Digital Converter (ADC)" (DS70621) section in the "dsPIC33/ PIC24 Family Reference Manual".

23.3 ADC Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

23.3.1 KEY RESOURCES

- "Analog-to-Digital Converter (ADC)" (DS70621) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

bit 7-5	SSRC<2:0>: Sample Trigger Source Select bits
	If SSRCG = 1: 111 = Reserved 110 = PTGO15 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 101 = PTGO14 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 100 = PTGO13 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 011 = PTGO12 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 010 = PWM Generator 3 primary trigger compare ends sampling and starts conversion ⁽²⁾ 001 = PWM Generator 2 primary trigger compare ends sampling and starts conversion ⁽²⁾ 000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion ⁽²⁾
	If SSRCG = 0: 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = CTMU ends sampling and starts conversion 101 = Reserved
	 101 - Reserved 100 = Timer5 compare ends sampling and starts conversion 011 = PWM primary Special Event Trigger ends sampling and starts conversion 010 = Timer3 compare ends sampling and starts conversion 001 = Active transition on the INT0 pin ends sampling and starts conversion 000 = Clearing the Sample bit (SAMP) ends sampling and starts conversion (Manual mode)
bit 4	SSRCG: Sample Trigger Source Group bit
	See SSRC<2:0> for details.
bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x) In 12-bit mode (AD21B = 1), SIMSAM is Unimplemented and is Read as '0': 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence
bit 2	ASAM: ADC1 Sample Auto-Start bit
	 1 = Sampling begins immediately after the last conversion; SAMP bit is auto-set 0 = Sampling begins when the SAMP bit is set
bit 1	SAMP: ADC1 Sample Enable bit
	 1 = ADC Sample-and-Hold amplifiers are sampling 0 = ADC Sample-and-Hold amplifiers are holding If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC<2:0> = 000, software can write '0' to end sampling and start conversion. If SSRC<2:0> ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC1 Conversion Status bit ⁽³⁾
	 1 = ADC conversion cycle has completed 0 = ADC conversion has not started or is in progress Automatically set by hardware when the ADC conversion is complete. Software can write '0' to clear the DONE status bit (software is not allowed to write '1'). Clearing this bit does NOT affect any operation in progress. Automatically cleared by hardware at the start of a new conversion.
Note 1:	See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

- 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
- **3:** Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

U-0	U-0	U-0	U-0	U-0 U-0 U-0 U			
	_				—		
bit 15						bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CFSEL2	CFSEL1	CFSEL0	CFLTREN	CFDIV2	CFDIV1	CFDIV0
bit 7							bit 0
Logondi							
R = Reada	able hit	W = Writable	hit	= Inimpler	mented hit read	ae 'O'	
-n = Value	at POR	'1' = Rit is set	bit	'0' = Bit is cle	ared	x = Rit is unkr	nown
II Value		1 Dit lo oot					
bit 15-7	Unimplemen	nted: Read as '	0'				
bit 6-4	CFSEL<2:0>	: Comparator I	-ilter Input Clo	ck Select bits			
	111 = T5CLK	(1)					
	110 = T4CLK	(2) (1)					
	101 = T3CLK	(1) (2)					
	100 = 12CLP	ved					
	010 = SYNC	01 ⁽³⁾					
	001 = Fosc ⁽⁴	4)					
	000 = FP ⁽⁴⁾						
bit 3	CFLTREN: C	comparator Filte	er Enable bit				
	1 = Digital filt	er is enabled					
hit 2-0		Comparator F	ilter Clock Div	ide Select hits			
511 2-0	111 = Clock	Divide 1.128					
	110 = Clock	Divide 1:64					
	101 = Clock Divide 1:32						
	100 = Clock Divide 1:16						
	011 = Clock Divide 1:8 $010 = Clock Divide 1:4$						
	010 - Clock Divide 1.4 $001 = Clock Divide 1.2$						
	000 = Clock	Divide 1:1					
Note 1:	See the Type C Ti	mer Block Diac	ram (Figure 1	3-2).			
2:	2: See the Type B Timer Block Diagram (Figure 13-1).						

REGISTER 25-6: CMxFLTR: COMPARATOR x FILTER CONTROL REGISTER

- 3: See the High-Speed PWMx Module Register Interconnection Diagram (Figure 16-2).
 - 4: See the Oscillator System Diagram (Figure 9-1).

26.3 Programmable CRC Registers

REGISTER 26-1: CRCCON1: CRC CONTROL REGISTER 1

RW-0 U-0 R/W-0 R-0 R-0 R-0 R-0 R-0 CRCEN - CSIDL VWORD4 VWORD3 VWORD2 VWORD1 VWOR bit 15 - CSIDL VWORD4 VWORD3 VWORD2 VWORD1 VWOR CRCFUL CRCMPT CRCISEL CRCGO LENDIAN - - - - bit 7 -					<u> </u>		<u> </u>	
CRCEN — CSIDL VWORD4 VWORD3 VWORD2 VWORD1 VWOR bit 15	R/W-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0
bit 15 R-0 R-1 R/W-0 R/W-0 U-0 U-0 U-0 CRCFUL CRCMPT CRCISEL CRCGO LENDIAN — — — bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CRCEN: CRC Enable bit 1 = CRC module is enabled 0 = CRC module is enabled 0 = CRC module is disabled; all state machines, pointers and CRCWDAT/CRCDAT are reset, or SFRs are not reset SFRs are not reset bit 14 Unimplemented: Read as '0'	CRCEN	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0
R.0 R.1 R/W-0 R/W-0 U-0 U-0 U-0 CRCFUL CRCMPT CRCISEL CRCGO LENDIAN — …	bit 15 b							
R-0 R-1 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 CRCFUL CRCMPT CRCISEL CRCGO LENDIAN — — — bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' — …								
CRCFUL CRCMPT CRCISEL CRCGO LENDIAN — # #	R-0	R-1	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CRCEN: CRC Enable bit 1 = CRC module is enabled 0 = CRC module is enabled 0 = CRC module is enabled; 0 = CRC module is enabled; 0 = CRC WDAT/CRCDAT are reset; or SFRs are not reset bit 14 Unimplemented: Read as '0' bit 13 CSIDL: CRC Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-8 VWORD<4:0> : Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> or 16 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full 0 = FIFO is not full 0 = FIFO is not full 0 = FIFO is not full 0 = FIFO is not empty 0 = FIFO is not empty 0 = FIFO is not empty 0 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 1 = St	CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	—	_	—
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CRCEN: CRC Enable bit 1 = CRC module is enabled 0 = CRC module is disabled; all state machines, pointers and CRCWDAT/CRCDAT are reset, or SFRs are not reset bit 14 Unimplemented: Read as '0' bit 13 CSIDL: CRC Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-8 VWORD<4:0-> Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> > or 16 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full 0 = FIFO is not full 0 = FIFO is not full bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter is turned off 1 = Data word is biffed in the CPC startion with the I Sh (ittle notion)	bit 7							bit 0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CRCEN: CRC Enable bit 1 = CRC module is enabled 0 = CRC module is disabled; all state machines, pointers and CRCWDAT/CRCDAT are reset, or SFRs are not reset bit 14 Unimplemented: Read as '0' bit 13 CSIDL: CRC Stop in Idle Mode bit 1 = Discontinues module operation in Idle mode 0 = Continues module operation in Idle mode bit 12-8 VWORD -> Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> or 16 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Full bit 1 = FIFO is not full 1 = FIFO is not full bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter is turned off 1 = Dita word is chifte								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CRCEN: CRC Enable bit 1 = CRC module is enabled 0 = CRC module is disabled; all state machines, pointers and CRCWDAT/CRCDAT are reset, or SFRs are not reset bit 14 Unimplemented: Read as '0' bit 13 CSIDL: CRC Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-8 VWORD-4:00: Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> > or 16 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is not full 0 = FIFO is not full bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial	Legend:							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CRCEN: CRC Enable bit 1 = CRC module is enabled 0' = CRC module is disabled; all state machines, pointers and CRCWDAT/CRCDAT are reset, or SFRs are not reset bit 14 Unimplemented: Read as '0' 5 Enable bit 1 = Discontinues module operation when device enters ldle mode 0 = Continues module operation in ldle mode bit 13 CSIDL: CRC Stop in Idle Mode bit 1 = Discontinues module operation in ldle mode 0 = Continues module operation in ldle mode bit 12-8 VWORD -4:0>: Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> or 16 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is not full 0 = FIFO is not full bit 5 CRCISEL: CRC Interrupt Selection bit 1 = FIFO is not fift is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter<	R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
bit 15 CRCEN: CRC Enable bit 1 = CRC module is enabled 0 = CRC module is disabled; all state machines, pointers and CRCWDAT/CRCDAT are reset, of SFRs are not reset bit 14 Unimplemented: Read as '0' bit 13 CSIDL: CRC Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-8 VWORD VWORD Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> > or 16 when PLEN<4:0> < 7.	-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 14 Unimplemented: Read as '0' bit 13 CSIDL: CRC Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-8 VWORD<4:0>: Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> > or 16 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is not full 0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 1 = Data word is shifted into the CRC starting with the LSh (little endiap)	bit 15	CRCEN: CRC 1 = CRC mod 0 = CRC mod SFRs are	C Enable bit dule is enabled dule is disable e not reset	l d; all state ma	ichines, pointe	rs and CRCWD	AT/CRCDAT a	re reset, other
bit 13 CSIDL: CRC Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-8 VWORD<4:0>: Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is full 0 = FIFO is not full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is empty 0 = FIFO is not empty 0 = FIFO is not full CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter is turned off Dit 3 LENDIAN: Data Word Little-Endian Configuration bit	bit 14	Unimplemen	ted: Read as '	0'				
1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-8 VWORD<4:0>: Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> ≤ 0r 16 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full 0 = FIFO is not full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is not empty 0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter is turned off 0 = CRC serial shifter is turned off	bit 13	CSIDL: CRC	Stop in Idle Mo	ode bit				
bit 12-8 VWORD<4:0>: Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is empty 0 = FIFO is not empty 0 = FIFO is not empty 0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit		1 = Discontin 0 = Continue	ues module op s module oper	peration when ation in Idle m	device enters lode	Idle mode		
Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> > or 16 when PLEN<4:0> ≤ 7. bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is ont full 1 = FIFO is empty 0 = FIFO is not empty 0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit	bit 12-8	VWORD<4:0	>: Pointer Valu	e bits				
bit 7 CRCFUL: CRC FIFO Full bit 1 = FIFO is full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is empty 0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit		Indicates the or 16 when Pl	number of valid LEN<4:0> \leq 7.	d words in the	FIFO. Has a r	naximum value	of 8 when PLE	N<4:0> > 7
1 = FIFO is full 0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is empty 0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit	bit 7	CRCFUL: CR	C FIFO Full bi	t				
0 = FIFO is not full bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is empty 0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit		1 = FIFO is fu	ull					
bit 6 CRCMPT: CRC FIFO Empty Bit 1 = FIFO is empty 0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter 0 = CRC serial shifter is turned off 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit			iot full					
0 = FIFO is not empty bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit 1 = Data word is shifted into the CRC starting with the LSh (little andian)	bit 6	1 = FIFO is e	C FIFO Empty	/ Bit				
bit 5 CRCISEL: CRC Interrupt Selection bit 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit 1 = Data word is shifted into the CRC starting with the LSh (little endian)		0 = FIFO is n	ot empty					
1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit 1 = Data word is shifted into the CRC starting with the LSh (little andian)	bit 5	CRCISEL: CF	RC Interrupt Se	election bit				
bit 4 CRCGO: Start CRC bit 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit 1 = Data word is shifted into the CRC starting with the LSh (little andian)		 1 = Interrupt on FIFO is empty; final word of data is still shifting through CRC 0 = Interrupt on shift is complete and CRCWDAT results are ready 						
 1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off bit 3 LENDIAN: Data Word Little-Endian Configuration bit 1 = Data word is shifted into the CRC starting with the LSh (little endian) 	bit 4 CRCGO: Start CRC bit							
bit 3 LENDIAN: Data Word Little-Endian Configuration bit		1 = Starts CRC serial shifter 0 = CRC serial shifter is turned off						
1 = Data word is shifted into the CPC starting with the LSh (little and ign)	bit 3	LENDIAN: Da	ata Word Little-	Endian Config	guration bit			
0 = Data word is shifted into the CRC starting with the MSb (big endian)		1 = Data wor 0 = Data wor	d is shifted into d is shifted into	the CRC sta	rting with the L rting with the N	Sb (little endiar ISb (big endian	1))	
bit 2-0 Unimplemented: Read as '0'	bit 2-0							

FIGURE 30-3: I/O TIMING CHARACTERISTICS

TABLE 30-21: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\label{eq:standard} \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature } -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min. Typ. ⁽¹⁾ Max. Units Conditions			Conditions	
DO31	TIOR	Port Output Rise Time	_	5	10	ns	
DO32	TIOF	Port Output Fall Time	—	5	10	ns	
DI35	TINP	INTx Pin High or Low Time (input)	20	_		ns	
DI40	TRBP	CNx High or Low Time (input)	2		_	TCY	

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 30-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS

FIGURE 30-12: QEA/QEB INPUT CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-31: QUADRATURE DECODER TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extende} \end{array}$			
Param No.	Symbol	Characteristic ⁽¹⁾	Тур. ⁽²⁾	Max.	Units	Conditions
TQ30	TQUL	Quadrature Input Low Time	6 Tcy		ns	
TQ31	ΤουΗ	Quadrature Input High Time	6 Tcy	—	ns	
TQ35	ΤουΙΝ	Quadrature Input Period	12 Tcy	—	ns	
TQ36	ΤουΡ	Quadrature Phase Period	3 Tcy	—	ns	
TQ40	TQUFL	Filter Time to Recognize Low, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)
TQ41	TQUFH	Filter Time to Recognize High, with Digital Filter	3 * N * Tcy		ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to "Quadrature Encoder Interface (QEI)" (DS70601) in the "*dsPIC33/PIC24 Family Reference Manual*". Please see the Microchip web site for the latest family reference manual sections.

DC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)(1)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
					-40°C ≤ TA	.≤+125°	C for Extended
Param No.	Symbol	Characteristic	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
Compa	rator AC Ch	naracteristics					
CM10	Tresp	Response Time ⁽³⁾	_	19	_	ns	V+ input step of 100 mV, V- input held at VDD/2
CM11	Тмс2о∨	Comparator Mode Change to Output Valid		_	10	μs	
Compa	rator DC Ch	naracteristics					
CM30	VOFFSET	Comparator Offset Voltage	—	±10	40	mV	
CM31	VHYST	Input Hysteresis Voltage ⁽³⁾	_	30	—	mV	
CM32	Trise/ Tfall	Comparator Output Rise/ Fall Time ⁽³⁾	—	20	—	ns	1 pF load capacitance on input
CM33	Vgain	Open-Loop Voltage Gain ⁽³⁾	—	90	—	db	
CM34	VICM	Input Common-Mode Voltage	AVss	—	AVdd	V	
Op Am	p AC Chara	cteristics					
CM20	SR	Slew Rate ⁽³⁾		9		V/µs	10 pF load
CM21a	Рм	Phase Margin (Configuration A) ^(3,4)	_	55	—	Degree	G = 100V/V; 10 pF load
CM21b	Рм	Phase Margin (Configuration B) ^(3,5)	—	40	_	Degree	G = 100V/V; 10 pF load
CM22	Gм	Gain Margin ⁽³⁾	—	20	—	db	G = 100V/V; 10 pF load
CM23a	GBW	Gain Bandwidth (Configuration A) ^(3,4)	_	10	—	MHz	10 pF load
CM23b	Gвw	Gain Bandwidth (Configuration B) ^(3,5)	—	6	_	MHz	10 pF load

TABLE 30-53: OP AMP/COMPARATOR SPECIFICATIONS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

- 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- 3: Parameter is characterized but not tested in manufacturing.
- 4: See Figure 25-6 for configuration information.
- 5: See Figure 25-7 for configuration information.
- 6: Resistances can vary by ±10% between op amps.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
Op Am	p DC Chara	cteristics					
CM40	VCMR	Common-Mode Input Voltage Range	AVss	_	AVDD	V	
CM41	CMRR	Common-Mode Rejection Ratio ⁽³⁾	—	40	—	db	Vсм = AVdd/2
CM42	VOFFSET	Op Amp Offset Voltage ⁽³⁾	—	±5	—	mV	
CM43	Vgain	Open-Loop Voltage Gain ⁽³⁾	—	90		db	
CM44	los	Input Offset Current	—	_	_		See pad leakage currents in Table 30-11
CM45	Ів	Input Bias Current	—	—	_	_	See pad leakage currents in Table 30-11
CM46	Ιουτ	Output Current	—	_	420	μA	With minimum value of RFEEDBACK (CM48)
CM48	RFEEDBACK	Feedback Resistance Value	8	-	_	kΩ	
CM49a	VOADC	Output Voltage Measured at OAx Using ADC ^(3,4)	AVss + 0.077 AVss + 0.037 AVss + 0.018		AVDD – 0.077 AVDD – 0.037 AVDD – 0.018	V V V	Ιουτ = 420 μΑ Ιουτ = 200 μΑ Ιουτ = 100 μΑ
CM49b	Vout	Output Voltage Measured at OAxOUT Pin ^(3,4,5)	AVss + 0.210 AVss + 0.100 AVss + 0.050		AVDD - 0.210 AVDD - 0.100 AVDD - 0.050	V V V	Ιουτ = 420 μΑ Ιουτ = 200 μΑ Ιουτ = 100 μΑ
CM51	RINT1 ⁽⁶⁾	Internal Resistance 1 (Configuration A and B) ^(3,4,5)	198	264	317	Ω	Min = -40°C Typ = +25°C Max = +125°C

TABLE 30-53: OP AMP/COMPARATOR SPECIFICATIONS (CONTINUED)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

- 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- **3:** Parameter is characterized but not tested in manufacturing.
- 4: See Figure 25-6 for configuration information.
- 5: See Figure 25-7 for configuration information.
- 6: Resistances can vary by ±10% between op amps.

Revision D (December 2011)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table A-3.

TABLE A-3: MAJOR SECTION UPDATES

Section Name	Update Description
"16-bit Microcontrollers and Digital Signal Controllers (up to 512-Kbyte Flash and 48-Kbyte SRAM) with High- Speed PWM, Op amps, and Advanced Analog"	Removed the Analog Comparators column and updated the Op amps/Comparators column in Table 1 and Table 2.
Section 21.0 "Enhanced CAN (ECAN™) Module (dsPIC33EPXXXGP/MC50X Devices Only)"	Updated the CANCKS bit value definitions in CiCTRL1: ECAN Control Register 1 (see Register 21-1).
Section 30.0 "Electrical Characteristics"	Updated the VBOR specifications and/or its related note in the following electrical characteristics tables: • Table 30-1 • Table 30-4 • Table 30-12 • Table 30-14 • Table 30-15 • Table 30-16 • Table 30-56 • Table 30-57 • Table 30-58 • Table 30-59 • Table 30-60