

Welcome to E-XFL.COM

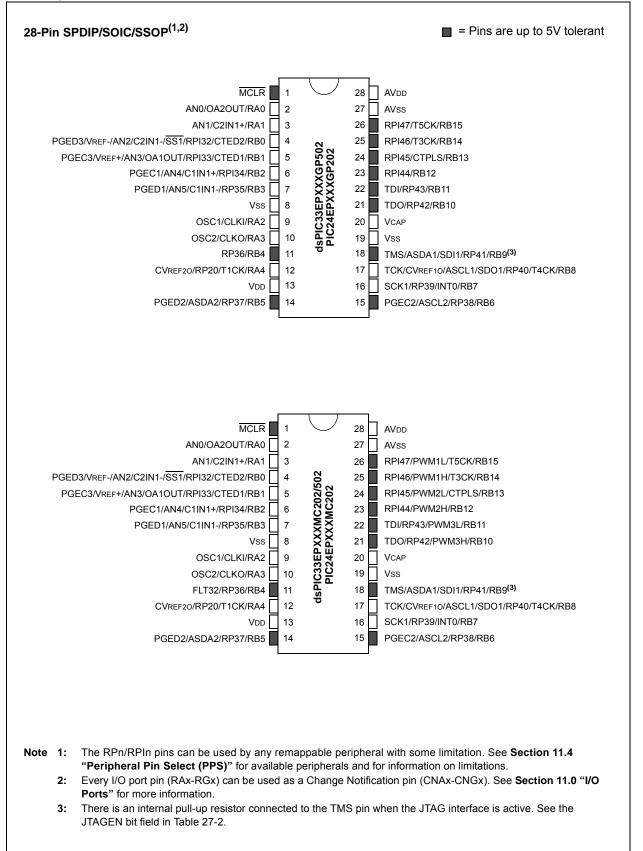
What is "Embedded - Microcontrollers"?

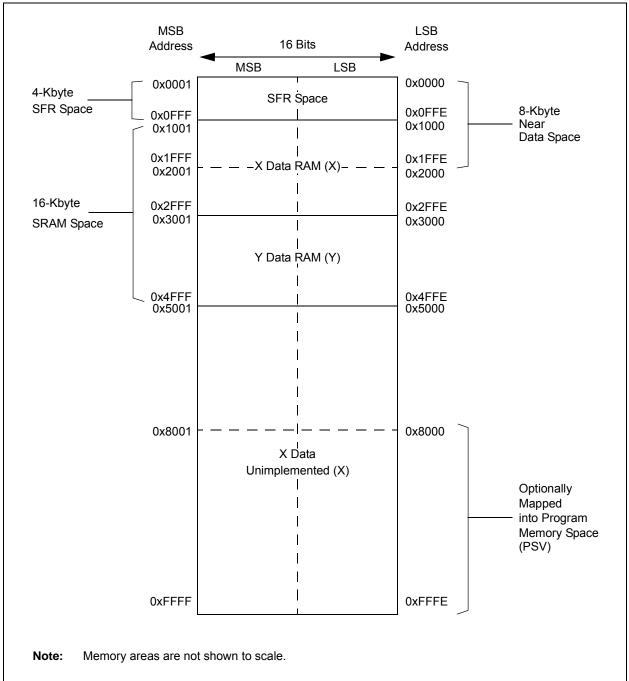
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

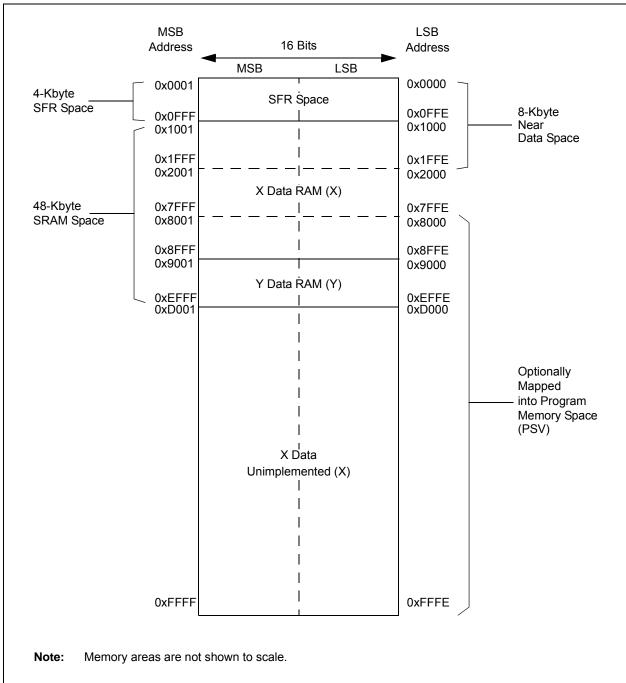
Details

E·XFI


Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep128gp204-e-ml


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

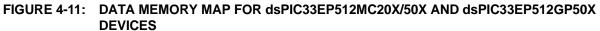

Pin Diagrams

FIGURE 4-9: DATA MEMORY MAP FOR dsPIC33EP128MC20X/50X AND dsPIC33EP128GP50X DEVICES

																		All
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Resets
PTGCST	0AC0	PTGEN	—	PTGSIDL	PTGTOGL		PTGSWT	PTGSSEN	PTGIVIS	PTGSTRT	PTGWTO	_	_	—	—	PTGIT	M<1:0>	0000
PTGCON	0AC2	F	PTGCLK<2	:0>		F	PTGDIV<4:0	>		PTGPWD<3:0> — PTGWDT<2:0>						0000		
PTGBTE	0AC4		ADC	TS<4:1>		IC4TSS	IC3TSS	IC2TSS	IC1TSS	6 OC4CS OC3CS OC2CS OC1CS OC4TSS OC3TSS OC2TSS OC1TSS						0000		
PTGHOLD	0AC6								PTGHOLD	D<15:0>							0000	
PTGT0LIM	0AC8								PTGT0LIM	<15:0>								0000
PTGT1LIM	0ACA								PTGT1LIM	<15:0>								0000
PTGSDLIM	0ACC								PTGSDLIN	l<15:0>								0000
PTGC0LIM	0ACE								PTGC0LIN	<15:0>								0000
PTGC1LIM	0AD0	PTGC1LIM<15:0>										0000						
PTGADJ	0AD2								PTGADJ<	<15:0>							0000	
PTGL0	0AD4								PTGL0<	:15:0>							0000	
PTGQPTR	0AD6	—	—	—	—	_	—	—	_	PTGQPTR<4:0>						0000		
PTGQUE0	0AD8				STEP	1<7:0>				STEP0<7:0>							0000	
PTGQUE1	0ADA				STEP	'3<7:0>				STEP2<7:0>							0000	
PTGQUE2	0ADC				STEP	25<7:0>							STEP4	<7:0>				0000
PTGQUE3	0ADE		STEP7<7:0>							STEP6<7:0>							0000	
PTGQUE4	0AE0	STEP9<7:0>						STEP8<7:0>							0000			
PTGQUE5	0AE2	STEP11<7:0>							STEP10<7:0>						0000			
PTGQUE6	0AE4	STEP13<7:0>							STEP12<7:0>						0000			
PTGQUE7	0AE6		STEP15<7:0>							STEP14<7:0>						0000		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657H-page 78

TABLE 4-24: CRC REGISTER MAP

File Name	Addr.	Bit 15	15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									All Resets						
CRCCON1	0640	CRCEN	—	CSIDL		V	WORD<4:0)>		CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	_	_	—	0000
CRCCON2	0642		_	DWIDTH<4:0> PLEN<4:0> 00								0000						
CRCXORL	0644		X<15:1>0								0000							
CRCXORH	0646		X<31:16>								0000							
CRCDATL	0648		CRC Data Input Low Word							0000								
CRCDATH	064A		CRC Data Input High Word							0000								
CRCWDATL	064C		CRC Result Low Word							0000								
CRCWDATH	064E		CRC Result High Word							0000								

Legend: — = unimplemented, read as '0'. Shaded bits are not used in the operation of the programmable CRC module.

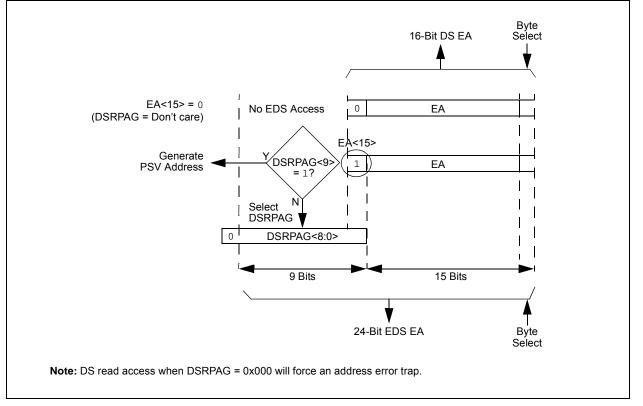
TABLE 4-25: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC202/502 AND PIC24EPXXXGP/MC202 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	—	—		RP35R<5:0>					_	_	RP20R<5:0> 0						
RPOR1	0682	_	_		RP37R<5:0>					_	Ι		RP36R<5:0>					
RPOR2	0684	_	_		RP39R<5:0>				_	Ι	RP38R<5:0>					0000		
RPOR3	0686	_	_		RP41R<5:0>				_	Ι	RP40R<5:0>					0000		
RPOR4	0688	_	_		RP43R<5:0>				—	_	RP42R<5:0>					0000		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC203/503 AND PIC24EPXXXGP/MC203 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680		—			RP35F	R<5:0>			_	_			RP20F	२<5:0>			0000
RPOR1	0682	_	_			RP37F	۲<5:0>			_	_			RP36F	२<5:0>			0000
RPOR2	0684	_	_		RP39R<5:0>				_	—			RP38F	R<5:0>			0000	
RPOR3	0686	_	_		RP41R<5:0>					_	—	RP40R<5:0>					0000	
RPOR4	0688	_	_		RP43R<5:0>					_	_	RP42R<5:0>				0000		
RPOR5	068A	_	_	_	_	_	_		_	_	_	_	_	_	—			0000
RPOR6	068C	_	—	—					_	—	RP56R<5:0>					0000		


Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4.1 PAGED MEMORY SCHEME

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X architecture extends the available Data Space through a paging scheme, which allows the available Data Space to be accessed using MOV instructions in a linear fashion for pre-modified and post-modified Effective Addresses (EA). The upper half of the base Data Space address is used in conjunction with the Data Space Page registers, the 10-bit Read Page register (DSRPAG) or the 9-bit Write Page register (DSWPAG), to form an Extended Data Space (EDS) address or Program Space Visibility (PSV) address. The Data Space Page registers are located in the SFR space.

Construction of the EDS address is shown in Example 4-1. When DSRPAG<9> = 0 and the base address bit, EA<15> = 1, the DSRPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS read address. Similarly, when base address bit, EA<15> = 1, DSWPAG<8:0> are concatenated onto EA<14:0> to form the 24-bit EDS write address.

4.5.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions. which apply to dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices, and the DSP accumulator class of instructions, which apply to the dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.5.4 MAC INSTRUCTIONS (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X DEVICES ONLY)

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

The Two-Source Operand Prefetch registers must be members of the set: {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must therefore, be valid addresses within X Data Space for W8 and W9, and Y Data Space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- · Register Indirect
- Register Indirect Post-Modified by 2
- · Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.5.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as a NOP, do not have any operands.

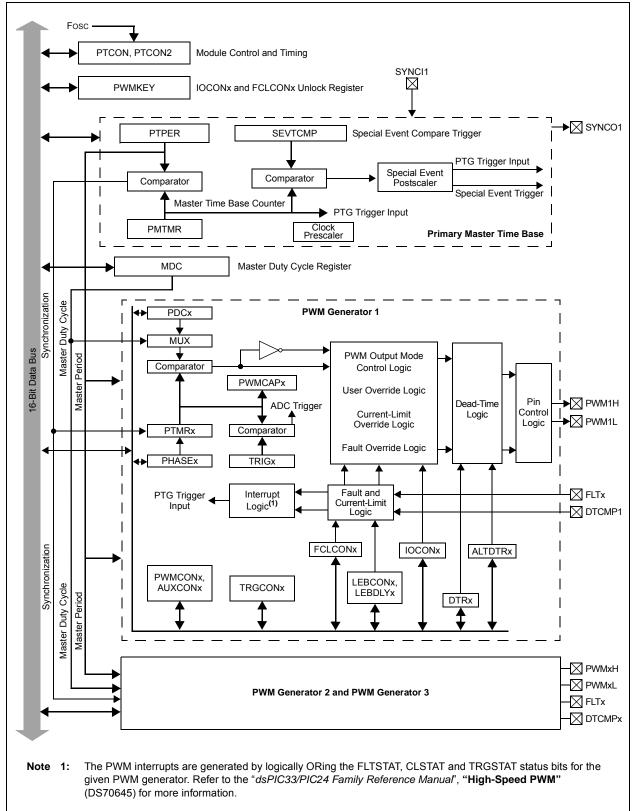
dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	_	_	_	_	_	_	_	
bit 15							bit	
U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	
_	-	_	DMA0MD ⁽¹⁾ DMA1MD ⁽¹⁾ DMA2MD ⁽¹⁾ DMA3MD ⁽¹⁾	PTGMD	_	_	_	
bit 7							bit	
Legend: R = Readab -n = Value a		W = Writable '1' = Bit is set		U = Unimplen '0' = Bit is clea	nented bit, read ared	l as '0' x = Bit is unkn	iown	
bit 15-5 bit 4	Unimplemented: Read as '0' DMA0MD: DMA0 Module Disable bit ⁽¹⁾ 1 = DMA0 module is disabled 0 = DMA0 module is enabled DMA1MD: DMA1 Module Disable bit ⁽¹⁾ 1 = DMA1 module is disabled 0 = DMA1 module is enabled DMA2MD: DMA2 Module Disable bit ⁽¹⁾ 1 = DMA2 module is disabled 0 = DMA2 module is enabled DMA3MD: DMA3 Module Disable bit ⁽¹⁾ 1 = DMA3 module is disabled 0 = DMA3 module is disabled 0 = DMA3 module is disabled							
bit 3	PTGMD: PTG Module Disable bit 1 = PTG module is disabled 0 = PTG module is enabled							
bit 2-0	Unimplement	ted: Read as '	0'					
Note 1: T	his single bit ena	ables and disal	oles all four DM	A channels.				

REGISTER 10-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7

11.7 **Peripheral Pin Select Registers**

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0


U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INT1R<6:0>			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	_	_	—
bit 7		•		•			bit 0

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
--------	----------------------------

bit 14-8 INT1R<6:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 0000001 = Input tied to CMP1 0000000 = Input tied to Vss bit 7-0 Unimplemented: Read as '0'

FIGURE 16-2: HIGH-SPEED PWMx MODULE REGISTER INTERCONNECTION DIAGRAM

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
_	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL ⁽²⁾	CLMOD						
bit 15			•				bit 8						
	D 4 4	D 0.01 4	D 444		DAMA	DAMA	DAMO						
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0 FLTPOL ⁽²⁾	R/W-0	R/W-0						
FLTSRC4 bit 7	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLIPOL-	FLTMOD1	FLTMOD0 bit						
							DI						
Legend:													
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'							
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown						
bit 15	Unimplemen	ted: Read as '	0'										
bit 14-10	CLSRC<4:0>	Current-Limit	Control Signa	al Source Seleo	ct for PWM Ger	nerator # bits							
	11111 = Fault 32												
	11110 = Res	erved											
	•												
	•												
	• 01100 = Reserved												
	01100 = Reserved 01011 = Comparator 4												
		Amp/Comparat	or 3										
	•	Amp/Comparat											
		Amp/Comparat											
	00111 = Res												
	00110 = Res	erved											
	00101 = Res	erved											
	00100 = Res	erved											
	00011 = Fau												
	00010 = Fau												
	00001 = Fau												
	00000 = Fau	(<i>j</i>			~								
bit 9	CLPOL: Curr	ent-Limit Polar	ity for PWM G	enerator # bit ⁽	2)								
		cted current-lim											
	0 = The selec	cted current-lim	it source is ac	tive-high									
bit 8	CLMOD: Cur	rent-Limit Mode	e Enable for P	WM Generator	r # bit								
		imit mode is er imit mode is di											
	ne PWMLOCK			<6>) is a '1', th	e IOCONx regi	ster can only be	e written aftei						
the	unlock sequen	ce has been ex	ecuted.										

REGISTER 16-15: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER⁽¹⁾

2: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

17.2 QEI Control Registers

	REGISTER 17-1:	QEI1CON: QEI1 CONTROL REGISTER
--	----------------	--------------------------------

U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — INTDIV2 ⁽³⁾ INTDIV1 ⁽³⁾ INTDIV0 ⁽³⁾ CNTPOL GATEN CCM1 CCM0 bit 7										
bit 15 bit 2 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 - INTDIV2 ⁽³⁾ INTDIV1 ⁽³⁾ INTDIV0 ⁽³⁾ CNTPOL GATEN CCM1 CCM0 - INTDIV2 ⁽³⁾ INTDIV1 ⁽³⁾ INTDIV0 ⁽³⁾ CNTPOL GATEN CCM1 CCM0 - INTDIV2 ⁽³⁾ INTDIV1 ⁽³⁾ INTDIV0 ⁽³⁾ CNTPOL GATEN CCM1 CCM0 bit 7 - intdividue W= Writable bit U = Unimplemented bit, read as '0' bit 15 GEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to bit 13 GEISDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-10 PIMOD-2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 100 = Modulo Count mode for position counter 100 = Next index event after home event initializes position counter with contents of QEI1IC register 100 = Next index input event initializes position counter with contents of QEI1IC register 100 = Index input event dees not affect position coun	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 - INTDIV2 ⁽³⁾ INTDIV1 ⁽³⁾ INTDIV0 ⁽³⁾ CNTPOL GATEN CCM1 CCM0 bit 7 bit 0 Dit 7 Dit 7 Dit 7 Dit 7 Dit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' Dit 7 en value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 0 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to Dit 13 QEISDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation in Idle mode 0 = Continues module operation in Idle mode Di Continues module operation on In Idle mode Dit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 100 = Modulo Count mode for position counter 101 = Resets the position counter 101 = Resets the position counter with contents of QEI1IC register 101 = Resets the position counter when the position counter with contents of QEI1IC register 000 = Index input e	QEIEN	_	QEISIDL	PIMOD2 ⁽¹⁾	PIMOD1 ⁽¹⁾	PIMOD0 ⁽¹⁾	IMV1 ⁽²⁾	IMV0 ⁽²⁾		
- INTDIV2 ⁽³⁾ INTDIV0 ⁽³⁾ CNTPOL GATEN CCM1 CCM0 bit 7 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' bit 0 -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' Bit is cleared x = Bit is unknown bit 13 QEISDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 0 = Continues module counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 10 = Resets the position counter when the position counter with contents of QEI1IC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 10 = Next index input event free home event initializes position counter with contents of QEI1IC register 00 = Index input event does not affect position counter 11 = Resets the position counter 110 = Next index input event me position counter 0 = Phase B match occurs when QEB = 1 0 = Phase B match occ	bit 15							bit 8		
- INTDIV2 ⁽³⁾ INTDIV0 ⁽³⁾ CNTPOL GATEN CCM1 CCM0 bit 7 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' bit 0 -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' Bit is cleared x = Bit is unknown bit 13 QEISDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 0 = Continues module counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 10 = Resets the position counter when the position counter with contents of QEI1IC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 10 = Next index input event free home event initializes position counter with contents of QEI1IC register 00 = Index input event does not affect position counter 11 = Resets the position counter 110 = Next index input event me position counter 0 = Phase B match occurs when QEB = 1 0 = Phase B match occ										
bit 7 bit 0 Legend: W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to 0 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' 0 = Continues module operation when device enters Idle mode 0 = Continues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-10 PIMOD-2:0-: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Resets the position counter 101 = Resets the position counter when the position counter with contents of QEI1IC register 101 = Nexet input event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event resets the position counter 011 = Every index input event resets the position counter 012 = Nease B match occurs when QEB = 1 0 = Phase B match occurs when QEB = 0 bit 8 IMV0: Index Match Value for Phase A bit ⁽²⁾ 1 = Phase A match occurs when QEA = 1 <t< td=""><td>U-0</td><td></td><td></td><td></td><td>R/W-0</td><td>R/W-0</td><td>R/W-0</td><td>R/W-0</td></t<>	U-0				R/W-0	R/W-0	R/W-0	R/W-0		
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' In = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 0 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to 0 bit 14 Unimplemented: Read as '0' 0 bit 13 QEISIDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 11 = Reserved 111 = Reserved 110 = Modulo Count mode for position counter 101 = Resets the position counter when the position counter equals QEI1GEC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 101 = First index vent after home event initializes position counter with contents of QEI1IC register 001 = Every index input event resets the position counter 010 = Next index input event does not affect position counter 001 = Every index input event after home event initializes position counter with contents of QEI1IC register		INTDIV2 ⁽³⁾	INTDIV1 ⁽³⁾	INTDIV0 ⁽³⁾	CNTPOL	GATEN	CCM1			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' In = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Bit is cleared x = Bit is unknown bit 15 QEISIDL: QEI Stop in Idle Mode bit 1 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' East as '0' East as '0' East as '0' bit 13 QEISIDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 10 = Second index event after home event initializes position counter with contents of QEI1IC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes the position counter 101 = Reserved III = First index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes position counter with contents of QEI1IC register 102 = Mext index input event does not affect position counter 01 = Phase	bit 7							bit 0		
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' In = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Bit is cleared x = Bit is unknown bit 15 QEISIDL: QEI Stop in Idle Mode bit 1 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' East as '0' East as '0' East as '0' bit 13 QEISIDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 10 = Second index event after home event initializes position counter with contents of QEI1IC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes the position counter 101 = Reserved III = First index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes position counter with contents of QEI1IC register 102 = Mext index input event does not affect position counter 01 = Phase	Logondy									
n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Bit is unknown bit 14 Unimplemented: Read as '0' 0' 0' Bit is cleared 0 = Continues module operation when device enters ldle mode 0 = Continues module operation in ldle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 10 = Second index event after home event initializes position counter with contents of QEI11C register 100 = Second index event after home event initializes position counter with contents of QEI11C register 10 = Next index input event resets the position counter with contents of QEI11C register 101 = Every index input event resets the position counter 00 = Index input event does not affect position counter 001 = Every index input event genst bit ⁽²⁾ 1 = Phase B match occurs when QEB = 1 011 = Phase B match occurs when QEB = 1 0 = Phase B match occurs when QEA = 1 015 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 1 015 = Phase A match occurs when QEA =		le hit	M = M/ritable	hit	= Inimpler	mented hit read	ae '0'			
bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' bit 13 QEISIDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 11 = Discontinues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 100 = Second index event after home event initializes position counter with contents of QEI1IC register 011 = First index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event resets the position counter 001 = Nevery index input eve					•					
 1 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' bit 13 QEISIDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation in Idle mode 0 = Continues module operation counter Initialization Mode Select bits⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 101 = Resets the position counter when the position counter equals QEI1GEC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes the position counter with contents of QEI1IC register 010 = Next index input event resets the position counter with contents of QEI1IC register 011 = Every index input event resets the position counter 000 = Index input event does not affect position counter 000 = Index input event does not affect position counter 000 = Index Match Value for Phase B bit⁽²⁾ 1 = Phase B match occurs when QEB = 1 0 = Phase B match occurs when QEB = 0 bit 8 IMV0: Index Match Value for Phase A bit⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 bit 7 Unimplemented: Read as '0' 	-n = value a	PUR	I = Bit is set		0 = Bit is cie	ared	x = Bit is unkr	lown		
bit 13 QEISDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 100 = Modulo Count mode for position counter 101 = Resets the position counter when the position counter equals QEI1GEC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes the position counter with contents of QEI1IC register 011 = First index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes the position counter with contents of QEI1IC register 011 = Every index input event resets the position counter 001 = Every index input event for position counter 001 = Index input event does not affect position counter 000 = Index input event does not affect position counter 001 = Phase B match occurs when QEB = 1 0 = Phase B match occurs when QEB = 0 0it 8 IMV0: Index Match Value for Phase A bit ⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 0it 7 Unimplemented: Read as '0'	bit 15	1 = Module co	ounters are ena	abled						
 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits⁽¹⁾ 111 = Reserved 10 = Modulo Count mode for position counter 10 = Resets the position counter when the position counter equals QEI1GEC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 010 = Next index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event resets the position counter with contents of QEI1IC register 000 = Index input event does not affect position counter 000 = Index input event does not affect position counter 000 = Index input event operation when QEB = 1 0 = Phase B match occurs when QEB = 0 bit 8 IMV0: Index Match Value for Phase A bit⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 bit 7 Unimplemented: Read as '0' 	bit 14	Unimplemen	ted: Read as '	0'						
 0 = Continues module operation in Idle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits⁽¹⁾ 111 = Reserved 10 = Modulo Count mode for position counter 101 = Resets the position counter when the position counter equals QEI1GEC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event resets the position counter with contents of QEI1IC register 001 = Every index input event resets the position counter 000 = Index input event does not affect position counter 000 = Index input event does not affect position counter 000 = Index input event does not affect position counter 000 = Index input event QEB = 1 0 = Phase B match occurs when QEB = 1 0 = Phase B match occurs when QEB = 0 bit 8 IMV0: Index Match Value for Phase A bit⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 bit 7 Unimplemented: Read as '0' 	bit 13	QEISIDL: QE	I Stop in Idle M	lode bit						
 111 = Reserved 10 = Modulo Count mode for position counter 101 = Resets the position counter when the position counter equals QEI1GEC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 011 = First index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes the position counter with contents of QEI1IC register 011 = Every index input event resets the position counter with contents of QEI1IC register 000 = Index input event does not affect position counter 000 = Index input event does not affect position counter 011 = Phase B match occurs when QEB = 1 0 = Phase B match occurs when QEB = 0 0 = Phase B match occurs when QEB = 0 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 0 = Phase A match occurs when QEA = 0 						dle mode				
 110 = Modulo Count mode for position counter 101 = Resets the position counter when the position counter equals QEI1GEC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 011 = First index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes the position counter with contents of QEI1IC register 001 = Every index input event resets the position counter 000 = Index input event does not affect position counter 000 = Index input event for Phase B bit⁽²⁾ 1 = Phase B match occurs when QEB = 1 0 = Phase B match occurs when QEB = 0 bit 8 IMV0: Index Match Value for Phase A bit⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 bit 7 Unimplemented: Read as '0' 	bit 12-10	PIMOD<2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾								
1 = Phase B match occurs when QEB = 1 0 = Phase B match occurs when QEB = 0 bit 8 IMV0: Index Match Value for Phase A bit ⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 bit 7 Unimplemented: Read as '0'		110 = Module 101 = Resets 100 = Second 011 = First in 010 = Next in 001 = Every i	b Count mode f the position co d index event a dex event after idex input even index input even	bunter when the fter home event home event in t initializes the put resets the p	e position count initializes position position count position counte	sition counter wit on counter with ter with contents	h contents of C contents of QE	EI1IC register		
0 = Phase B match occurs when QEB = 0 bit 8 IMV0: Index Match Value for Phase A bit ⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 bit 7 Unimplemented: Read as '0'	bit 9	IMV1: Index I	Match Value for	⁻ Phase B bit ⁽²)					
bit 8 IMV0: Index Match Value for Phase A bit ⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 bit 7 Unimplemented: Read as '0'										
1 = Phase A match occurs when QEA = 10 = Phase A match occurs when QEA = 0bit 7Unimplemented: Read as '0'					N					
0 = Phase A match occurs when QEA = 0 bit 7 Unimplemented: Read as '0'	bit 8				1					
bit 7 Unimplemented: Read as '0'										
	bit 7									
		•			inters onerate	as timers and th		> hits are		

Note 1: When CCM<1:0> = 10 or 11, all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored.

2: When CCM<1:0> = 00, and QEA and QEB values match the Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset. QEA/QEB signals used for the index match have swap and polarity values applied, as determined by the SWPAB and QEAPOL/QEBPOL bits.

3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
QCAPEN	FLTREN	QFDIV2	QFDIV1	QFDIV0	OUTFNC1	OUTFNC0	SWPAB			
bit 15	•	·	•	÷			bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R-x	R-x	R-x	R-x			
HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA			
bit 7				TIOME	INDEX	QLD	bit (
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own			
bit 15	QCAPEN: Q	EI Position Cou	nter Input Cap	ture Enable bit						
		tch event trigge								
		tch event does		-						
bit 14		Ax/QEBx/INDX	•	tal Filter Enable	e bit					
		digital filter is e digital filter is d		sed)						
bit 13-11	 Input pin digital filter is disabled (bypassed) QFDIV<2:0>: QEAx/QEBx/INDXx/HOMEx Digital Input Filter Clock Divide Select bits 									
	QFDIV<2:0>: QEAX/QEBX/INDXX/HOMEX Digital Input Filter Clock Divide Select bits 111 = 1:128 clock divide									
	111 = 1.126 clock divide									
	101 = 1:32 clock divide									
	100 = 1:16 clock divide									
	011 = 1:8 clock divide									
	010 = 1:4 clock divide 001 = 1:2 clock divide									
	000 = 1.2 clo									
bit 10-9	OUTFNC<1:0	0>: QEI Module	Output Functi	on Mode Selec	ct bits					
		NCMPx pin goe	-			GEC				
		NCMPx pin goe								
	01 = The CTNCMPx pin goes high when POS1CNT \geq QEI1GEC									
	00 = Output i									
bit 8	SWPAB: Swap QEA and QEB Inputs bit 1 = QEAx and QEBx are swapped prior to quadrature decoder logic									
		d QEBx are swa d QEBx are not		quadrature dec	oder logic					
bit 7	HOMPOL: HOMEx Input Polarity Select bit									
	1 = Input is inverted									
bit 6	0 = Input is not inverted									
	IDXPOL: INDXx Input Polarity Select bit 1 = Input is inverted									
	0 = Input is n									
bit 5	QEBPOL: QEBx Input Polarity Select bit									
	1 = Input is inverted									
	0 = Input is r	not inverted								
bit 4	QEAPOL: QE	EAx Input Polar	ity Select bit							
	1 = Input is i	nverted								
	0 = Input is r	not inverted								
bit 3		not inverted is of HOMEx In	out Pin After Po	plarity Control						

REGISTER 17-2: QEI1IOC: QEI1 I/O CONTROL REGISTER

18.3 SPIx Control Registers

R/W-0 U-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 U-0 SPIEN SPISIDL SPIBEC<2:0> _____ bit 15 R/W-0 R/W-0 R/W-0 R/C-0, HS R/W-0 R/W-0 R-0, HS, HC R-0, HS, HC SRMPT SPIROV SRXMPT SISEL2 SISEL1 SISEL0 SPITBF SPIRBF bit 7 Legend: C = Clearable bit HS = Hardware Settable bit HC = Hardware Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 SPIEN: SPIx Enable bit 1 = Enables the module and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins 0 = Disables the module bit 14 Unimplemented: Read as '0' bit 13 SPISIDL: SPIx Stop in Idle Mode bit 1 = Discontinues the module operation when device enters Idle mode 0 = Continues the module operation in Idle mode bit 12-11 Unimplemented: Read as '0' bit 10-8 SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode) Master mode: Number of SPIx transfers that are pending. Slave mode: Number of SPIx transfers that are unread. SRMPT: SPIx Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode) bit 7 1 = SPIx Shift register is empty and Ready-To-Send or receive the data 0 = SPIx Shift register is not empty bit 6 SPIROV: SPIx Receive Overflow Flag bit

REGISTER 18-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

1 = A new byte/word is completely received and discarded; the user application has not read the previous data in the SPIxBUF register 0 = No overflow has occurred SRXMPT: SPIx Receive FIFO Empty bit (valid in Enhanced Buffer mode) 1 = RX FIFO is empty 0 = RX FIFO is not empty

bit 4-2 SISEL<2:0>: SPIx Buffer Interrupt Mode bits (valid in Enhanced Buffer mode)

- 111 = Interrupt when the SPIx transmit buffer is full (SPITBF bit is set)
 - 110 = Interrupt when last bit is shifted into SPIxSR and as a result, the TX FIFO is empty
 - 101 = Interrupt when the last bit is shifted out of SPIxSR and the transmit is complete
 - 100 = Interrupt when one data is shifted into the SPIxSR and as a result, the TX FIFO has one open memory location
 - 011 = Interrupt when the SPIx receive buffer is full (SPIRBF bit is set)
 - 010 = Interrupt when the SPIx receive buffer is 3/4 or more full
 - 001 = Interrupt when data is available in the receive buffer (SRMPT bit is set)
 - 000 = Interrupt when the last data in the receive buffer is read and as a result, the buffer is empty (SRXMPT bit is set)

bit 5

bit 8

bit 0

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1			
bit 15							bit 8			
U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
—	—	—	RB0	DLC3	DLC2	DLC1	DLC0			
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown				
bit 15-10	EID<5:0>: E	xtended Identifi	er bits							
bit 9	RTR: Remote Transmission Request bit									
	<u>When IDE = 1:</u>									
	1 = Message will request remote transmission									
	0 = Normal n	0								
	When IDE =									
bit 8	The RTR bit is ignored. RB1: Reserved Bit 1									
		et this bit to '0' p	per CAN proto	lood.						
bit 7-5		nted: Read as '	-							
bit 4	RB0: Reserv		-							
			per CAN proto	ocol.						
hit 2 0		User must set this bit to '0' per CAN protocol.								

BUFFER 21-3: ECAN™ MESSAGE BUFFER WORD 2

bit 3-0 DLC<3:0>: Data Length Code bits

BUFFER 21-4: ECAN[™] MESSAGE BUFFER WORD 3

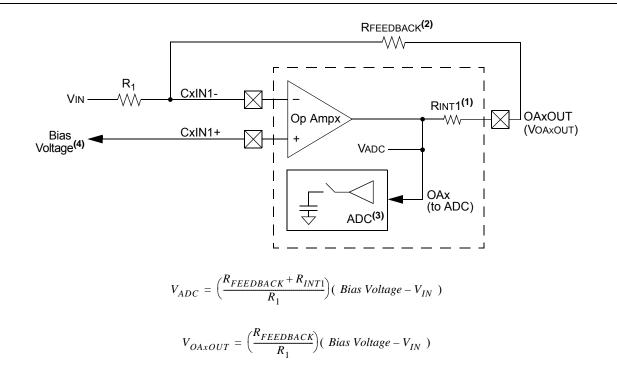
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	/te 1			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	rte 0			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at POR '1' = Bit is		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-8 Byte 1<15:8>: ECAN Message Byte 1 bits

bit 7-0 Byte 0<7:0>: ECAN Message Byte 0 bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGCLK2	PTGCLK1	PTGCLK0	PTGDIV4	PTGDIV3	PTGDIV2	PTGDIV1	PTGDIV0
bit 15	1	1	1				bit
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
PTGPWD3	PTGPWD2	PTGPWD1	PTGPWD0	_	PTGWDT2	PTGWDT1	PTGWDTC
bit 7							bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	111 = Reserv 110 = Reserv 101 = PTG m 100 = PTG m 011 = PTG m 010 = PTG m 001 = PTG m		urce will be T3 urce will be T2 urce will be T1 urce will be TA urce will be Fc	BCLK PCLK ICLK D DSC			
bit 12-8	PTGDIV<4:0> 11111 = Divic 11110 = Divic	de-by-31 de-by-2	Clock Presca	ler (divider) bi	ts		
bit 7-4	PTGPWD<3:0 1111 = All trig 1110 = All trig 0001 = All trig	D>: PTG Trigge gger outputs ar gger outputs ar gger outputs ar	e 16 PTG cloc e 15 PTG cloc e 2 PTG clock	k cycles wide k cycles wide cycles wide			
bit 3	-	ted: Read as '					
bit 2-0	PTGWDT<2:0 111 = Watcho 110 = Watcho 101 = Watcho 011 = Watcho 011 = Watcho 010 = Watcho 010 = Watcho		Watchdog Tir ime-out after 5 ime-out after 2 ime-out after 1 ime-out after 3 ime-out after 3 ime-out after 1 ime-out after 8	12 PTG clock 56 PTG clock 28 PTG clock 4 PTG clocks 2 PTG clocks 6 PTG clocks 6 PTG clocks	S S	5	

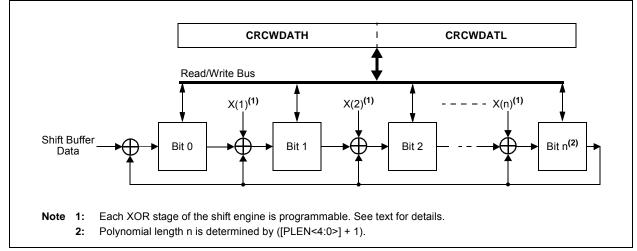
REGISTER 24-2: PTGCON: PTG CONTROL REGISTER


25.1 Op Amp Application Considerations

There are two configurations to take into consideration when designing with the op amp modules that available in the dsPIC33EPXXXGP50X. are dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X devices. Configuration A (see Figure 25-6) takes advantage of the internal connection to the ADC module to route the output of the op amp directly to the ADC for measurement. Configuration B (see Figure 25-7) requires that the designer externally route the output of the op amp (OAxOUT) to a separate analog input pin (ANy) on the device. Table 30-55 in Section 30.0 "Electrical Characteristics" describes the performance characteristics for the op amps, distinguishing between the two configuration types where applicable.

25.1.1 OP AMP CONFIGURATION A

Figure 25-6 shows a typical inverting amplifier circuit taking advantage of the internal connections from the op amp output to the input of the ADC. The advantage of this configuration is that the user does not need to consume another analog input (ANy) on the device, and allows the user to simultaneously sample all three op amps with the ADC module, if needed. However, the presence of the internal resistance, RINT1, adds an error in the feedback path. Since RINT1 is an internal resistance, in relation to the op amp output (VOAXOUT) and ADC internal connection (VADC), RINT1 must be included in the numerator term of the transfer function. See Table 30-53 in Section 30.0 "Electrical Characteristics" for the typical value of RINT1. Table 30-60 and Table 30-61 in Section 30.0 "Electrical Characteristics" describe the minimum sample time (TSAMP) requirements for the ADC module in this configuration. Figure 25-6 also defines the equations that should be used when calculating the expected voltages at points, VADC and VOAXOUT.


FIGURE 25-6: OP AMP CONFIGURATION A

Note 1: See Table 30-53 for the Typical value.

- 2: See Table 30-53 for the Minimum value for the feedback resistor.
- 3: See Table 30-60 and Table 30-61 for the minimum sample time (TSAMP).
- 4: CVREF10 or CVREF20 are two options that are available for supplying bias voltage to the op amps.

26.1 Overview

The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to 32 bits. Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN<4:0> bits (CRCCON2<4:0>).

The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation; functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR.

For example, consider two CRC polynomials, one a 16-bit equation and the other a 32-bit equation:

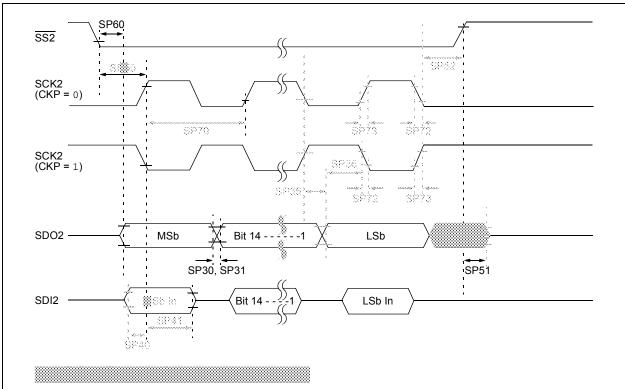
$$\begin{array}{c} x16+x12+x5+1\\ \text{and}\\ x32+x26+x23+x22+x16+x12+x11+x10+x8+x7\\ +x5+x4+x2+x+1 \end{array}$$

To program these polynomials into the CRC generator, set the register bits as shown in Table 26-1.

Note that the appropriate positions are set to '1' to indicate that they are used in the equation (for example, X26 and X23). The 0 bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length N, it is assumed that the *N*th bit will always be used, regardless of the bit setting. Therefore, for a polynomial length of 32, there is no 32nd bit in the CRCxOR register.

TABLE 26-1:CRC SETUP EXAMPLES FOR16 AND 32-BIT POLYNOMIAL

CRC Control	Bit Values					
Bits	16-bit Polynomial	32-bit Polynomial				
PLEN<4:0>	01111	11111				
X<31:16>	0000 0000 0000 000x	0000 0100 1100 0001				
X<15:0>	0001 0000 0010 000x	0001 1101 1011 011x				


26.2 Programmable CRC Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

26.2.1 KEY RESOURCES

- "Programmable Cyclic Redundancy Check (CRC)" (DS70346) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

FIGURE 30-19: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

Ρ

Packaging	
Details	
Marking	
Peripheral Module Disable (PMD)	
Peripheral Pin Select (PPS)	
Available Peripherals	175
Available Pins	175
Control	
Control Registers	
Input Mapping	
Output Selection for Remappable Pins	
Pin Selection for Selectable Input Sources	
Selectable Input Sources	
Peripheral Trigger Generator (PTG) Module	
PICkit 3 In-Circuit Debugger/Programmer	
Pinout I/O Descriptions (table)	
Power-Saving Features	
Clock Frequency	
Clock Switching	
Instruction-Based Modes	
Idle	
Interrupts Coincident with Power	
Save Instructions	
Sleep	
Resources	
Program Address Space	45
Construction	117
Data Access from Program Memory Using	
Table Instructions	118
Memory Map (dsPIC33EP128GP50X,	
dsPIC33EP128MC20X/50X,	
PIC24EP128GP/MC20X Devices)	47
Memory Map (dsPIC33EP256GP50X,	
dsPIC33EP256MC20X/50X,	
PIC24EP256GP/MC20X Devices)	48
Memory Map (dsPIC33EP32GP50X,	
dsPIC33EP32MC20X/50X,	
PIC24EP32GP/MC20X Devices)	45
Memory Map (dsPIC33EP512GP50X,	
dsPIC33EP512MC20X/50X,	
PIC24EP512GP/MC20X Devices)	
Memory Map (dsPIC33EP64GP50X,	
dsPIC33EP64MC20X/50X,	
PIC24EP64GP/MC20X Devices)	
Table Read High Instructions	
TBLRDH	118
Table Read Low Instructions (TBLRDL)	
Program Memory	
Organization	
Reset Vector	
Programmable CRC Generator	
Control Registers	
Overview	
Resources	
Programmer's Model	
Register Descriptions	
PTG	
Control Registers	
Introduction	
Output Descriptions	
Resources	
Step Commands and Format	

Q OFI

QLI		
	Control Registers	252
	Resources	251
Quad	Irature Encoder Interface (QEI)	249

R

Register Maps	
ADC1	84
CPU Core (dsPIC33EPXXXMC20X/50X,	
dsPIC33EPXXXGP50X Devices)	63
CPU Core (PIC24EPXXXGP/MC20X Devices)	
CRC	
CTMU	
DMAC	
ECAN1 (When WIN (C1CTRL1) = 0 or 1)	
for dsPIC33EPXXXMC/GP50X Devices	85
ECAN1 (When WIN (C1CTRL1) = 0) for	
dsPIC33EPXXXMC/GP50X Devices	85
ECAN1 (WIN (C1CTRL1) = 1) for	
dsPIC33EPXXXMC/GP50X Devices	86
I2C1 and I2C2	
Input Capture 1 through Input Capture 4	
Interrupt Controller	70
(dsPIC33EPXXXGP50X Devices)	69
Interrupt Controller	00
(dsPIC33EPXXXMC20X Devices)	71
Interrupt Controller	/ 1
(dsPIC33EPXXXMC50X Devices)	73
	75
Interrupt Controller (PIC24EPXXXGP20X Devices)	66
Interrupt Controller	00
(PIC24EPXXXMC20X Devices)	67
JTAG Interface	
NVM	
Op Amp/Comparator	
Output Compare 1 through Output Compare 4	//
Peripheral Pin Select Input	04
(dsPIC33EPXXXGP50X Devices)	91
Peripheral Pin Select Input	00
(dsPIC33EPXXXMC20X Devices)	92
Peripheral Pin Select Input	01
(dsPIC33EPXXXMC50X Devices)	91
Peripheral Pin Select Input	~~~
(PIC24EPXXXGP20X Devices)	90
Peripheral Pin Select Input	~~
(PIC24EPXXXMC20X Devices)	90
Peripheral Pin Select Output	
(dsPIC33EPXXXGP/MC202/502,	00
PIC24EPXXXGP/MC202 Devices)	88
Peripheral Pin Select Output	
(dsPIC33EPXXXGP/MC203/503,	~~
PIC24EPXXXGP/MC203 Devices)	88
Peripheral Pin Select Output	
(dsPIC33EPXXXGP/MC204/504,	~~~
PIC24EPXXXGP/MC204 Devices)	89
Peripheral Pin Select Output	
(dsPIC33EPXXXGP/MC206/506,	~~
PIC24EPXXGP/MC206 Devices)	
PMD (dsPIC33EPXXXGP50X Devices)	
PMD (dsPIC33EPXXXMC20X Devices)	
PMD (dsPIC33EPXXXMC50X Devices)	
PMD (PIC24EPXXXGP20X Devices)	94