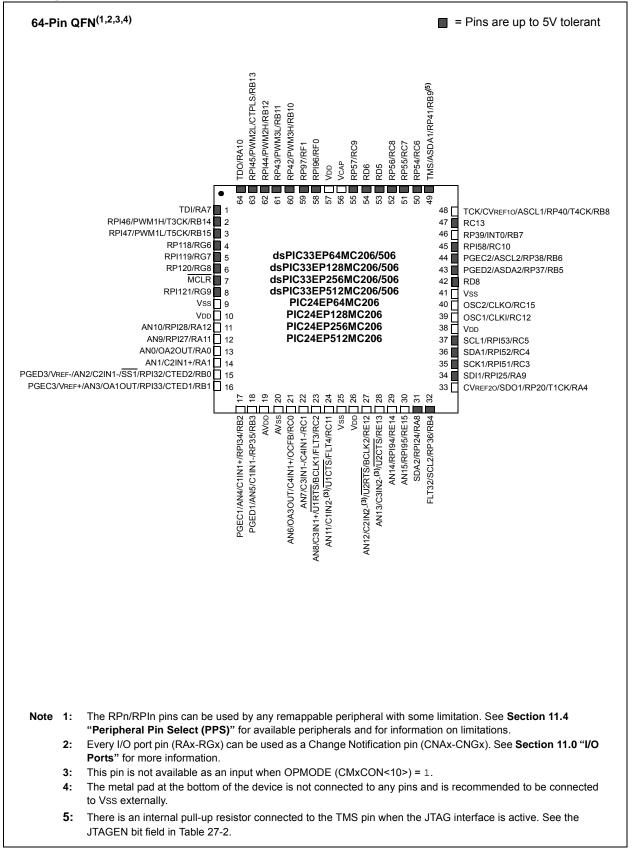


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep128gp204-h-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS AND MICROCONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Familv Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)

(see Section 2.2 "Decoupling Capacitors")
• VCAP

(see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")

- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for the ADC module is implemented

Note: The AVDD and AVSS pins must be connected, independent of the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of $0.01 \ \mu\text{F}$ to $0.001 \ \mu\text{F}$. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, $0.1 \ \mu\text{F}$ in parallel with $0.001 \ \mu\text{F}$.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

3.5 **Programmer's Model**

The programmer's model for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X is shown in Figure 3-2. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.

In addition to the registers contained in the programmer's model, the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/

MC20X devices contain control registers for Modulo Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only), Bit-Reversed Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only) and interrupts. These registers are described in subsequent sections of this document.

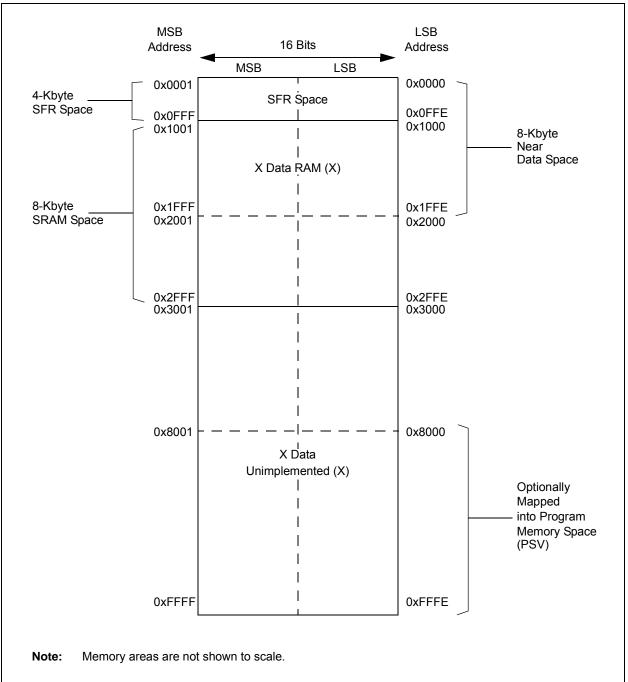
All registers associated with the programmer's model are memory mapped, as shown in Table 4-1.

Register(s) Name	Description
W0 through W15	Working Register Array
ACCA, ACCB	40-Bit DSP Accumulators
PC	23-Bit Program Counter
SR	ALU and DSP Engine STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
DSRPAG	Extended Data Space (EDS) Read Page Register
DSWPAG	Extended Data Space (EDS) Write Page Register
RCOUNT	REPEAT Loop Count Register
DCOUNT ⁽¹⁾	DO Loop Count Register
DOSTARTH ^(1,2) , DOSTARTL ^(1,2)	DO Loop Start Address Register (High and Low)
DOENDH ⁽¹⁾ , DOENDL ⁽¹⁾	DO Loop End Address Register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

TABLE 3-1: PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Note 1: This register is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.

2: The DOSTARTH and DOSTARTL registers are read-only.


3.6 CPU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

3.6.1 KEY RESOURCES

- "CPU" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

4.2.5 X AND Y DATA SPACES

The dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X core has two Data Spaces, X and Y. These Data Spaces can be considered either separate (for some DSP instructions) or as one unified linear address range (for MCU instructions). The Data Spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X Data Space is used by all instructions and supports all addressing modes. X Data Space has separate read and write data buses. The X read data bus is the read data path for all instructions that view Data Space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y Data Space is used in concert with the X Data Space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y Data Spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X Data Space. Modulo Addressing and Bit-Reversed Addressing are not present in PIC24EPXXXGP/MC20X devices.

All data memory writes, including in DSP instructions, view Data Space as combined X and Y address space. The boundary between the X and Y Data Spaces is device-dependent and is not user-programmable.

4.3 Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

4.3.1 KEY RESOURCES

- "Program Memory" (DS70613) in the "dsPIC33/ PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

4.5 Instruction Addressing Modes

The addressing modes shown in Table 4-63 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.5.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.5.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can either be a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- · Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal
- Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

TABLE 4-63: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

NOTES:

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			IC2R<6:0>			
·						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			IC1R<6:0>			
						bit C
e bit	W = Writable b	it	U = Unimplem	nented bit, rea	d as '0'	
POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
•			nbers)			
		1				
Unimplemer	nted: Read as '0					
(see Table 11 1111001 = I	I-2 for input pin's nput tied to RPI1	election num 21		onding RPn Pi	n bits	
	e bit POR Unimplemen IC2R<6:0>: / (see Table 11 1111001 = I 0000001 = I 0000000 = I Unimplemen IC1R<6:0>: / (see Table 11 1111001 = I	e bit W = Writable b POR '1' = Bit is set Unimplemented: Read as '0 IC2R<6:0>: Assign Input Cap (see Table 11-2 for input pin s 1111001 = Input tied to RPI1 0000001 = Input tied to CMP 0000000 = Input tied to Vss Unimplemented: Read as '0 IC1R<6:0>: Assign Input Cap (see Table 11-2 for input pin s	e bit W = Writable bit POR '1' = Bit is set Unimplemented: Read as '0' IC2R<6:0>: Assign Input Capture 2 (IC2) (see Table 11-2 for input pin selection num 1111001 = Input tied to RPI121	R/W-0 R/W-0 R/W-0 R/W-0 IC1R<6:0> IC1R<6:0> e bit W = Writable bit U = Unimplem POR '1' = Bit is set '0' = Bit is clear Unimplemented: Read as '0' IC2R<6:0>: Assign Input Capture 2 (IC2) to the Correspond (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 . . 0000001 = Input tied to CMP1 0000000 = Input tied to Vss Unimplemented: Read as '0' IC1R<6:0>: Assign Input Capture 1 (IC1) to the Correspond (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 .	R/W-0 R/W-0 R/W-0 R/W-0 IC1R<6:0> e bit W = Writable bit U = Unimplemented bit, real POR '1' = Bit is set '0' = Bit is cleared Unimplemented: Read as '0' IC2R<6:0>: Assign Input Capture 2 (IC2) to the Corresponding RPn Pi (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 . . . 0000001 = Input tied to CMP1 0000000 = Input tied to Vss Unimplemented: Read as '0' IC1R<6:0>: Assign Input Capture 1 (IC1) to the Corresponding RPn Pi (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 .	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 IC1R<6:0> e bit W = Writable bit U = Unimplemented bit, read as '0' POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr Unimplemented: Read as '0' IC2R<6:0>: Assign Input Capture 2 (IC2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 <p< td=""></p<>

REGISTER 11-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

REGISTER 11-7: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				FLT2R<6:0>			
bit 15							bit 8
	D 444 A	D 444 0	D 444 A	Date	D 444 0	DAVA	D # 44 0
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				FLT1R<6:0>			
bit 7							bit C
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 14-8	FLT2R<6:0> (see Table 11	-2 for input pin	Fault 2 (FLT2)) to the Corresp nbers)	onding RPn F	Pin bits	
bit 14-8	FLT2R<6:0> (see Table 11 1111001 = h	: Assign PWM I	Fault 2 (FLT2) selection nur 121		onding RPn F	Pin bits	
bit 14-8	FLT2R<6:0> (see Table 11 1111001 = h	: Assign PWM I I-2 for input pin nput tied to RPI	Fault 2 (FLT2) selection nur 121 P1		onding RPn F	Pin bits	
bit 14-8 bit 7	FLT2R<6:0> (see Table 11 1111001 = h	: Assign PWM I I-2 for input pin nput tied to RPI nput tied to CM	Fault 2 (FLT2 selection nur 121 P1		onding RPn F	Pin bits	

REGISTER 11-9: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				HOME1R<6:0	>		
bit 15							bit 8
		D # 4 4 0	54446	5444.0	5444.0		5444.6
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				INDX1R<6:0>	>		
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
		nput tied to RPI					
		nput tied to CM nput tied to Vss					
bit 7		nted: Read as '					
bit 6-0	(see Table 1	: Assign QEI1 1-2 for input pin nput tied to RPI	selection nun	,	responding RI	Pn Pin bits	
		nput tied to CM					

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				SS2R<6:0>			
bit 7							bit 0
l egend:							

REGISTER 11-13: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6-0	SS2R<6:0>: Assign SPI2 Slave Select (SS2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)
	1111001 = Input tied to RPI121
	•
	0000001 = Input tied to CMP1 0000000 = Input tied to Vss

REGISTER 11-14: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26 (dsPIC33EPXXXGP/MC50X DEVICES ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	_	—	_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				C1RXR<6:0>	>		
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-7	Unimplemented: Read as '0'
bit 6-0	C1RXR<6:0>: Assign CAN1 RX Input (CRX1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)
	1111001 = Input tied to RPI121
	•
	0000001 = Input tied to CMP1 0000000 = Input tied to Vss

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

	23-2: Al		CONTROL REG							
R/W-0	R/W-	-0 R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
VCFG2	VCFC	G1 VCFG0	—	—	CSCNA	CHPS1	CHPS0			
bit 15							bit			
R-0	R/W-	-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
BUFS	SMP		SMPI2	SMPI1	SMPI0	BUFM	ALTS			
bit 7	Sivil		SIVILIZ			BOTIM	bit			
Logondi										
Legend:	. hit	M = Mritable			montod hit roo					
R = Readable		W = Writable			mented bit, read					
-n = Value at	POR	'1' = Bit is se	et '()' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15-13	VCFG<2	2:0>: Converter Vol	tage Reference C	onfiguration	bits					
	Value	VREFH	VREFL							
	000	Avdd	Avss							
	001	External VREF+	Avss							
	010	Avdd	External VREF-							
	011	External VREF+	External VREF-							
	1xx	Avdd	Avss							
bit 12-11	Unimple	emented: Read as	'O'							
bit 10	CSCNA: Input Scan Select bit									
	1 = Scans inputs for CH0+ during Sample MUXA									
		s not scan inputs	5 1							
bit 9-8	CHPS<1:0>: Channel Select bits									
	In 12-bit mode (AD21B = 1), the CHPS<1:0> bits are Unimplemented and are Read as '0':									
	1x = Converts CH0, CH1, CH2 and CH3									
	01 = Converts CH0 and CH1									
L:1 7	00 = Converts CH0									
bit 7	BUFS : Buffer Fill Status bit (only valid when BUFM = 1)									
	1 = ADC is currently filling the second half of the buffer; the user application should access data in the first half of the buffer									
	0 = ADC is currently filling the first half of the buffer; the user application should access data in the									
		ond half of the buffe								
bit 6-2	SMPI<4	:0>: Increment Rat	e bits							
		DDMAEN = 0:								
	x1111 = Generates interrupt after completion of every 16th sample/conversion operation $x1110$ = Generates interrupt after completion of every 15th sample/conversion operation									
	x1110 =	= Generates interru	pt after completion	of every 15	oth sample/conv	ersion operation	on			
	•									
	•									
		Generates interru					n			
		 Generates interru 	pt after completior	of every sa	ample/conversion	n operation				
		$\frac{\text{DDMAEN} = 1}{\text{Increments the DN}}$	11 address offer a	omplation of	four 20rd of	male (een verei	on onoratio			
		Increments the DI Increments the DI								
	•			Simpletion	n every orac sa					
	•									
	•	- Increments the DI								

. . ACOND. ADCA CONTROL DECISTED 2

24.3 PTG Control Registers

REGISTER 24-1: PTGCST: PTG CONTROL/STATUS REGISTER

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
PTGEN	—	PTGSIDL	PTGTOGL	—	PTGSWT ⁽²⁾	PTGSSEN ⁽³⁾	PTGIVIS
bit 15							bit 8
R/W-0	HS-0	U-0	U-0	U-0	U-0	R/V	V-0
PTGSTRT	PTGWDTO	_	_	_	_	PTGITM1 ⁽¹⁾	PTGITM0 ⁽¹⁾

bit 7

Legend:	HS = Hardware Settable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15		PTGEN: Module Enable bit
		1 = PTG module is enabled
		0 = PTG module is disabled
bit 14		Unimplemented: Read as '0'
bit 13		PTGSIDL: PTG Stop in Idle Mode bit
		 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12		PTGTOGL: PTG TRIG Output Toggle Mode bit
		 1 = Toggle state of the PTGOx for each execution of the PTGTRIG command 0 = Each execution of the PTGTRIG command will generate a single PTGOx pulse determined by the value in the PTGPWDx bits
bit 11		Unimplemented: Read as '0'
bit 10		PTGSWT: PTG Software Trigger bit ⁽²⁾
		1 = Triggers the PTG module
		0 = No action (clearing this bit will have no effect)
bit 9		PTGSSEN: PTG Enable Single-Step bit ⁽³⁾
		1 = Enables Single-Step mode
		0 = Disables Single-Step mode
bit 8		PTGIVIS: PTG Counter/Timer Visibility Control bit
		1 = Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the current values of their corresponding counter/timer registers (PTGSD, PTGCx, PTGTx)
		 Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the value previously written to those limit registers
bit 7		PTGSTRT: PTG Start Sequencer bit
		1 = Starts to sequentially execute commands (Continuous mode)0 = Stops executing commands
bit 6		PTGWDTO: PTG Watchdog Timer Time-out Status bit
		1 = PTG Watchdog Timer has timed out
		0 = PTG Watchdog Timer has not timed out.
bit 5-2		Unimplemented: Read as '0'
Note	1: Th	nese bits apply to the PTGWHI and PTGWLO commands only.
	2: Th	is bit is only used with the PTGCTRL step command software trigger option.

3: Use of the PTG Single-Step mode is reserved for debugging tools only.

bit 0

NOTES:

Base Instr #	str Assembly Assembly Sy		Assembly Syntax	Assembly Syntax Description		# of Cycles ⁽²⁾	Status Flags Affected	
46 MOV		MOV	f,Wn	Move f to Wn	1	1	None	
		MOV	f	Move f to f	1	1	None	
		MOV	f,WREG	Move f to WREG	1	1	None	
		MOV	#litl6,Wn	Move 16-bit literal to Wn	1	1	None	
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None	
		MOV	Wn,f	Move Wn to f	1	1	None	
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None	
		MOV	WREG, f	Move WREG to f	1	1	None	
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None	
		MOV.D	Ws , Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None	
47	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit literal to DSRPAG	1	1	None	
		MOVPAG	#lit9,DSWPAG	Move 9-bit literal to DSWPAG	1	1	None	
		MOVPAG	#lit8,TBLPAG	Move 8-bit literal to TBLPAG	1	1	None	
		MOVPAG	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None	
		MOVPAG	Ws, DSWPAG	Move Ws<8:0> to DSWPAG	1	1	None	
		MOVPAG	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None	
48	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB ⁽¹⁾	Prefetch and store accumulator	1	1	None	
49	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd(1)	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB	
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd ⁽¹⁾	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB	
50	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd(1)	-(Multiply Wm by Wn) to Accumulator	1	1	None	
51	MSC	MSC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd, AWB ⁽¹⁾	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB	

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Parameter No.	Тур.	Max.	Units	Units Conditions			
DC61d	8		μΑ	-40°C			
DC61a	10	—	μA	+25°C	2.21/		
DC61b	12	—	μA	+85°C	- 3.3V		
DC61c	13	—	μA	+125°C			

TABLE 30-9: DC CHARACTERISTICS: WATCHDOG TIMER DELTA CURRENT (Δ Iwdt)⁽¹⁾

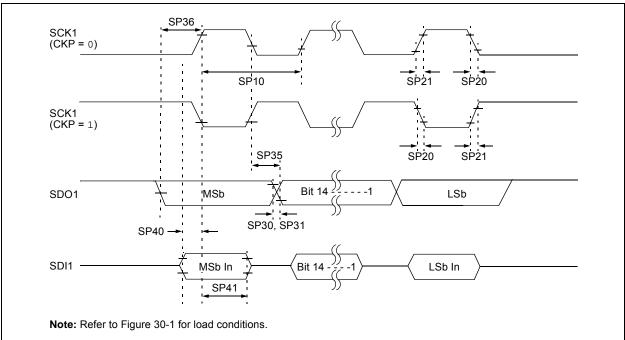

Note 1: The \triangle IwDT current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. All parameters are characterized but not tested during manufacturing.

TABLE 30-10: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTER	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Parameter No.	Doze Ratio	Units	Conditions				
Doze Current (IDOZE) ⁽¹⁾							
DC73a ⁽²⁾	35		1:2	mA	-40°C	3.3V	Fosc = 140 MHz
DC73g	20	30	1:128	mA	-40 C	5.5V	FUSC - 140 MINZ
DC70a ⁽²⁾	35	_	1:2	mA	+25°C	3.3V	Fosc = 140 MHz
DC70g	20	30	1:128	mA	+25 C	3.3V	FUSC = 140 MITZ
DC71a ⁽²⁾	35	_	1:2	mA	105%0	2.21/	
DC71g	20	30	1:128	mA	+85°C	3.3V	Fosc = 140 MHz
DC72a ⁽²⁾	28	—	1:2	mA	+125°C	3.3V	Ecco - 120 MH-
DC72g	15	30	1:128	mA	+125 C	3.3V	Fosc = 120 MHz

Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

- Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- CPU is executing while(1) statement
- · JTAG is disabled
- 2: Parameter is characterized but not tested in manufacturing.

FIGURE 30-24: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-43:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)TIMING REQUIREMENTS

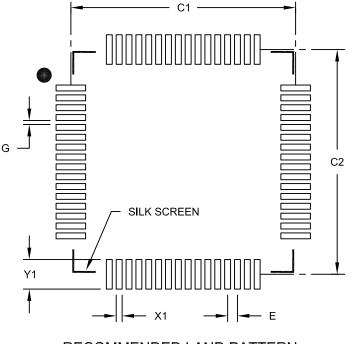
AC CHA	RACTERIST	ICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency	_	—	10	MHz	(Note 3)
SP20	TscF	SCK1 Output Fall Time	—	—		ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2sc, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30			ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK1 is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPI1 pins.

AC CHA	RACTER	ISTICS		(unless otherwise	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Characte	eristic ⁽⁴⁾	Min. ⁽¹⁾	-40 Max.	Units	Conditions		
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μS			
			400 kHz mode	TCY/2 (BRG + 2)		μ S			
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)		μs			
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 2)		μS			
			400 kHz mode	Tcy/2 (BRG + 2)		μs			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μS			
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be		
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	_	100	ns			
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be		
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾		300	ns			
IM25	TSU:DAT	Data Input	100 kHz mode	250		ns			
		Setup Time	400 kHz mode	100		ns			
			1 MHz mode ⁽²⁾	40		ns			
IM26	THD:DAT	Data Input	100 kHz mode	0		μS			
		Hold Time	400 kHz mode	0	0.9	μs			
			1 MHz mode ⁽²⁾	0.2		μS			
IM30	TSU:STA	Start Condition	100 kHz mode	TCY/2 (BRG + 2)	—	μS	Only relevant for		
		Setup Time	400 kHz mode	TCY/2 (BRG + 2)	—	μS	Repeated Start		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)		μS	condition		
IM31	THD:STA	Start Condition	100 kHz mode	TCY/2 (BRG + 2)	—	μS	After this period, the		
		Hold Time	400 kHz mode	TCY/2 (BRG +2)	—	μS	first clock pulse is		
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)		μS	generated		
IM33	Tsu:sto	Stop Condition	100 kHz mode	TCY/2 (BRG + 2)	_	μS			
		Setup Time	400 kHz mode	TCY/2 (BRG + 2)		μS			
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)		μS			
IM34	THD:STO	Stop Condition	100 kHz mode	TCY/2 (BRG + 2)		μS			
		Hold Time	400 kHz mode	TCY/2 (BRG + 2)		μS			
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)		μS			
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns			
		From Clock	400 kHz mode		1000	ns			
			1 MHz mode ⁽²⁾		400	ns			
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be		
			400 kHz mode	1.3		μS	free before a new		
			1 MHz mode ⁽²⁾	0.5	—	μS	transmission can star		
IM50	Св	Bus Capacitive L	oading	—	400	pF			
IM51	Tpgd	Pulse Gobbler De	elay	65	390	ns	(Note 3)		


TABLE 30-49: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the l²C[™] Baud Rate Generator. Refer to "Inter-Integrated Circuit (l²C[™])" (DS70330) in the "dsPIC33/PIC24 Family Reference Manual". Please see the Microchip web site for the latest family reference manual sections.

- 2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
- **3:** Typical value for this parameter is 130 ns.
- 4: These parameters are characterized, but not tested in manufacturing.

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC		
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X64)	X1			0.30	
Contact Pad Length (X64)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B