

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep128gp204t-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)

FIGURE 4-7: DATA MEMORY MAP FOR dsPIC33EP32MC20X/50X AND dsPIC33EP32GP50X DEVICES

5.2 RTSP Operation

RTSP allows the user application to erase a single page of memory and to program two instruction words at a time. See the General Purpose and Motor Control Family tables (Table 1 and Table 2, respectively) for the page sizes of each device.

For more information on erasing and programming Flash memory, refer to "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual".

5.3 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

For erase and program times, refer to Parameters D137a and D137b (Page Erase Time), and D138a and D138b (Word Write Cycle Time) in Table 30-14 in **Section 30.0 "Electrical Characteristics"**.

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of program Flash memory at a time on every other word address boundary (0x000002, 0x000006, 0x00000A, etc.). To do this, it is necessary to erase the page that contains the desired address of the location the user wants to change.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Refer to **Flash Programming**" (DS70609) in the "*dsPIC33/PIC24 Family Reference Manual*" for details and codes examples on programming using RTSP.

5.4 Flash Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

5.4.1 KEY RESOURCES

- "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

5.5 Control Registers

Four SFRs are used to erase and write the program Flash memory: NVMCON, NVMKEY, NVMADRH and NVMADRL.

The NVMCON register (Register 5-1) enables and initiates Flash memory erase and write operations.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register.

There are two NVM Address registers: NVMADRH and NVMADRL. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word for programming operations or the selected page for erase operations.

The NVMADRH register is used to hold the upper 8 bits of the EA, while the NVMADRL register is used to hold the lower 16 bits of the EA.

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Interrupts" (DS70600) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X CPU.

The interrupt controller has the following features:

- Up to eight processor exceptions and software traps
- Eight user-selectable priority levels
- Interrupt Vector Table (IVT) with a unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X Interrupt Vector Table (IVT), shown in Figure 7-1, resides in program memory starting at location, 000004h. The IVT contains seven non-maskable trap vectors and up to 246 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location, 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR ⁽¹⁾	OVBERR ⁽¹⁾	COVAERR ⁽¹⁾	COVBERR ⁽¹⁾	OVATE ⁽¹⁾	OVBTE ⁽¹⁾	COVTE ⁽¹⁾
bit 15							bit 8
r							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR ⁽¹) DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0
[
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpleme	ented bit, read a	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unk	nown
bit 15	NSTDIS: Inte	errupt Nesting	Disable bit				
	\perp = Interrupt	nesting is disa	ibled				
bit 14	OVAFRR: A	ccumulator A (Overflow Trap F	lag bit(1)			
2	1 = Trap was	s caused by ov	erflow of Accur	nulator A			
	0 = Trap was	s not caused b	y overflow of A	ccumulator A			
bit 13	OVBERR: A	ccumulator B (Overflow Trap F	lag bit ⁽¹⁾			
	1 = Trap was	s caused by ow	erflow of Accur	nulator B			
	0 = Irap was	s not caused b	y overflow of A	ccumulator B	(1)		
bit 12	COVAERR:	Accumulator A	Catastrophic (Jverflow Trap FI	ag bit("		
	1 = Trap was 0 = Trap was	s not caused by ca	v catastrophic over	overflow of Accu	mulator A		
bit 11	COVBERR:	Accumulator E	Catastrophic (Overflow Trap Fl	ag bit ⁽¹⁾		
	1 = Trap was	s caused by ca	tastrophic over	flow of Accumul	ator B		
	0 = Trap was	s not caused b	y catastrophic o	overflow of Accu	mulator B		
bit 10	OVATE: Acc	umulator A Ov	erflow Trap En	able bit ⁽¹⁾			
	1 = Trap overflow of Accumulator A						
hit 0	U = 1 rap is disabled OVPTE: Accumulator R Overflow Trap Enable bit ⁽¹⁾						
DIL 9	1 = Tran ove	rflow of Accun	nulator B				
	0 = Trap is d	isabled					
bit 8	COVTE: Cat	astrophic Ove	rflow Trap Enat	ole bit ⁽¹⁾			
	1 = Trap on o	catastrophic ov	erflow of Accu	mulator A or B is	s enabled		
	0 = Trap is d	isabled					
bit 7	SFTACERR:	Shift Accumu	lator Error Statu	us bit ⁽¹⁾			
	1 = Math erro	or trap was ca or trap was po	used by an inva t caused by an	alid accumulator	shift ator shift		
hit 6		ivide-hv-Zero	Error Status bit				
bit o	1 = Math erro	or trap was ca	used by a divide	e-bv-zero			
	0 = Math erro	or trap was no	t caused by a d	ivide-by-zero			
bit 5	DMACERR:	DMAC Trap F	lag bit				
	1 = DMAC tr	ap has occurre	ed				
	0 = DMAC tr	ap has not occ	curred				
Note 1: The	ese bits are ava	ailable on dsPl	C33EPXXXMC	20X/50X and de	PIC33EPXXX	GP50X devices	s only.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_		—	—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	
			DMA0MD ⁽¹⁾					
_	_	_	DMA1MD ⁽¹⁾	PTGMD	_	_	_	
			DMA2MD ⁽¹⁾	1 TOME				
			DMA3MD ⁽¹⁾					
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown	
bit 15-5	Unimplement	ted: Read as '	D'					
bit 4	DMA0MD: DN	/A0 Module Di	sable bit ⁽¹⁾					
	1 = DMA0 mo	dule is disable	d					
	0 = DMA0 mo	dule is enable	d 					
	DMA1MD: DN	/A1 Module Di	sable bit(")					
	1 = DMA1 mo 0 = DMA1 mo	dule is disable	d d					
			sable bit(1)					
	1 = DMA2 mo	dule is disable	d					
	0 = DMA2 mo	dule is enable	d					
	DMA3MD: DN	/A3 Module Di	sable bit ⁽¹⁾					
	1 = DMA3 module is disabled							
	0 = DMA3 module is enabled							
bit 3	PTGMD: PTG	Module Disab	le bit					
	1 = PTG mod	ule is disabled						
	0 = PTG module is enabled							
DIT 2-0	Unimplement	tea: Read as '	J.					
Note 1: Th	nis single bit ena	ables and disat	oles all four DM	A channels.				

REGISTER 10-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs other than VDD by using external pull-up resistors. The maximum open-drain voltage allowed on any pin is the same as the maximum VIH specification for that particular pin.

See the **"Pin Diagrams"** section for the available 5V tolerant pins and Table 30-11 for the maximum VIH specification for each pin.

11.2 Configuring Analog and Digital Port Pins

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs or outputs must have their corresponding ANSELx and TRISx bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

Pins with analog functions affected by the ANSELx registers are listed with a buffer type of analog in the Pinout I/O Descriptions (see Table 1-1).

If the TRISx bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or comparator module.

When the PORTx register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be a NOP, as shown in Example 11-1.

11.3 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State.

Three control registers are associated with the Change Notification (CN) functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups and pulldowns act as a current source or sink source connected to the pin and eliminate the need for external resistors when push button, or keypad devices are connected. The pull-ups and pull-downs are enabled separately, using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note:	Pull-ups and pull-downs on Change Noti-
	fication pins should always be disabled
	when the port pin is configured as a digital
	output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV	0xFF00, W0	; Configure PORTB<15:8>
		; as inputs
MOV	W0, TRISB	; and PORTB<7:0>
		; as outputs
NOP		; Delay 1 cycle
BTSS	PORTB, #13	; Next Instruction

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 11-26: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP118	8R<5:0>		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—		_	_	_	_	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP118R<5:0>: Peripheral Output Function is Assigned to RP118 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-0 Unimplemented: Read as '0'

REGISTER 11-27: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP120)R<5:0>		
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-6 Unimplemented: Read as '0'

bit 5-0 **RP120R<5:0>:** Peripheral Output Function is Assigned to RP120 Output Pin bits (see Table 11-3 for peripheral function numbers)

16.0 HIGH-SPEED PWM MODULE (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed PWM" (DS70645) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices support a dedicated Pulse-Width Modulation (PWM) module with up to 6 outputs.

The high-speed PWMx module consists of the following major features:

- Three PWM generators
- Two PWM outputs per PWM generator
- Individual period and duty cycle for each PWM pair
- Duty cycle, dead time, phase shift and frequency resolution of Tcy/2 (7.14 ns at Fcy = 70MHz)
- Independent Fault and current-limit inputs for six PWM outputs
- · Redundant output
- Center-Aligned PWM mode
- Output override control
- Chop mode (also known as Gated mode)
- Special Event Trigger
- Prescaler for input clock
- PWMxL and PWMxH output pin swapping
- Independent PWM frequency, duty cycle and phase-shift changes for each PWM generator
- Dead-time compensation
- Enhanced Leading-Edge Blanking (LEB) functionality
- Frequency resolution enhancement
- PWM capture functionality

Note: In Edge-Aligned PWM mode, the duty cycle, dead time, phase shift and frequency resolution are 8.32 ns.

The high-speed PWMx module contains up to three PWM generators. Each PWM generator provides two PWM outputs: PWMxH and PWMxL. The master time base generator provides a synchronous signal as a common time base to synchronize the various PWM outputs. The individual PWM outputs are available on the output pins of the device. The input Fault signals and current-limit signals, when enabled, can monitor and protect the system by placing the PWM outputs into a known "safe" state.

Each PWMx can generate a trigger to the ADC module to sample the analog signal at a specific instance during the PWM period. In addition, the high-speed PWMx module also generates a Special Event Trigger to the ADC module based on either of the two master time bases.

The high-speed PWMx module can synchronize itself with an external signal or can act as a synchronizing source to any external device. The SYNCI1 input pin that utilizes PPS, can synchronize the high-speed PWMx module with an external signal. The SYNC01 pin is an output pin that provides a synchronous signal to an external device.

Figure 16-1 illustrates an architectural overview of the high-speed PWMx module and its interconnection with the CPU and other peripherals.

16.1 PWM Faults

The PWMx module incorporates multiple external Fault inputs to include FLT1 and FLT2 which are remappable using the PPS feature, FLT3 and FLT4 which are available only on the larger 44-pin and 64-pin packages, and FLT32 which has been implemented with Class B safety features, and is available on a fixed pin on all dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

These Faults provide a safe and reliable way to safely shut down the PWM outputs when the Fault input is asserted.

16.1.1 PWM FAULTS AT RESET

During any Reset event, the PWMx module maintains ownership of the Class B Fault, FLT32. At Reset, this Fault is enabled in Latched mode to ensure the fail-safe power-up of the application. The application software must clear the PWM Fault before enabling the highspeed motor control PWMx module. To clear the Fault condition, the FLT32 pin must first be pulled low externally or the internal pull-down resistor in the CNPDx register can be enabled.

Note: The Fault mode may be changed using the FLTMOD<1:0> bits (FCLCON<1:0>), regardless of the state of FLT32.

FIGURE 16-2: HIGH-SPEED PWMx MODULE REGISTER INTERCONNECTION DIAGRAM

REGISTER 16-13: IOCONX: PWMx I/O CONTROL REGISTER⁽²⁾ (CONTINUED)

- bit 1 SWAP: SWAP PWMxH and PWMxL Pins bit
 1 = PWMxH output signal is connected to PWMxL pins; PWMxL output signal is connected to PWMxH pins
 0 = PWMxH and PWMxL pins are mapped to their respective pins
 bit 0 OSYNC: Output Override Synchronization bit
 1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWMx period boundary
 - 0 = Output overrides via the OVDDAT<1:0> bits occur on the next CPU clock boundary
- Note 1: These bits should not be changed after the PWMx module is enabled (PTEN = 1).
 - 2: If the PWMLOCK Configuration bit (FOSCSEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

REGISTER 21-8:	CxEC: ECANx TRANSMIT/RECEIVE ERROR COUNT REGISTER
REGISTER 21-8:	CXEC: ECANX TRANSMIT/RECEIVE ERROR COUNT REGISTE

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
	TERRCNT<7:0>								
bit 15							bit 8		
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
			RERR	CNT<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bi	t	W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at PC	R	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			า		

bit 15-8	TERRCNT<7:0>:	Transmit Error	Count bits
DIL 10-0	IERRGNI<(.0).	Hanshill Enoi	Count bits

bit 7-0 **RERRCNT<7:0>:** Receive Error Count bits

REGISTER 21-9: CxCFG1: ECANx BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SJW1 | SJW0 | BRP5 | BRP4 | BRP3 | BRP2 | BRP1 | BRP0 |
| bit 7 | | | • | • | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
----------	----------------------------

bit 7-6	SJW<1:0>: Synchronization Jump Width bits
	11 = Length is 4 x TQ
	$10 = \text{Length is } 3 \times \text{Tq}$
	01 = Length is 2 x TQ
	00 = Length is 1 x TQ

```
bit 5-0 BRP<5:0>: Baud Rate Prescaler bits
```

```
11 1111 = TQ = 2 x 64 x 1/FCAN
```

•

- 00 0010 = TQ = 2 x 3 x 1/FCAN 00 0001 = TQ = 2 x 2 x 1/FCAN
- 00 0000 = Tq = 2 x 1 x 1/FCAN

25.3 Op Amp/Comparator Registers

R/W-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
PSIDL				C4EVT ⁽¹⁾	C3EVT ⁽¹⁾	C2EVT ⁽¹⁾	C1EVT ⁽¹⁾
bit 15	1			1			bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
		—		C4OUT ⁽²⁾	C3OUT ⁽²⁾	C2OUT ⁽²⁾	C1OUT ⁽²⁾
bit 7							bit 0
r							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		0' = Bit is cle	ared	x = Bit is unkn	iown
hit 15		arator Stop in	dla Mada hit				
DIL 15	1 = Discontinu	ues operation of	of all comparat	ors when devi	ce enters Idle n	node	
	0 = Continues	s operation of a	Il comparators	s in Idle mode		1000	
bit 14-12	Unimplement	ted: Read as ')'				
bit 11	C4EVT: Op A	mp/Comparato	r 4 Event Stat	us bit ⁽¹⁾			
	1 = Op amp/c	omparator eve	nt occurred				
L:1 40	0 = Op amp/c	omparator eve		Jr			
DIT 10	1 = Comparat	corator 3 Even	Status Dit				
	0 = Comparat	or event did no	ot occur				
bit 9	C2EVT: Comp	parator 2 Event	: Status bit ⁽¹⁾				
	1 = Comparat	or event occur	red				
	0 = Comparat	or event did no	ot occur				
bit 8	C1EVT: Comp	parator 1 Event	Status bit ⁽¹⁾				
	1 = Comparat	or event occur	red of occur				
bit 7-4	Unimplement	ted: Read as ')'				
bit 3	C4OUT: Com	parator 4 Outp	ut Status bit ⁽²⁾				
	When CPOL =	= 0:					
	1 = VIN + > VIN	N-					
	0 = VIN + < VIN	N- - 1·					
	1 = VIN + < VIN	<u></u> N-					
	0 = VIN + > VIN	N-					
bit 2	C3OUT: Com	parator 3 Outp	ut Status bit ⁽²⁾				
	When CPOL = $1 = 1$	<u>= 0:</u>					
	1 = VIN + > VIN $0 = VIN + < VIN$	N- N-					
	When CPOL =	= 1:					
	1 = VIN + < VIN	N-					
	$\cup = VIN + > VIN$	N-					

REGISTER 25-1: CMSTAT: OP AMP/COMPARATOR STATUS REGISTER

- **Note 1:** Reflects the value of the of the CEVT bit in the respective Op Amp/Comparator Control register, CMxCON<9>.
 - 2: Reflects the value of the COUT bit in the respective Op Amp/Comparator Control register, CMxCON<8>.

REGISTER 25-5:	CMxMSKCON: COMPARATOR x MASK GATING
	CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
HLMS		OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN
bit 7							bit 0
Legend							
R = Readabl	e hit	W = Writable	hit	= Inimple	mented hit read	1 as '0'	
n = Value at		'1' = Rit is set		(0) = 0	eared	x = Ritis unk	nown
	1010	1 - Dit 13 3C			carca		nown
bit 15	HLMS: Hiah	or Low-Level	/asking Select	bits			
	1 = The mask	king (blanking)	function will pre	event any asse	erted ('0') compa	rator signal fro	m propagating
	0 = The mas	king (blanking)	function will pre	event any asse	erted ('1') compa	rator signal fro	m propagating
bit 14	Unimpleme	nted: Read as	'0'				
bit 13	OCEN: OR (Gate C Input Er	nable bit				
	1 = MCI is co	onnected to OF	t gate				
	0 = MCI is no	ot connected to	OR gate				
bit 12	OCNEN: OR	Gate C Input	nverted Enable	e bit			
	1 = Inverted	MCI is connect	ed to OR gate	ate			
hit 11		Sate B Input Fr	heeled to on g	juic			
bit II	1 = MBI is co	onnected to OR	aate				
	0 = MBI is no	ot connected to	OR gate				
bit 10	OBNEN: OR	Gate B Input I	nverted Enable	e bit			
	1 = Inverted	MBI is connect	ed to OR gate				
	0 = Inverted	MBI is not con	nected to OR g	jate			
bit 9	OAEN: OR (Gate A Input Er	nable bit				
	1 = MAI is co	onnected to OF	l gate				
hit 8			Norted Enable	o hit			
DILO	1 = Inverted	MAL is connect	red to OR date				
	0 = Inverted	MAI is not con	nected to OR g	gate			
bit 7	NAGS: AND	Gate Output In	nverted Enable	e bit			
	1 = Inverted	ANDI is conne	cted to OR gat	e			
	0 = Inverted	ANDI is not co		gate			
bit 6		Gate Output E	nable bit				
	1 = ANDI is 0 0 = ANDI is r	not connected to O	to OR gate				
bit 5	ACEN: AND	Gate C Input E	Enable bit				
	1 = MCI is co	onnected to AN	D gate				
	0 = MCI is no	ot connected to	AND gate				
bit 4	ACNEN: AN	D Gate C Input	Inverted Enab	ole bit			
	1 = Inverted	MCI is connect	ed to AND gat	e,			
	0 = Inverted	MCI is not con	nected to AND	gate			

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions		
SY00	Τρυ	Power-up Period	—	400	600	μS			
SY10	Tost	Oscillator Start-up Time	_	1024 Tosc			Tosc = OSC1 period		
SY12	Twdt	Watchdog Timer Time-out Period	0.81	0.98	1.22	ms	WDTPRE = 0, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 30-20) at +85°C		
			3.26	3.91	4.88	ms	WDTPRE = 1, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 30-20) at +85°C		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS			
SY20	TMCLR	MCLR Pulse Width (low)	2	—	_	μS			
SY30	TBOR	BOR Pulse Width (low)	1	_	_	μS			
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	500	900	μS	-40°C to +85°C		
SY36	TVREG	Voltage Regulator Standby-to-Active mode Transition Time	—	_	30	μS			
SY37	Toscdfrc	FRC Oscillator Start-up Delay	46	48	54	μS			
SY38	TOSCDLPRC	LPRC Oscillator Start-up Delay	—	_	70	μS			

TABLE 30-22:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

TABLE 30-48:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency		_	11	MHz	(Note 3)
SP72	TscF	SCK1 Input Fall Time	_		—	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	_	_	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time			_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS1}$ ↓ to SCK1 ↑ or SCK1 ↓ Input	120		—	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	(Note 4)
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	—	_	ns	(Note 4)

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 91 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

TABLE 31-11: INTERNAL RC ACCURACY

AC CH	ARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$						
Param No.	Characteristic	Min	Тур	Max	Units	Conditions		
	LPRC @ 32.768 kHz ^(1,2)							
HF21	LPRC	-30	_	+30	%	$-40^{\circ}C \le TA \le +150^{\circ}C VDD = 3.0-3.6V$		

Note 1: Change of LPRC frequency as VDD changes.

2: LPRC accuracy impacts the Watchdog Timer Time-out Period (TwDT). See Section 27.5 "Watchdog Timer (WDT)" for more information.

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	ILLIMETER	S	
Dimension Lim		MIN	NOM	MAX	
Number of Pins	Ν	28			
Pitch	е	0.65 BSC			
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3		0.20 REF		
Overall Width	Е		6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.70	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.70	
Terminal Width	b	0.23	0.30	0.35	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

 $\label{eq:REF:Reference Dimension, usually without tolerance, for information purposes only.$

Microchip Technology Drawing C04-124C Sheet 2 of 2

INDEX

Α

Absolute Maximum Ratings 40	01
AC Characteristics	71
10-Bit ADC Conversion Requirements46	65
12-Bit ADC Conversion Requirements 46	63
ADC Module4	59
ADC Module (10-Bit Mode)	73
ADC Module (12-Bit Mode)	73
Capacitive Loading Requirements on	
Output Pins4	13
DMA Module Requirements46	65
ECANx I/O Requirements4	54
External Clock	14
High-Speed PWMx Requirements42	22
I/O Timing Requirements4	16
I2Cx Bus Data Requirements (Master Mode) 45	51
I2Cx Bus Data Requirements (Slave Mode)	53
Input Capture x Requirements	20
Internal FRC Accuracy4	15
Internal LPRC Accuracy4	15
Internal RC Accuracy	72
Load Conditions	71
OCx/PWMx Mode Requirements	21
Op Amp/Comparator Voltage Reference	
Settling Time Specifications	57
Output Compare x Requirements	21
PLL Clock	71
QEI External Clock Requirements42	23
QEI Index Pulse Requirements42	25
Quadrature Decoder Requirements42	24
Reset, Watchdog Timer, Oscillator Start-up Timer.	
Power-up Timer Requirements 4	4 - 7
	17
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x.	17
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements	41
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements	41
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44	41 40
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements	41 40
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements	41 40 39
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 44	41 40 39 38
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 45 SPI1 Maximum Data/Clock Rate Summary 45 SPI1 Maximum Data/Clock Rate Summary 45 SPI1 Slave Mode (Full-Duplex, CKE = 0, 45	41 40 39 38
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 44 SPI1 Maximum Data/Clock Rate Summary 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44	41 40 39 38 49
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 44 SPI1 Maximum Data/Clock Rate Summary 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, 44	41 40 39 38 49
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 44 SPI1 Maximum Data/Clock Rate Summary 44 SPI1 Maximum Data/Clock Rate Summary 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44	41 40 39 38 49 47
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 44 SPI1 Maximum Data/Clock Rate Summary 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, 44	41 40 39 38 49 47
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 44 SPI1 Maximum Data/Clock Rate Summary 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44	41 40 39 38 49 47 43
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 44 SPI1 Maximum Data/Clock Rate Summary 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, 44	41 40 39 38 49 47 43
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 44 SPI1 Maximum Data/Clock Rate Summary 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44	 41 40 39 38 49 47 43 45
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 44 SPI1 Maximum Data/Clock Rate Summary 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SM 44	 41 40 39 38 49 47 43 45 49
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 44 SPI1 Maximum Data/Clock Rate Summary 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SM = 1) Requirements 44	 41 40 39 38 49 47 43 45 49 29
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 44 SPI1 Maximum Data/Clock Rate Summary 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SM = 1) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 1, 44	 41 40 39 38 49 47 43 45 49 29
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 44 SPI1 Maximum Data/Clock Rate Summary 44 SPI1 Maximum Data/Clock Rate Summary 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SM = 1) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44	 41 40 39 38 49 47 43 45 49 29 28
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 44 SPI1 Maximum Data/Clock Rate Summary 44 SPI1 Maximum Data/Clock Rate Summary 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44	41 40 39 38 49 47 43 45 49 429 28
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements 44 SPI1 Maximum Data/Clock Rate Summary 44 SPI1 Maximum Data/Clock Rate Summary 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements 44	 41 40 39 38 49 47 43 45 49 47 28 27
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements44SPI1 Maximum Data/Clock Rate Summary44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements44SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements44SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements44	 17 41 40 39 38 49 47 43 45 49 47 43 45 429 28 27 26
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements44SPI1 Maximum Data/Clock Rate Summary44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SM = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements44SPI2 Master Mode (Half-Duplex, CKE = 0,44SPI2 Maximum Data/Clock Rate Summary44SPI2 Maximum Data/Clock Rate Summary44SPI2 Slave Mode (Full-Duplex, CKE = 0,44	17 41 40 39 38 49 47 43 45 47 43 45 429 28 27 26
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements44SPI1 Maximum Data/Clock Rate Summary44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements44SPI2 Maximum Data/Clock Rate Summary44SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44	17 41 40 39 38 49 47 43 45 47 43 45 47 29 28 27 26 37
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements44SPI1 Maximum Data/Clock Rate Summary44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SM = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements44SPI2 Maximum Data/Clock Rate Summary44SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SM44SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SM44SPI2 Slave Mode (Full-Duplex, CK	 17 41 40 39 38 49 47 43 45 49 28 27 26 37 49
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements44SPI1 Maximum Data/Clock Rate Summary44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SM = 0) Requirements44	 41 40 39 38 49 47 43 45 47 43 45 47 28 27 28 27 26 37 47
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements44SPI1 Maximum Data/Clock Rate Summary44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SM = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SM = 0) Requirements44SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SM = 0) Requirements44SPI2 Slave Mode (Full-Duplex, CKE = 1,44SPI2 Slave Mode (Full-Duplex, CKE = 1,44SPI2 Slave Mode (Fu	17 41 40 39 38 49 47 43 45 47 43 45 19 28 27 26 37 19 35
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements44SPI1 Maximum Data/Clock Rate Summary44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SM = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44	17 41 40 39 38 49 47 43 45 47 43 45 1P 28 27 26 37 1P 35 31
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements44SPI1 Maximum Data/Clock Rate Summary44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI2 Slave Mode (Full-Duplex, CKE = 1, <td>17 41 40 39 38 49 47 43 45 49 47 43 45 49 28 27 28 27 26 37 49 35 31</td>	17 41 40 39 38 49 47 43 45 49 47 43 45 49 28 27 28 27 26 37 49 35 31

Timer1 External Clock Requirements	418
Timer2/Timer4 External Clock Requirements	419
Timer3/Timer5 External Clock Requirements	419
UARTx I/O Requirements	454
ADC	
Control Registers	325
Helpful Tips	324
Key Features	321
Resources	324
Arithmetic Logic Unit (ALU)	44
Assembler	
MPASM Assembler	398
D	
Bit-Reversed Addressing	115
Example	116
Implementation	115
Sequence Table (16-Entry)	116
Block Diagrams	
Data Access from Program Space	
Address Generation	117
16-Bit Timer1 Module	203
ADC Conversion Clock Period	323
ADC with Connection Options for ANX Pins	
and Op Amps	322
Arbiter Architecture	110
BEMF Voltage Measurement Using ADC	34
Boost Converter Implementation	32
CALL Stack Frame	111
Comparator (Module 4)	350
Connections for On-Chip Voltage Regulator	384
CPU Core	00 170
CRC Module	3/3
	374
Digital Filter Interconnect	310
	1/10
DMA Controller Medule	191
	139 50¥
and PIC24EPXXXCP/MC20X	25 25
	20 288
EDS Read Address Generation	200
EDS Write Address Generation	106
Example of MCLR Pin Connections	100
High-Speed PWMx Architectural Overview	00
High-Speed PWMx Register Interconnection	228
I2Cx Module	274
Input Capture x	213
Interleaved PEC	210
Multiphase Synchronous Buck Converter	33
Multiplexing Remappable Output for RPn	180
Op Amp Configuration A.	
Op Amp Configuration B.	
Op Amp/Comparator Voltage Reference Module.	356
Op Amp/Comparator x (Modules 1. 2. 3)	355
Oscillator System	153
Output Compare x Module	219
PLL	154
Programmer's Model	38
PTG Module	338
Quadrature Encoder Interface	250
Recommended Minimum Connection	30