

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep128gp206t-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-5: SINGLE-PHASE SYNCHRONOUS BUCK CONVERTER

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "CPU" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for digital signal processing. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

3.1 Registers

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can act as a data, address or address offset register. The 16th working register (W15) operates as a Software Stack Pointer for interrupts and calls.

3.2 Instruction Set

The instruction set for dsPIC33EPXXXGP50X and dsPIC33EPXXXMC20X/50X devices has two classes of instructions: the MCU class of instructions and the DSP class of instructions. The instruction set for PIC24EPXXXGP/MC20X devices has the MCU class of instructions only and does not support DSP instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

3.3 Data Space Addressing

The base Data Space can be addressed as 64 Kbytes (32K words).

The Data Space includes two ranges of memory, referred to as X and Y data memory. Each memory range is accessible through its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear Data Space. On dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y Data Spaces have memory locations that are device-specific, and are described further in the data memory maps in **Section 4.2 "Data Address Space"**.

The upper 32 Kbytes of the Data Space memory map can optionally be mapped into Program Space (PS) at any 32-Kbyte aligned program word boundary. The Program-to-Data Space mapping feature, known as Program Space Visibility (PSV), lets any instruction access Program Space as if it were Data Space. Moreover, the Base Data Space address is used in conjunction with a Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space (EDS) address. The EDS can be addressed as 8M words or 16 Mbytes. Refer to the "**Data Memory**" (DS70595) and "**Program Memory**" (DS70613) sections in the "*dsPIC33/PIC24 Family Reference Manual*" for more details on EDS, PSV and table accesses.

On the dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. The X AGU Circular Addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data re-ordering for radix-2 FFT algorithms. PIC24EPXXXGP/MC20X devices do not support Modulo and Bit-Reversed Addressing.

3.4 Addressing Modes

The CPU supports these addressing modes:

- Inherent (no operand)
- Relative
- Literal
- · Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined addressing mode group, depending upon its functional requirements. As many as six addressing modes are supported for each instruction.

5.2 RTSP Operation

RTSP allows the user application to erase a single page of memory and to program two instruction words at a time. See the General Purpose and Motor Control Family tables (Table 1 and Table 2, respectively) for the page sizes of each device.

For more information on erasing and programming Flash memory, refer to "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual".

5.3 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

For erase and program times, refer to Parameters D137a and D137b (Page Erase Time), and D138a and D138b (Word Write Cycle Time) in Table 30-14 in **Section 30.0 "Electrical Characteristics"**.

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of program Flash memory at a time on every other word address boundary (0x000002, 0x000006, 0x00000A, etc.). To do this, it is necessary to erase the page that contains the desired address of the location the user wants to change.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Refer to **Flash Programming**" (DS70609) in the "*dsPIC33/PIC24 Family Reference Manual*" for details and codes examples on programming using RTSP.

5.4 Flash Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

5.4.1 KEY RESOURCES

- "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

5.5 Control Registers

Four SFRs are used to erase and write the program Flash memory: NVMCON, NVMKEY, NVMADRH and NVMADRL.

The NVMCON register (Register 5-1) enables and initiates Flash memory erase and write operations.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register.

There are two NVM Address registers: NVMADRH and NVMADRL. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word for programming operations or the selected page for erase operations.

The NVMADRH register is used to hold the upper 8 bits of the EA, while the NVMADRL register is used to hold the lower 16 bits of the EA.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/SO-0 ⁽¹) R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	NVMSIDL ⁽²⁾	_		—	
bit 15	I	1	1				bit 8
U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
_	—	—	—	NVMOP3 ^(3,4)	NVMOP2 ^(3,4)	NVMOP1 ^(3,4)	NVMOP0 ^{(3,4}
bit 7							bit (
lagandi		SO - Sottab	la Only hit				
L egend: R = Reada	ble hit	SO = Settab W = Writable	-	II – I Inimplem	nented bit, read	ae 'O'	
-n = Value		'1' = Bit is se		'0' = Bit is clea		x = Bit is unkr	
		1 - Dit 13 30					lowin
bit 15	WR: Write Co	ontrol bit(1)					
			ory program or	erase operation	on; the operatio	n is self-timed	and the bit is
	cleared b	y hardware o	nce the operati	on is complete			
	-		ration is comple	ete and inactive	9		
bit 14	WREN: Write		n/erase operati	000			
			/erase operatio				
oit 13			Error Flag bit ⁽¹⁾				
	1 = An impro	per program o	r erase sequend		rmination has oc	curred (bit is se	t automatically
		et attempt of th	e WR bit) operation com	olotod pormally			
bit 12			le Control bit ⁽²⁾	Sieteu normaliy			
			r goes into Star	ndbv mode duri	ina Idle mode		
			r is active durin				
bit 11-4	Unimplemen	ted: Read as	'0'				
bit 3-0	NVMOP<3:0>	NVM Operation	ation Select bits	₃ (1,3,4)			
	1111 = Rese						
	1110 = Rese 1101 = Rese						
	1100 = Rese						
	1011 = Rese						
	1010 = Rese 0011 = Memo		e operation				
	0010 = Rese	rved	-				
			ord program ope	eration ⁽⁵⁾			
	0000 = Rese	rvea					
	These bits can onl	-					
	If this bit is set, the (TVREG) before Fla				d upon exiting lo	dle mode, there	is a delay
	All other combinati	•	•				
. .				in ploinenteu.			
	Execution of the P	wrsav instruc	tion is ianored	while any of th	e NVM operatio	ns are in progr	ess.

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHEN	SIZE	DIR	HALF	NULLW			
bit 15							bit
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
	0-0	AMODE1	AMODE0	0-0	0-0	MODE1	MODE0
bit 7		AWODET	7 WIODE0			MODET	bit
Lovende							
Legend: R = Readab	lo hit	M - Mritabla	hit.		monted bit rec	ud aa '0'	
		W = Writable		-	mented bit, rea		
-n = Value a	IT POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	CHEN: DMA	Channel Enabl	e bit				
	1 = Channel 0 = Channel						
bit 14		ata Transfer S	ze hit				
	1 = Byte						
	0 = Word						
bit 13	DIR: DMA Tra	ansfer Directior	n bit (source/d	estination bus	select)		
		om RAM addre om peripheral a		•			
bit 12		Block Transfer					
	1 = Initiates i	nterrupt when	half of the data	a has been mo			
bit 11		Data Periphera					
		write to periph			e (DIR bit must	also be clear)	
bit 10-6	Unimplemen	ted: Read as '	0'				
bit 5-4	AMODE<1:0	-: DMA Chann	el Addressing	Mode Select b	oits		
	11 = Reserve 10 = Periphe 01 = Register		ressing mode ut Post-Increm	nent mode			
bit 3-2	Unimplemen	ted: Read as '	0'				
bit 1-0	-	DMA Channel		de Select bits			
	11 = One-Sho 10 = Continue	ot, Ping-Pong r ous, Ping-Pong ot, Ping-Pong r	nodes are ena modes are e nodes are dis	abled (one bloc nabled abled	ck transfer fror	n/to each DMA t	ouffer)

REGISTER 8-1: DMAXCON: DMA CHANNEL X CONTROL REGISTER

10.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Watchdog Timer and Power-Saving Modes" (DS70615) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of peripherals being clocked constitutes lower consumed power.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices can manage power consumption in four ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software-Controlled Doze mode
- · Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV	#SLEEP_MODE	;	Put	the	device	into	Sleep mode	
PWRSAV	#IDLE_MODE	;	Put	the	device	into	Idle mode	

10.1 Clock Frequency and Clock Switching

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or highprecision oscillators by simply changing the NOSCx bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0 "Oscillator Configuration"**.

10.2 Instruction-Based Power-Saving Modes

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

U-0 R/W-0 R/W R/W R/W </th <th>R/W-0</th> <th>R/W-0</th> <th>R/W-0</th> <th>R/W-0</th> <th>R/W-0</th> <th>R/W-0</th> <th>U-0</th> <th>U-0</th>	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
U-0 U-0 RW-0 <	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	_
- BCH ⁽¹⁾ BCL ⁽¹⁾ BPH BPHL BPLH BPHH	bit 15							bit
bit 7 t Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' in = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PHR: PWMxH Rising Edge Trigger Enable bit 1 = Rising edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH bit 14 PHF: PWMxH Falling Edge Trigger Enable bit 1 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking is applied to selected Fault input 1 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected Current-limit input 0 = Leading-Edge Blanking is applied to sel	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' nn = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PHR: PWMxH Rising Edge Trigger Enable bit 1 = Rising edge of PWMxH will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH 1 = Falling edge of PWMxH will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH 1 = Falling edge of PWMxH will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH 1 = Rising edge of PWMxH will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL 1 = Rising edge of PWMxL will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL 1 = Falling edge of PWMxL will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL 1 = Falling edge of PWMxL will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL 1 = Falling edge of PWMxL will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL 1 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected Fault input 1 = Leading-Edge Blanking is applied to selected Current-limit input 1 = Leading-Edge Blanking is not applied to selected current-limit input 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is high 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when Selected blanking signal is low 0 = No blanking when PWMxH dupt is high 0 = No blanking when PWMxH dupt signals) when PWMxH output is high 0 = No blanking when PWMxH tow Enable bit 1 = State blanking (of current-limit and/	_	_	BCH ⁽¹⁾	BCL ⁽¹⁾	BPHH	BPHL	BPLH	BPLL
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' in = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PHR: PWMxH Rising Edge Trigger Enable bit 1 = Rising edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH bit 14 PHF: PWMxH Falling Edge Trigger Enable bit 1 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH bit 13 PLR: PWMxL Rising Edge Trigger Enable bit 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL bit 13 PLR: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking is not applied to selected Fault input bit 11 FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is not applied to selected current-limit input bit 5 BCH: Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input bit 9-6 Unimplemented: Read as '0' 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is high bit 4 BCL: Blanking in Selected Blanking signal is high 1 = State blanking	bit 7							bit
n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PHR: PWMxH Rising Edge Trigger Enable bit 1 = Rising edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH 11 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH 11 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores fising edge of PWMxL 0 = Leading-Edge Blanking ignores falling edge of PWMxL bit 12 PLF: PWMxL Falling Edge Trigger Enable bit 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL 0 = Leading-Edge Blanking ignores falling edge of PWMxL bit 11 FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking signal Figh Enable bit 1 = State blanking in Selected Blanking Singal High Enable bit ⁽¹⁾ 1 = State blanking in Sel	Legend:							
 PHR: PWMxH Rising Edge Trigger Enable bit Rising edge of PWMxH will trigger Leading-Edge Blanking counter	R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
 1 = Rising edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH PHF: PWMxH Falling Edge Trigger Enable bit 1 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH PLR: PVMxL Rising Edge Trigger Enable bit 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL PLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL Det Leading-Edge Blanking ignores ralling edge of PWMxL D = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking Signal High Enable bit 1 = Leading-Edge Blanking Signal Liph Enable bit⁽¹⁾ 1 = State blanking (or current-limit and/or Fault input signals) when selected blanking signal is high 0 = No blanking when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking when PWMxH output is high 0 = No blanking when PWMxH output is high 0 = No blanking when PWMxH output is high 0 = No b	-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	nown
 1 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH bit 13 PLR: PWMxL Rising Edge Trigger Enable bit 1 = Rising edge of PWMxL. will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL bit 12 PLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL. will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL bit 12 FLTLEBEN: Fault Input Leading-Edge Blanking Counter 0 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = No blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when PWMxH output is nigh 0 = No bla	bit 15	1 = Rising ed	ge of PWMxH	will trigger Le	ading-Edge Bla			
 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL pLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL bit 11 FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = No blanking when selected Blanking Signal Low Enable bit⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when PWMxH dutput is high 0 = No blanking when PWMxH Low Enable bit 1 = State blanking (of	bit 14	1 = Falling ed	lge of PWMxH	will trigger Le	eading-Edge Bla	0		
bit 12 PLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL bit 11 FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = No blanking when selected Blanking signal Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when P	bit 13	1 = Rising ed	ge of PWMxL	will trigger Le	ading-Edge Bla			
 1 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 1 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = No blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low 0 = No blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low 0 = No blanking (of current-limit and/or Fault input signals) when PWMxL output is low 0 = No blanking when PWMxL output is low 0 = No blanking when PWMxL output is high 0 = No blanking when PWMxL output is high 0 = No blanking when PWMxL output is high 0 = No blanking when PWMxL output is high	bit 12	1 = Falling ed	lge of PWMxL	will trigger Le	ading-Edge Bla			
 1 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input bit 9-6 Unimplemented: Read as '0' bit 5 BCH: Blanking in Selected Blanking Signal High Enable bit⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is hig 0 = No blanking when selected blanking Signal Low Enable bit⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is hig bit 4 BCL: Blanking in Selected Blanking Signal Low Enable bit⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low 0 = No blanking when PWMxL output is low bit 1 BPLH: Blanking in PWMxL Ligh Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high 0 = No blanking when PWMxL output is high 0 = No blanking in PWMxL Low Enable bit 1 = State blanking in PWMxL Low Enable bit 1 = State blanking in PWMxL output is high 	bit 11	1 = Leading-E	Edge Blanking	is applied to	selected Fault in	nput		
bit 5 BCH: Blanking in Selected Blanking Signal High Enable bit ⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is high bit 4 BCL: Blanking in Selected Blanking Signal Low Enable bit ⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low bit 4 BCL: Blanking in Selected Blanking Signal Low Enable bit ⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low bit 3 BPHH: Blanking in PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking when PWMxH output is high bit 2 BPHL: Blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 State blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxL output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit	bit 10	1 = Leading-E	Edge Blanking	is applied to	selected current	t-limit input		
 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is hig 0 = No blanking when selected blanking signal Low Enable bit⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking in PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking when PWMxH output is high 0 = No blanking in PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low 0 = No blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is low 	bit 9-6	Unimplemen	ted: Read as '	0'				
 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal is low BPHH: Blanking in PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking when PWMxH output is high bit 2 BPHL: Blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 	bit 5	1 = State blar	nking (of currer	nt-limit and/or	Fault input sigr		cted blanking s	ignal is high
 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking when PWMxH output is high bit 2 BPHL: Blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high bit 1 BPLH: Blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 	bit 4	1 = State blar	nking (of currer	nt-limit and/or	Fault input sigr		cted blanking s	ignal is low
1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high 0 = No blanking when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low	bit 3	1 = State blar	nking (of currer	nt-limit and/or	Fault input sigr	nals) when PWN	/IxH output is h	igh
bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low	bit 2	1 = State blar	nking (of currer	nt-limit and/or	Fault input sigr	nals) when PWN	/IxH output is lo)W
bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low	bit 1	BPLH: Blanki 1 = State blar	ing in PWMxL hking (of currer	High Enable I nt-limit and/or	bit Fault input sigr	nals) when PWN	/IxL output is hi	gh
\sim i	bit 0	BPLL: Blanki 1 = State blar	ng in PWMxL I hking (of currer	Low Enable b nt-limit and/or	it Fault input sigr	nals) when PWN	/IxL output is lo	w

REGISTER 16-16: LEBCONX: PWMx LEADING-EDGE BLANKING CONTROL REGISTER

Note 1: The blanking signal is selected via the BLANKSELx bits in the AUXCONx register.

FIGURE 17-1: QEI BLOCK DIAGRAM

REGISTER 21-6: CxINTF: ECANx INTERRUPT FLAG REGISTER (CONTINUED)

- bit 1 **RBIF:** RX Buffer Interrupt Flag bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 **TBIF:** TX Buffer Interrupt Flag bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	_	—		—	_	—	ADDMAEN
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
0-0	0-0	0-0	0-0	0-0			-
	—	—	—	—	DMABL2	DMABL1	DMABL0
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable b	bit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	nown		
bit 15-9	Unimplemen	ted: Read as '0	3				
bit 8	ADDMAEN: A	ADC1 DMA Ena	ıble bit				
				0	ster for transfer ADC1BUFF reg	0	
bit 7-3	Unimplemen	ted: Read as '0	,				
bit 2-0	DMABL<2:0>	Selects Numb	per of DMA B	uffer Locations	per Analog Inpu	ut bits	
	110 = Allocat 101 = Allocat 100 = Allocat 011 = Allocat 010 = Allocat 001 = Allocat	es 128 words of es 64 words of es 32 words of es 16 words of es 8 words of b es 4 words of b es 2 words of b es 1 word of bu	buffer to each buffer to each buffer to each uffer to each uffer to each a uffer to each a	analog input analog input analog input analog input analog input analog input analog input			

REGISTER 23-4: AD1CON4: ADC1 CONTROL REGISTER 4

24.4 Step Commands and Format

TABLE 24-1: PTG STEP COMMAND FORMAT

Step Command Byte:							
	STEPx<7:0>						
CMD<3:0>		OPTION<3:0>					
bit 7	bit 4 bit 3		bit 0				

bit 7-4	CMD<3:0>	Step Command	Command Description
	0000	PTGCTRL	Execute control command as described by OPTION<3:0>.
	0001	PTGADD	Add contents of PTGADJ register to target register as described by OPTION<3:0>.
		PTGCOPY	Copy contents of PTGHOLD register to target register as described by OPTION<3:0>.
	001x	PTGSTRB	Copy the value contained in CMD<0>:OPTION<3:0> to the CH0SA<4:0> bits (AD1CHS0<4:0>).
	0100	PTGWHI	Wait for a low-to-high edge input from the selected PTG trigger input as described by OPTION<3:0>.
	0101	PTGWLO	Wait for a high-to-low edge input from the selected PTG trigger input as described by OPTION<3:0>.
	0110	Reserved	Reserved.
	0111	PTGIRQ	Generate individual interrupt request as described by OPTION3<:0>.
	100x	PTGTRIG	Generate individual trigger output as described by < <cmd<0>:OPTION<3:0>>.</cmd<0>
	101x	PTGJMP	Copy the value indicated in < <cmd<0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR) and jump to that Step queue.</cmd<0>
	110x	PTGJMPC0	PTGC0 = PTGC0LIM: Increment the Queue Pointer (PTGQPTR).
			$PTGC0 \neq PTGC0LIM$: Increment Counter 0 (PTGC0) and copy the value indicated in < <cmd<0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR), and jump to that Step queue</cmd<0>
	111x	PTGJMPC1	PTGC1 = PTGC1LIM: Increment the Queue Pointer (PTGQPTR).
			$PTGC1 \neq PTGC1LIM$: Increment Counter 1 (PTGC1) and copy the value indicated in < <cmd<0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR), and jump to that Step queue.</cmd<0>

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 24-2 for the trigger output descriptions.

3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

25.0 OP AMP/COMPARATOR MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Op Amp/Comparator" (DS70357) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices contain up to four comparators, which can be configured in various ways. Comparators, CMP1, CMP2 and CMP3, also have the option to be configured as op amps, with the output being brought to an external pin for gain/filtering connections. As shown in Figure 25-1, individual comparator options are specified by the comparator module's Special Function Register (SFR) control bits.

Note: Op Amp/Comparator 3 is not available on the dsPIC33EPXXXGP502/MC502/MC202 and PIC24EP256GP/MC202 (28-pin) devices.

These options allow users to:

- · Select the edge for trigger and interrupt generation
- · Configure the comparator voltage reference
- · Configure output blanking and masking
- Configure as a comparator or op amp (CMP1, CMP2 and CMP3 only)

Note: Not all op amp/comparator input/output connections are available on all devices. See the "Pin Diagrams" section for available connections.

FIGURE 25-1: OP AMP/COMPARATOR x MODULE BLOCK DIAGRAM (MODULES 1, 2 AND 3)

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 26-3: CRCXORH: CRC XOR POLYNOMIAL HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			X<3	31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			X<2	23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown		

bit 15-0 X<31:16>: XOR of Polynomial Term Xⁿ Enable bits

REGISTER 26-4: CRCXORL: CRC XOR POLYNOMIAL LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Х<	15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			X<7:1>				_
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplen	nented bit, rea	ıd as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-1X<15:1>: XOR of Polynomial Term Xⁿ Enable bitsbit 0Unimplemented: Read as '0'

FIGURE 30-16: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-35:SPI2 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)TIMING REQUIREMENTS

АС СНА	RACTERIST	ICS	Standard (unless o Operating	therwise	stated) :ure -40°	°C ≤ TA ≤	′ to 3.6V +85°C for Industrial +125°C for Extended
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK2 Frequency	_	—	9	MHz	(Note 3)
SP20	TscF	SCK2 Output Fall Time	—	—		ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK2 Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdoV2sc, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30		—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—		ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30		_	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK2 is 111 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPI2 pins.

FIGURE 30-17: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-36:SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK2 Frequency		—	9	MHz	-40°C to +125°C (Note 3)
SP20	TscF	SCK2 Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK2 Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	_	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—		ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK2 is 111 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPI2 pins.

FIGURE 30-18: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dime	ension Limits	MIN	NOM	MAX	
Number of Pins	N		28		
Pitch	е	0.65 BSC			
Overall Height	A	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	9.90	10.20	10.50	
Foot Length	L	0.55	0.75	0.95	
Footprint		1.25 REF			
Lead Thickness	С	0.09	-	0.25	
Foot Angle	ф	0°	4°	8°	
Lead Width	b	0.22	-	0.38	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 6x6 mm Body [UQFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch			0.40 BSC	
Optional Center Pad Width	W2			4.45
Optional Center Pad Length	T2			4.45
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.80
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2153A

Revision E (April 2012)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table A-3.

TABLE A-4:	MAJOR SECTION UPDATES
------------	-----------------------

Section Name	Update Description				
"16-bit Microcontrollers and Digital Signal	The following 512-Kbyte devices were added to the General Purpose Families table (see Table 1):				
Controllers (up to	 PIC24EP512GP202 				
512-Kbyte Flash and	• PIC24EP512GP204				
48-Kbyte SRAM) with High-	• PIC24EP512GP206				
Speed PWM, Op amps, and Advanced Analog"	• dsPIC33EP512GP502				
Advanced Analog	• dsPIC33EP512GP504				
	• dsPIC33EP512GP506				
	The following 512-Kbyte devices were added to the Motor Control Families table (see Table 2):				
	• PIC24EP512MC202				
	• PIC24EP512MC204				
	• PIC24EP512MC206				
	• dsPIC33EP512MC202				
	• dsPIC33EP512MC204				
	• dsPIC33EP512MC206				
	• dsPIC33EP512MC502				
	• dsPIC33EP512MC504				
	• dsPIC33EP512MC506				
	Certain Pin Diagrams were updated to include the new 512-Kbyte devices.				
Section 4.0 "Memory	Added a Program Memory Map for the new 512-Kbyte devices (see Figure 4-4).				
Organization"	Added a Data Memory Map for the new dsPIC 512-Kbyte devices (see Figure 4-11).				
	Added a Data Memory Map for the new PIC24 512-Kbyte devices (see Figure 4-16).				
Section 7.0 "Interrupt Controller"	Updated the VECNUM bits in the INTTREG register (see Register 7-7).				
Section 11.0 "I/O Ports"	Added tip 6 to Section 11.5 "I/O Helpful Tips".				
Section 27.0 "Special Features"	The following modifications were made to the Configuration Byte Register Map (see Table 27-1):				
	 Added the column Device Memory Size (Kbytes) 				
	Removed Notes 1 through 4				
	Added addresses for the new 512-Kbyte devices				
Section 30.0 "Electrical	Updated the Minimum value for Parameter DC10 (see Table 30-4).				
Characteristics"	Added Power-Down Current (Ipd) parameters for the new 512-Kbyte devices (see Table 30-8).				
	Updated the Minimum value for Parameter CM34 (see Table 30-53).				
	Updated the Minimum and Maximum values and the Conditions for paramteer SY12 (see Table 30-22).				

Revision H (August 2013)

This revision includes minor typographical and formatting changes throughout the text.

Other major changes are referenced by their respective section in Table A-6.

Section Name	Update Description
Cover Section	 Adds Peripheral Pin Select (PPS) to allow Digital Function Remapping and Change Notification Interrupts to Input/Output section
	Adds heading information to 64-Pin TQFP
Section 4.0 "Memory	Corrects Reset values for ANSELE, TRISF, TRISC, ANSELC and TRISA
Organization"	 Corrects address range from 0x2FFF to 0x7FFF
	Corrects DSRPAG and DSWPAG (now 3 hex digits)
	Changes Call Stack Frame from <15:1> to PC<15:0>
	Word length in Figure 4-20 is changed to 50 words for clarity
Section 5.0 "Flash Program	Corrects descriptions of NVM registers
Memory"	
Section 9.0 "Oscillator	Removes resistor from Figure 9-1
Configuration"	Adds Fast RC Oscillator with Divide-by-16 (FRCDIV16) row to Table 9-1
	Removes incorrect information from ROI bit in Register 9-2
Section 14.0 "Input Capture"	 Changes 31 user-selectable Trigger/Sync interrupts to 19 user-selectable Trigger/ Sync interrupts
	 Corrects ICTSEL<12:10> bits (now ICTSEL<2:0>)
Section 17.0 "Quadrature Encoder Interface (QEI)	Corrects QCAPEN bit description
Module	
(dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X	
Devices Only)"	
Section 19.0 "Inter- Integrated Circuit™ (I ² C™)"	 Adds note to clarify that 100kbit/sec operation of I²C is not possible at high processor speeds
Section 22.0 "Charge Time	Clarifies Figure 22-1 to accurately reflect peripheral behavior
Measurement Unit (CTMU)"	
Section 23.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC)"	Correct Figure 23-1 (changes CH123x to CH123Sx)
Section 24.0 "Peripheral Trigger Generator (PTG) Module"	 Adds footnote to Register 24-1 (In order to operate with CVRSS=1, at least one of the comparator modules must be enabled.
Section 25.0 "Op Amp/ Comparator Module"	 Adds note to Figure 25-3 (In order to operate with CVRSS=1, at least one of the comparator modules must be enabled)
	 Adds footnote to Register 25-2 (COE is not available when OPMODE (CMxCON<10>) = 1)
Section 27.0 "Special Features"	Corrects the bit description for FNOSC<2:0>
Section 30.0 "Electrical	Corrects 512K part power-down currents based on test data
Characteristics"	Corrects WDT timing limits based on LPRC oscillator tolerance
Section 31.0 "High- Temperature Electrical Characteristics"	Adds Table 31-5 (DC Characteristics: Idle Current (IIDLE)