

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

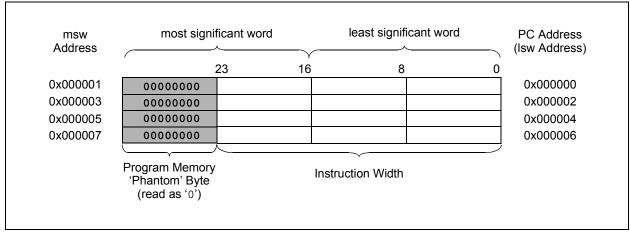
Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep128mc202-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-6).

Program memory addresses are always word-aligned on the lower word and addresses are incremented, or decremented by two, during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices reserve the addresses between 0x000000 and 0x000200 for hardcoded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address, 0x000000, of Flash memory, with the actual address for the start of code at address, 0x000002, of Flash memory.

A more detailed discussion of the Interrupt Vector Tables (IVTs) is provided in **Section 7.1** "Interrupt Vector Table".

FIGURE 4-6: PROGRAM MEMORY ORGANIZATION

TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC35	0886	_		JTAGIP<2:0	>	_		ICDIP<2:0	>		—	_	_	—	_	—		4400
IPC36	0888	_	F	PTG0IP<2:0	>	_	PT	GWDTIP<	2:0>		PT	GSTEPIP<2	:0>	—	—	_	-	4440
IPC37	088A	_	—	—	_	_	F	PTG3IP<2:0)>			PTG2IP<2:0>	>	_		PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR				_	_	_	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_			—		_	—	—	_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	—	—	_	_			—		_	DAE	DOOVR	_	—	—		0000
INTCON4	08C6	_	_	_	_	_	-	_	—	_	_	_	_	—	—	—	SGHT	0000
INTTREG	08C8	Ι	_	_	_		ILR<	3:0>					VECN	UM<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

6.0 RESETS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

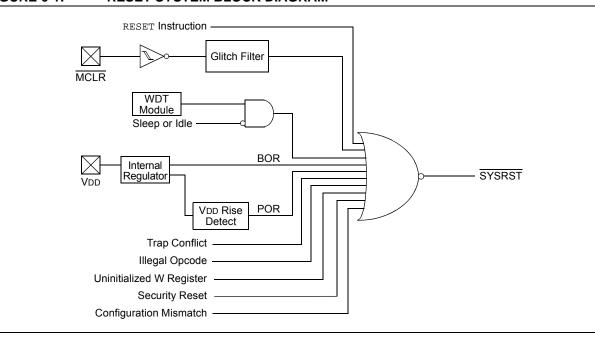
- · POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Time-out Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
- Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this manual for register Reset states.


All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR and BOR bits (RCON<1:0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

For all Resets, the default clock source is determined by the FNOSC<2:0> bits in the FOSCSEL Configuration register. The value of the FNOSC<2:0> bits is loaded into NOSC<2:0> (OSCCON<10:8>) on Reset, which in turn, initializes the system clock.

	Vector	IRQ		Inte	errupt Bit L	ocation
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority
QEI1 – QEI1 Position Counter Compare ⁽²⁾	66	58	0x000088	IFS3<10>	IEC3<10>	IPC14<10:8>
Reserved	67-72	59-64	0x00008A-0x000094	_	_	_
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4<2>	IEC4<2>	IPC16<10:8>
CRC – CRC Generator Interrupt	75	67	0x00009A	IFS4<3>	IEC4<3>	IPC16<14:12>
Reserved	76-77	68-69	0x00009C-0x00009E	—	_	—
C1TX – CAN1 TX Data Request ⁽¹⁾	78	70	0x000A0	IFS4<6>	IEC4<6>	IPC17<10:8>
Reserved	79-84	71-76	0x0000A2-0x0000AC	—	_	—
CTMU – CTMU Interrupt	85	77	0x0000AE	IFS4<13>	IEC4<13>	IPC19<6:4>
Reserved	86-101	78-93	0x0000B0-0x0000CE	—	_	—
PWM1 – PWM Generator 1 ⁽²⁾	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>
PWM2 – PWM Generator 2 ⁽²⁾	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>
PWM3 – PWM Generator 3 ⁽²⁾	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>
Reserved	105-149	97-141	0x0001D6-0x00012E	—	_	—
ICD – ICD Application	150	142	0x000142	IFS8<14>	IEC8<14>	IPC35<10:8>
JTAG – JTAG Programming	151	143	0x000130	IFS8<15>	IEC8<15>	IPC35<14:12>
Reserved	152	144	0x000134	—	—	_
PTGSTEP – PTG Step	153	145	0x000136	IFS9<1>	IEC9<1>	IPC36<6:4>
PTGWDT – PTG Watchdog Time-out	154	146	0x000138	IFS9<2>	IEC9<2>	IPC36<10:8>
PTG0 – PTG Interrupt 0	155	147	0x00013A	IFS9<3>	IEC9<3>	IPC36<14:12>
PTG1 – PTG Interrupt 1	156	148	0x00013C	IFS9<4>	IEC9<4>	IPC37<2:0>
PTG2 – PTG Interrupt 2	157	149	0x00013E	IFS9<5>	IEC9<5>	IPC37<6:4>
PTG3 – PTG Interrupt 3	158	150	0x000140	IFS9<6>	IEC9<6>	IPC37<10:8>
Reserved	159-245	151-245	0x000142-0x0001FE	—	—	_
	Lowe	est Natura	I Order Priority			

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

Note 1: This interrupt source is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

2: This interrupt source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the powersaving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

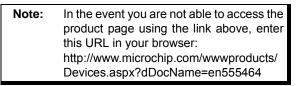
Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the ECAN[™] module has been configured for 500 kbps, based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the ECAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable


The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note:	If a PMD bit is set, the corresponding					
	module is disabled after a delay of one					
	instruction cycle. Similarly, if a PMD bit is					
	cleared, the corresponding module is					
	enabled after a delay of one instruction					
	cycle (assuming the module control regis-					
	ters are already configured to enable					
	module operation).					

10.5 Power-Saving Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

10.5.1 KEY RESOURCES

- "Watchdog Timer and Power-Saving Modes" (DS70615) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—			RP57	R<5:0>						
bit 15							bit 8				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	—		RP56R<5:0>								
bit 7							bit 0				
Legend:											
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
-n = Value at P	OR	'1' = Bit is set	:	'0' = Bit is clea	ared	x = Bit is unkr	iown				
bit 15-14	Unimplemen	ted: Read as '	0'								
bit 13-8	bit 13-8 RP57R<5:0>: Peripheral Output Function is Assigned to RP57 Output Pin bits (see Table 11-3 for peripheral function numbers)										
bit 7-6	Unimplemented: Read as '0'										

REGISTER 11-24: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

(see Table 11-3 for peripheral function numbers)

REGISTER 11-25: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP97	R<5:0>		
bit 15							bit 8

RP56R<5:0>: Peripheral Output Function is Assigned to RP56 Output Pin bits

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	—		—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP97R<5:0>:** Peripheral Output Function is Assigned to RP97 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-0 Unimplemented: Read as '0'

bit 5-0

13.2 Timer Control Registers

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0						
TON		TSIDL	—	_			_						
bit 15							bit 8						
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0						
_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_						
bit 7							bit (
<u> </u>													
Legend:	- 1-:4			II II.									
R = Readable		W = Writable		-	nented bit, rea								
-n = Value at	PUR	'1' = Bit is set		'0' = Bit is cle	areo	x = Bit is unkn	own						
bit 15	TON. Timery	On hit											
	When T32 = 2	TON: Timerx On bit When T32 = 1											
	1 = Starts 32-	bit Timerx/y											
	•	0 = Stops 32-bit Timerx/y											
		<u>When T32 = 0:</u> 1 = Starts 16-bit Timerx											
	0 = Stops 16-bit Timerx												
bit 14	Unimplemen	Unimplemented: Read as '0'											
bit 13	TSIDL: Timerx Stop in Idle Mode bit												
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 												
		-		ode									
bit 12-7	-	ted: Read as '											
bit 6	TGATE: Timerx Gated Time Accumulation Enable bit												
	$\frac{\text{When TCS} = 1}{\text{This bit is ignored.}}$												
	When TCS = 0 :												
	1 = Gated time accumulation is enabled												
		0 = Gated time accumulation is disabled											
bit 5-4		: Timerx Input	Clock Prescal	e Select bits									
	11 = 1:256 10 = 1:64	11 = 1:256											
	01 = 1:8												
	00 = 1:1												
bit 3	T32: 32-Bit Ti	mer Mode Sele	ect bit										
		 1 = Timerx and Timery form a single 32-bit timer 0 = Timerx and Timery act as two 16-bit timers 											
bit 2	Unimplemen	ted: Read as ')'										
bit 1	TCS: Timerx	Clock Source S	elect bit										
	1 = External c 0 = Internal cl	clock is from pir lock (FP)	n, TxCK (on th	ne rising edge)									
bit 0	Unimplomon	ted: Read as '	ı'										

REGISTER 13-1: TxCON: (TIMER2 AND TIMER4) CONTROL REGISTER

16.1.2 WRITE-PROTECTED REGISTERS

On dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices, write protection is implemented for the IOCONx and FCLCONx registers. The write protection feature prevents any inadvertent writes to these registers. This protection feature can be controlled by the PWMLOCK Configuration bit (FOSCSEL<6>). The default state of the write protection feature is enabled (PWMLOCK = 1). The write protection feature can be disabled by configuring, PWMLOCK = 0. To gain write access to these locked registers, the user application must write two consecutive values of (0xABCD and 0x4321) to the PWMKEY register to perform the unlock operation. The write access to the IOCONx or FCLCONx registers must be the next SFR access following the unlock process. There can be no other SFR accesses during the unlock process and subsequent write access. To write to both the IOCONx and FCLCONx registers requires two unlock operations.

The correct unlocking sequence is described in Example 16-1.

EXAMPLE 16-1: PWMx WRITE-PROTECTED REGISTER UNLOCK SEQUENCE

	; FLT32 pin must be pulled low externally in order to clear and disable the fault ; Writing to FCLCON1 register requires unlock sequence								
<pre>mov #0xabcd,w10 mov #0x4321,w11 mov #0x0000,w0 mov w10, PWMKEY mov w11, PWMKEY mov w0,FCLCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of FCLCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to FCLCON1 register</pre>								
-	d polarity using the IOCON1 register gister requires unlock sequence								
<pre>mov #0xabcd,w10 mov #0x4321,w11 mov #0xF000,w0 mov w10, PWMKEY mov w11, PWMKEY mov w0,IOCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of IOCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to IOCON1 register</pre>								

REGISTER 17-13: QEI1LECH: QEI1 LESS THAN OR EQUAL COMPARE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			QEILE	C<31:24>							
bit 15	bit 15 bit 8										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			QEILE	C<23:16>							
bit 7							bit 0				
Legend:											
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'										
-n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown							nown				

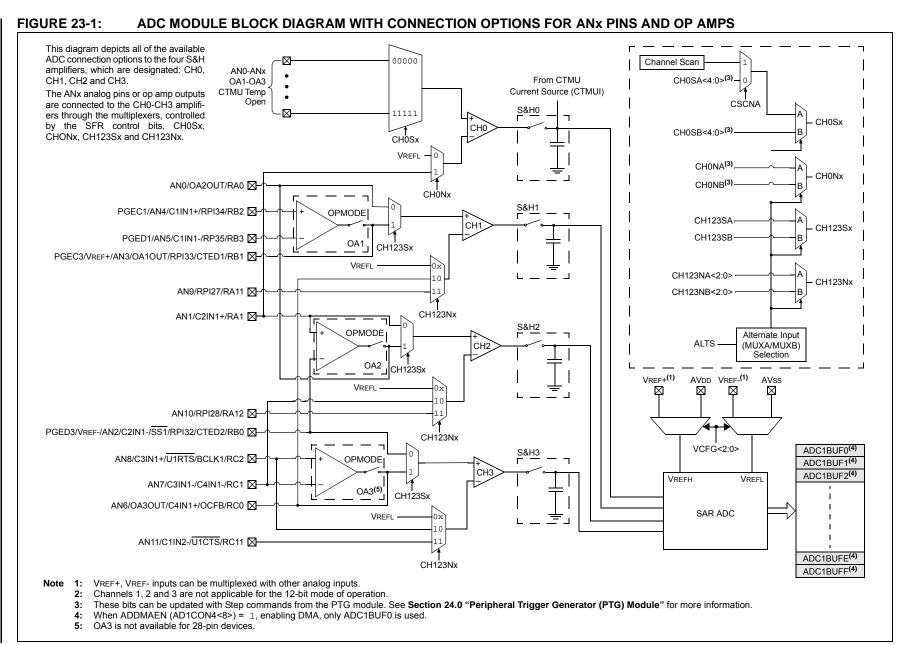
bit 15-0 QEILEC<31:16>: High Word Used to Form 32-Bit Less Than or Equal Compare Register (QEI1LEC) bits

REGISTER 17-14: QEI1LECL: QEI1 LESS THAN OR EQUAL COMPARE LOW WORD REGISTER

R = Readable bit -n = Value at POR		W = Writable bit '1' = Bit is set		U = Unimplemented bit, rea '0' = Bit is cleared		ead as '0' x = Bit is unknown	
Legend:							
bit 7							bit
			QEIL	EC<7:0>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit
			QEILE	EC<15:8>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-0 QEILEC<15:0>: Low Word Used to Form 32-Bit Less Than or Equal Compare Register (QEI1LEC) bits

19.2 I²C Control Registers


REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	_	I2CSIDL	SCLREL	IPMIEN ⁽¹⁾	A10M	DISSLW	SMEN
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0
Legend:		HC = Hardware	Cloarable bit				
R = Readab	le hit	W = Writable bi		II = I Inimpler	mented bit, rea	d as '0'	
-n = Value a		'1' = Bit is set	L .	'0' = Bit is cle		x = Bit is unk	nown
							nown
bit 15	12CEN: 12Cx	Enable bit					
		he I2Cx module					;
	0 = Disables	the I2Cx module;	all l ² C™ pins	are controlled	by port functior	ıs	
bit 14	Unimplemen	ted: Read as '0'					
bit 13		x Stop in Idle Mo					
		ues module oper s module operation			dle mode		
bit 12		Lx Release Conf		_	(clave)		
	1 = Releases				slave)		
		Lx clock low (clo	ck stretch)				
	If STREN = 1	<u>:</u>	-				
	•	., software can w				,	
		ing of every slav reception. Hardw					t every slave
	If STREN = 0	-					
		<u>.</u> , software can or	nly write '1' to re	elease clock). I	Hardware is cle	ar at the begir	ning of every
	-	te transmission.			-	address byte re	eception.
bit 11		ligent Peripheral					
	1 = IPMI mod 0 = IPMI mod	e is enabled; all	addresses are	Acknowledged	1		
bit 10		Slave Address b	i+				
		is a 10-bit slave					
		is a 7-bit slave a					
bit 9	DISSLW: Dis	able Slew Rate C	Control bit				
		control is disable					
		control is enable					
bit 8		us Input Levels b		0145	c		
		/O pin thresholds SMBus input thre		n SMBus speci	fication		
bit 7		ral Call Enable b		ing as I ² C slav	/e)		
	1 = Enables in	terrupt when a ge all address disat	neral call addre	-		dule is enabled	for reception)

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F15B	P<3:0>		F14BP<3:0>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
1010 0		P<3:0>	10110			P<3:0>	1010 0	
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-12	1111 = Filte 1110 = Filte	RX Buffer Ma r hits received in r hits received in r hits received in r hits received in r hits received in	n RX FIFO bu n RX Buffer 1 n RX Buffer 1	ıffer 4				
bit 11-8	F14BP<3:0;	RX Buffer Ma	sk for Filter 1	4 bits (same val	ues as bits<15	:12>)		
bit 7-4	F13BP<3:0;	RX Buffer Ma	sk for Filter 1	3 bits (same val	ues as bits<15	:12>)		
bit 3-0 F12BP<3:0>: RX Buffer Mask for Filter 12 bit		2 bits (same val	ues as bits<15	:12>)				

REGISTER 21-15: CxBUFPNT4: ECANx FILTER 12-15 BUFFER POINTER REGISTER 4

REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

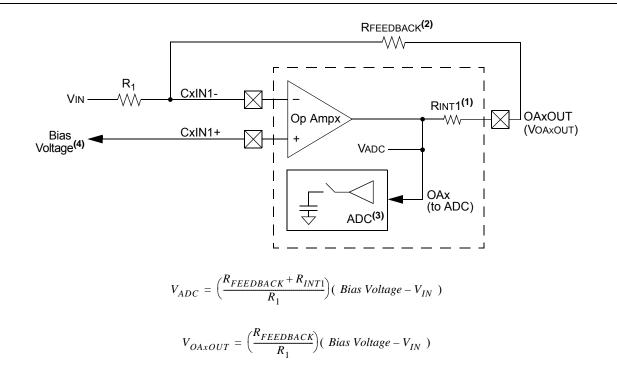
bit 7-5	SSRC<2:0>: Sample Trigger Source Select bits
	If SSRCG = 1: 111 = Reserved 110 = PTGO15 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 101 = PTGO14 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 100 = PTGO13 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 011 = PTGO12 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 010 = PWM Generator 3 primary trigger compare ends sampling and starts conversion ⁽²⁾ 001 = PWM Generator 2 primary trigger compare ends sampling and starts conversion ⁽²⁾ 000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion ⁽²⁾
	If SSRCG = 0: 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = CTMU ends sampling and starts conversion 101 = Reserved
	 101 - Reserved 100 = Timer5 compare ends sampling and starts conversion 011 = PWM primary Special Event Trigger ends sampling and starts conversion 010 = Timer3 compare ends sampling and starts conversion 001 = Active transition on the INT0 pin ends sampling and starts conversion 000 = Clearing the Sample bit (SAMP) ends sampling and starts conversion (Manual mode)
bit 4	SSRCG: Sample Trigger Source Group bit
	See SSRC<2:0> for details.
bit 3	 SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x) <u>In 12-bit mode (AD21B = 1), SIMSAM is Unimplemented and is Read as '0':</u> 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence
bit 2	ASAM: ADC1 Sample Auto-Start bit
	 1 = Sampling begins immediately after the last conversion; SAMP bit is auto-set 0 = Sampling begins when the SAMP bit is set
bit 1	SAMP: ADC1 Sample Enable bit
	 1 = ADC Sample-and-Hold amplifiers are sampling 0 = ADC Sample-and-Hold amplifiers are holding If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC<2:0> = 000, software can write '0' to end sampling and start conversion. If SSRC<2:0> ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC1 Conversion Status bit ⁽³⁾
	 1 = ADC conversion cycle has completed 0 = ADC conversion has not started or is in progress Automatically set by hardware when the ADC conversion is complete. Software can write '0' to clear the DONE status bit (software is not allowed to write '1'). Clearing this bit does NOT affect any operation in progress. Automatically cleared by hardware at the start of a new conversion.
Note 1:	See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

- 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
- **3:** Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
CSS31	CSS30	—	—	_	CSS26 ⁽²⁾	CSS25 ⁽²⁾	CSS24 ⁽²⁾
bit 15	- 1						bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		_	_	_		_	
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	emented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unk	nown
bit 15		1 Input Scan S					
					input scan (Ope		
	•	•		surement for ir	nput scan (Open)	
bit 14		1 Input Scan S					
					or input scan (CT input scan (CTN		
bit 13-11	Unimplemen	ted: Read as '	0'				
bit 10	CSS26: ADC	1 Input Scan S	election bit ⁽²⁾				
	1 = Selects C) A3/AN6 for inp	ut scan				
	0 = Skips OA	3/AN6 for input	scan				
bit 9	CSS25: ADC	1 Input Scan S	election bit ⁽²⁾				
	1 = Selects C	0A2/AN0 for inp	ut scan				
	0 = Skips OA	2/AN0 for input	scan				
bit 8	CSS24: ADC	1 Input Scan S	election bit ⁽²⁾				
		0A1/AN3 for inp					
	0 = Skips OA	1/AN3 for input	scan				

REGISTER 23-7: AD1CSSH: ADC1 INPUT SCAN SELECT REGISTER HIGH⁽¹⁾

2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.


25.1 Op Amp Application Considerations

There are two configurations to take into consideration when designing with the op amp modules that available in the dsPIC33EPXXXGP50X. are dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X devices. Configuration A (see Figure 25-6) takes advantage of the internal connection to the ADC module to route the output of the op amp directly to the ADC for measurement. Configuration B (see Figure 25-7) requires that the designer externally route the output of the op amp (OAxOUT) to a separate analog input pin (ANy) on the device. Table 30-55 in Section 30.0 "Electrical Characteristics" describes the performance characteristics for the op amps, distinguishing between the two configuration types where applicable.

25.1.1 OP AMP CONFIGURATION A

Figure 25-6 shows a typical inverting amplifier circuit taking advantage of the internal connections from the op amp output to the input of the ADC. The advantage of this configuration is that the user does not need to consume another analog input (ANy) on the device, and allows the user to simultaneously sample all three op amps with the ADC module, if needed. However, the presence of the internal resistance, RINT1, adds an error in the feedback path. Since RINT1 is an internal resistance, in relation to the op amp output (VOAXOUT) and ADC internal connection (VADC), RINT1 must be included in the numerator term of the transfer function. See Table 30-53 in Section 30.0 "Electrical Characteristics" for the typical value of RINT1. Table 30-60 and Table 30-61 in Section 30.0 "Electrical Characteristics" describe the minimum sample time (TSAMP) requirements for the ADC module in this configuration. Figure 25-6 also defines the equations that should be used when calculating the expected voltages at points, VADC and VOAXOUT.

FIGURE 25-6: OP AMP CONFIGURATION A

Note 1: See Table 30-53 for the Typical value.

- 2: See Table 30-53 for the Minimum value for the feedback resistor.
- 3: See Table 30-60 and Table 30-61 for the minimum sample time (TSAMP).
- 4: CVREF10 or CVREF20 are two options that are available for supplying bias voltage to the op amps.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
9	BTG	BTG f,#bit4		Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	4	SFA
		CALL	Wn	Call indirect subroutine	1	4	SFA
		CALL.L	Wn	Call indirect subroutine (long address)	1	4	SFA
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc, Wx, Wxd, Wy, Wyd, AWB ⁽¹⁾	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	СОМ	COM	f	f = f	1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CPO	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CPO	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
	CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, branch if =	1	1 (5)	None
22	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, branch if >	1	1 (5)	None
23	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
	CPBLT	CPBLT	Wb,Wn,Expr	Compare Wb with Wn, branch if <	1	1 (5)	None
24	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
	CPBNE	CPBNE	Wb,Wn,Expr	Compare Wb with Wn, branch if ≠	1	1 (5)	None

TABLE 28-2:	INSTRUCTION SET OVERVIEW (CONTINUED)
		CONTINUED	,

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

DC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
CTMU Curr	rent Source	9						
CTMUI1	Ιουτ1	Base Range ⁽¹⁾	0.29		0.77	μA	CTMUICON<9:8> = 01	
CTMUI2	IOUT2	10x Range ⁽¹⁾	3.85		7.7	μA	CTMUICON<9:8> = 10	
CTMUI3	Ιουτ3	100x Range ⁽¹⁾	38.5	_	77	μA	CTMUICON<9:8> = 11	
CTMUI4	IOUT4	1000x Range ⁽¹⁾	385	_	770	μA	CTMUICON<9:8> = 00	
CTMUFV1 VF	VF	Temperature Diode Forward Voltage ^(1,2)		0.598	_	V	TA = +25°C, CTMUICON<9:8> = 01	
				_	0.658	_	V	TA = +25°C, CTMUICON<9:8> = 10
			_	0.721	_	V	TA = +25°C, CTMUICON<9:8> = 11	
CTMUFV2	VFVR	Temperature Diode Rate of	_	-1.92	_	mV/ºC	CTMUICON<9:8> = 01	
		Change ^(1,2,3)	_	-1.74	_	mV/ºC	CTMUICON<9:8> = 10	
				-1.56	_	mV/ºC	CTMUICON<9:8> = 11	

TABLE 30-56: CTMU CURRENT SOURCE SPECIFICATIONS

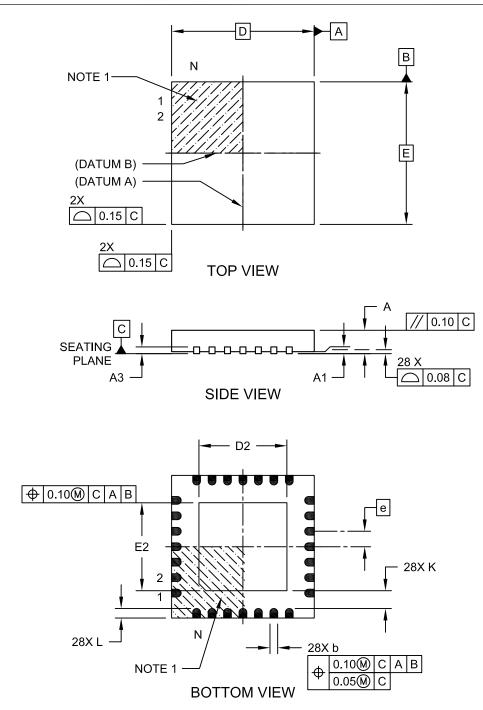
Note 1: Nominal value at center point of current trim range (CTMUICON<15:10> = 000000).

2: Parameters are characterized but not tested in manufacturing.

3: Measurements taken with the following conditions:

- VREF+ = AVDD = 3.3V
- ADC configured for 10-bit mode
- ADC module configured for conversion speed of 500 ksps
- All PMDx bits are cleared (PMDx = 0)
- Executing a while(1) statement
- · Device operating from the FRC with no PLL

TABLE 31-11: INTERNAL RC ACCURACY


AC CH	ARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$						
Param No.	Characteristic	Min	Тур	Max	Units	Conditions		
	LPRC @ 32.768 kHz ^(1,2)							
HF21	LPRC	-30	_	+30	%	$-40^{\circ}C \leq TA \leq +150^{\circ}C$	VDD = 3.0-3.6V	

Note 1: Change of LPRC frequency as VDD changes.

2: LPRC accuracy impacts the Watchdog Timer Time-out Period (TwDT). See Section 27.5 "Watchdog Timer (WDT)" for more information.

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-124C Sheet 1 of 2

ECAN Module	
Control Registers	
Modes of Operation	
Overview	
Resources	
Electrical Characteristics	401
AC	413, 471
Enhanced CAN (ECAN) Module	
Equations	
Device Operating Frequency	154
FPLLO Calculation	
Fvco Calculation	154
Errata	23

F

Filter Capacitor (CEFC) Specifications	403
Flash Program Memory	119
Control Registers	120
Programming Operations	120
Resources	120
RTSP Operation	120
Table Instructions	119
Flexible Configuration	

G

	0
Application Examples	2
Basic Connection Requirements2	29
CPU Logic Filter Capacitor Connection (VCAP)	60
Decoupling Capacitors 2	29
External Oscillator Pins3	51
ICSP Pins	51
Master Clear (MCLR) Pin 3	60
Oscillator Value Conditions on Start-up	52
Unused I/Os 3	2

Н

High-Speed PWM	225
Control Registers	
Faults	225
Resources	229
High-Temperature Electrical Characteristics	
Absolute Maximum Ratings	

I

-	
I/O Ports	
Helpful Tips	
Parallel I/O (PIO)	
Resources	
Write/Read Timing	
In-Circuit Debugger	
In-Circuit Emulation	
In-Circuit Serial Programming (ICSP)	379, 386
Input Capture	
Control Registers	
Resources	
Input Change Notification (ICN)	
Instruction Addressing Modes	112
File Register Instructions	
Fundamental Modes Supported	
MAC Instructions	
MCU Instructions	
Move and Accumulator Instructions	113
Other Instructions	113

Instruction Set	
Overview	. 390
Summary	. 387
Symbols Used in Opcode Descriptions	. 388
Inter-Integrated Circuit (I ² C)	. 273
Control Registers	. 276
Resources	. 275
Internal RC Oscillator	
Use with WDT	. 385
Internet Address	. 524
Interrupt Controller	
Control and Status Registers	. 131
INTCON1	. 131
INTCON2	. 131
INTCON3	. 131
INTCON4	. 131
INTTREG	. 131
Interrupt Vector Details	. 129
Interrupt Vector Table (IVT)	. 127
Reset Sequence	. 127
Resources	. 131

J

JTAG Boundary Scan Interface	379
JTAG Interface	386

Μ

9
5
2
4
4
5
4
4
4
8
9
9
9
7
9
8
8

0

Op Amp	
Application Considerations	358
Configuration A	358
Configuration B	359
Op Amp/Comparator	355
Control Registers	360
Resources	359
Open-Drain Configuration	174
Oscillator	
Control Registers	156
Resources	155
Output Compare	219
Control Registers	221
Resources	220