

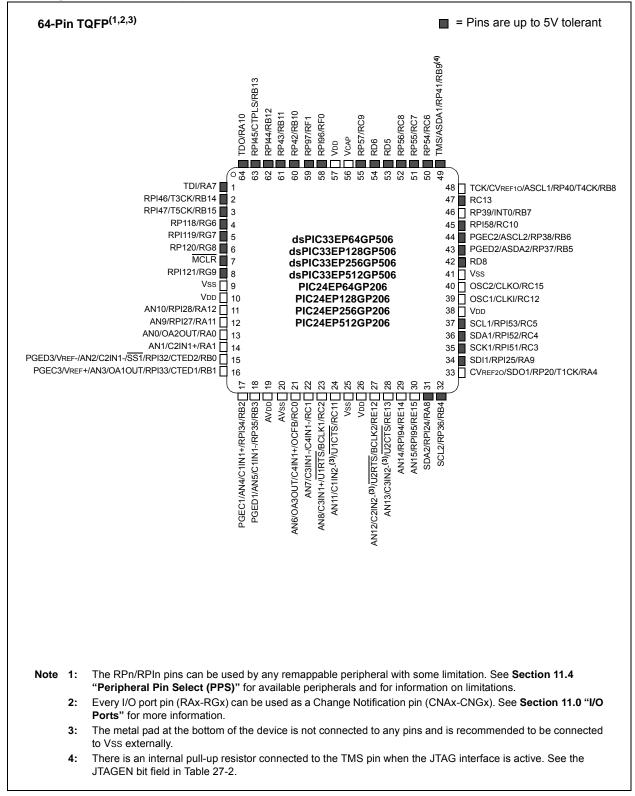
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

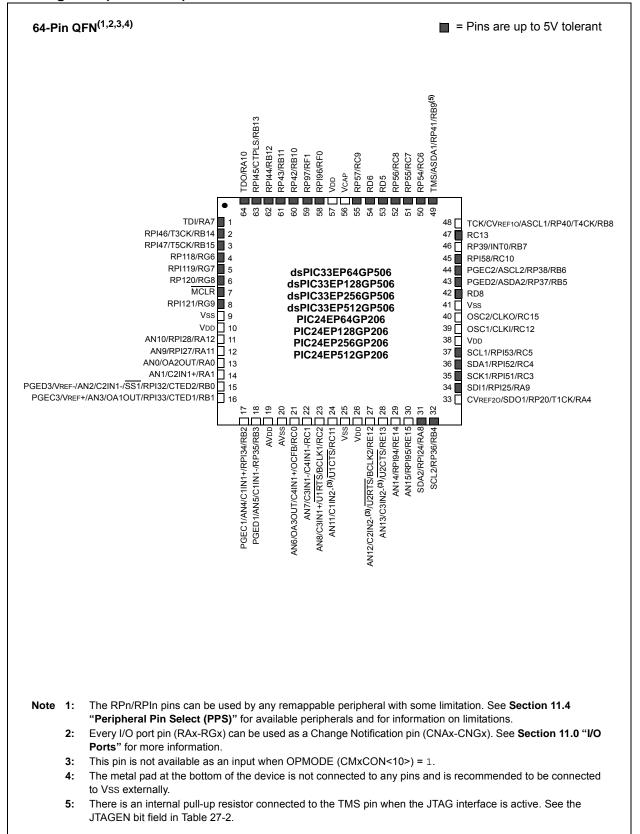
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


•XFI

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep128mc202-h-mm


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE	4-2:	CPU C	CORE RE	EGISTER	R MAP F	FOR PIC	24EPX)	XGP/M	C20X D	EVICES	ONLY							
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
W0	0000								W0 (WR	EG)								xxxx
W1	0002								W1									xxxx
W2	0004								W2									xxxx
W3	0006								W3									xxxx
W4	0008								W4									xxxx
W5	000A								W5									xxxx
W6	000C								W6									xxxx
W7	000E								W7									xxxx
W8	0010								W8									xxxx
W9	0012								W9									xxxx
W10	0014								W10									xxxx
W11	0016								W11									xxxx
W12	0018								W12									xxxx
W13	001A								W13									xxxx
W14	001C								W14									xxxx
W15	001E								W15									xxxx
SPLIM	0020								SPLIM<1	5:0>								0000
PCL	002E							P	CL<15:1>								—	0000
PCH	0030	—	-	_	_	—	—	—	—	_				PCH<6:0>				0000
DSRPAG	0032	—	-	_	_	—	—					DSRPA	G<9:0>					0001
DSWPAG	0034	_				_		_				DS	SWPAG<8:0	>				0001
RCOUNT	0036								RCOUNT<	15:0>								0000
SR	0042	_				—		_	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
CORCON	0044	VAR	_	-	_	—		—	_	-	_	—	-	IPL3	SFA	—	_	0020
DISICNT	0052	_	_							DISICNT<	:13:0>							0000
TBLPAG	0054	_	_	-	_	—		—	_				TBLPA	G<7:0>				0000
MSTRPR	0058								MSTRPR<	15:0>								0000

D I -4.0 - -

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-45: DMAC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA0CON	0B00	CHEN	SIZE	DIR	HALF	NULLW		_	_	_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA0REQ	0B02	FORCE	_	_		_	_	_	_			•	IRQSE	_<7:0>	•			00FF
DMA0STAL	0B04								STA<15	5:0>								0000
DMA0STAH	0B06	_	_	_	_	_	_	_	_				STA<2	3:16>				0000
DMA0STBL	0B08								STB<1	5:0>								0000
DMA0STBH	0B0A	_	—	_	_	_	—	—	—				STB<2	3:16>				0000
DMA0PAD	0B0C								PAD<1	5:0>								0000
DMA0CNT	0B0E	_	_							CNT<1	3:0>							0000
DMA1CON	0B10	CHEN	SIZE	DIR	HALF	NULLW	_	—	—	_	—	AMOD	E<1:0>	—	—	MODE	<1:0>	0000
DMA1REQ	0B12	FORCE	_	_		_	_	_	_				IRQSE	_<7:0>	•			00FF
DMA1STAL	0B14								STA<15	5:0>								0000
DMA1STAH	0B16	_	—	_	_	_	_	—	—				STA<2	3:16>				0000
DMA1STBL	0B18								STB<1	5:0>								0000
DMA1STBH	0B1A	_	_	_	_		_	_	_				STB<2	3:16>				0000
DMA1PAD	0B1C								PAD<1	5:0>								0000
DMA1CNT	0B1E	_	—							CNT<1	3:0>							0000
DMA2CON	0B20	CHEN	SIZE	DIR	HALF	NULLW	—	_	_	_	_	AMOD	E<1:0>		—	MODE	<1:0>	0000
DMA2REQ	0B22	FORCE	_	_		_	_	_	_				IRQSE	_<7:0>	•			00FF
DMA2STAL	0B24								STA<18	5:0>								0000
DMA2STAH	0B26	_	_	_	_	_	_	_	_				STA<2	3:16>				0000
DMA2STBL	0B28								STB<1	5:0>								0000
DMA2STBH	0B2A	_	_	_	_	_	_	_	_				STB<2	3:16>				0000
DMA2PAD	0B2C								PAD<1	5:0>								0000
DMA2CNT	0B2E	_	_							CNT<1	3:0>							0000
DMA3CON	0B30	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>	-	—	MODE	<1:0>	0000
DMA3REQ	0B32	FORCE	_	_	_	_	_	_	_				IRQSE	L<7:0>				00FF
DMA3STAL	0B34								STA<18	5:0>								0000
DMA3STAH	0B36	_	_	_	_	_	_	_	_				STA<2	3:16>				0000
DMA3STBL	0B38								STB<1	5:0>								0000
DMA3STBH	0B3A	_	_	_	_	_	_	_	_				STB<2	3:16>				0000
DMA3PAD	0B3C								PAD<1	5:0>								0000
DMA3CNT	0B3E	_	_							CNT<1	3:0>							0000
DMAPWC	0BF0	—	—	—	—	—	—		_	—	—		—	PWCOL3	PWCOL2	PWCOL1	PWCOL0	0000
DMARQC	0BF2	_	—	_	_	_	_	_	_	_	_	_	_	RQCOL3	RQCOL2	RQCOL1	RQCOL0	0000
DMAPPS	0BF4	_	—	_	_	_	_	_	_	_	_	_	_	PPST3	PPST2	PPST1	PPST0	0000
DMALCA	0BF6	_	_	_	_	_	_	_	_	_	_	_	_		LSTCH	1<3:0>		000F
DSADRL	0BF8								DSADR<	15:0>								0000
DSADRH	0BFA	_	—	—	—	—	—	—	—				DSADR•	<23:16>				0000

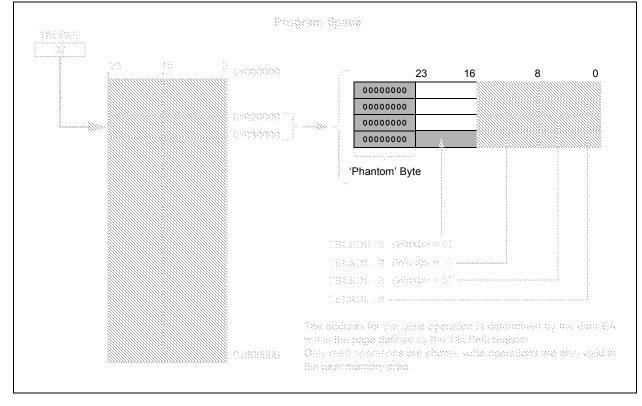
Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

© 2011-2013 Microchip Technology Inc.

4.8.1 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the Program Space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a Program Space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit-wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from Program Space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the Program Space location (P<15:0>) to a data address (D<15:0>)

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>) is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a Program Space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-23: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0
Logondi							

REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 **TUN<5:0>:** FRC Oscillator Tuning bits 011111 = Maximum frequency deviation of 1.453% (7.477 MHz) 011110 = Center frequency + 1.406% (7.474 MHz) •••• 000001 = Center frequency + 0.047% (7.373 MHz) 000000 = Center frequency (7.37 MHz nominal) 111111 = Center frequency - 0.047% (7.367 MHz) ••• 100001 = Center frequency - 1.453% (7.263 MHz) 100000 = Minimum frequency deviation of -1.5% (7.259 MHz)

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx and TRISx registers for data control, port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs other than VDD by using external pull-up resistors. The maximum open-drain voltage allowed on any pin is the same as the maximum VIH specification for that particular pin.

See the **"Pin Diagrams"** section for the available 5V tolerant pins and Table 30-11 for the maximum VIH specification for each pin.

11.2 Configuring Analog and Digital Port Pins

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs or outputs must have their corresponding ANSELx and TRISx bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

Pins with analog functions affected by the ANSELx registers are listed with a buffer type of analog in the Pinout I/O Descriptions (see Table 1-1).

If the TRISx bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or comparator module.

When the PORTx register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be a NOP, as shown in Example 11-1.

11.3 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State.

Three control registers are associated with the Change Notification (CN) functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups and pulldowns act as a current source or sink source connected to the pin and eliminate the need for external resistors when push button, or keypad devices are connected. The pull-ups and pull-downs are enabled separately, using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note:	Pull-ups and pull-downs on Change Noti-
	fication pins should always be disabled
	when the port pin is configured as a digital
	output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV	0xFF00, W0	; Configure PORTB<15:8>
		; as inputs
MOV	W0, TRISB	; and PORTB<7:0>
		; as outputs
NOP		; Delay 1 cycle
BTSS	PORTB, #13	; Next Instruction

Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment	Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment
010 1000	I/O	RP40	101 0101	—	_
010 1001	I/O	RP41	101 0110	—	—
010 1010	I/O	RP42	101 0111	—	—
010 1011	I/O	RP43	101 1000		—
010 1100	I	RPI44	101 1001		—
101 1010	—	_	110 1101	—	_
101 1011	—	—	110 1110		—
101 1100	—	—	110 1111		—
101 1101	—	_	111 0000	—	_
101 1110	1	RPI94	111 0001		_
101 1111	I	RP195	111 0010		—
110 0000	I	RPI96	111 0011	—	—
110 0001	I/O	RP97	111 0100		—
110 0010	—	—	111 0101		—
110 0011	—	—	111 0110	I/O	RP118
110 0100	—	—	111 0111	Ι	RPI119
110 0101	—	—	111 1000	I/O	RP120
110 0110	_		111 1001	Ι	RPI121
110 0111			111 1010	—	
110 1000	—	_	111 1011	—	_
110 1001	—		111 1100	—	
110 1010			111 1101	—	
110 1011	—	_	111 1110	—	
110 1100	—	_	111 1111	_	

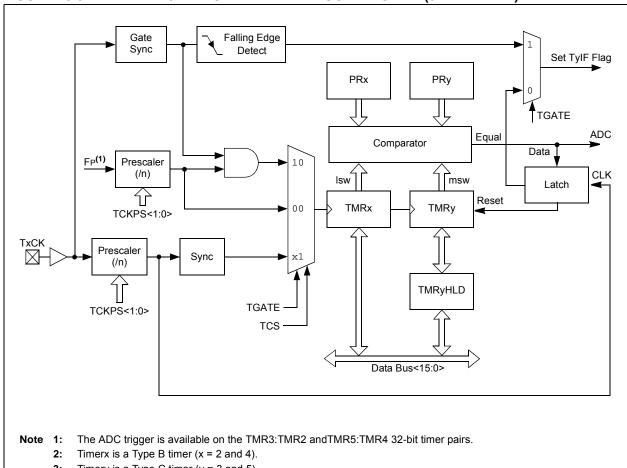
TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES (CONTINUED)

Legend: Shaded rows indicate PPS Input register values that are unimplemented.

Note 1: See Section 11.4.4.1 "Virtual Connections" for more information on selecting this pin assignment.

2: These inputs are available on dsPIC33EPXXXGP/MC50X devices only.

11.5 I/O Helpful Tips


- 1. In some cases, certain pins, as defined in Table 30-11, under "Injection Current", have internal protection diodes to VDD and Vss. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins, with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes, that the resulting current being injected into the device, that is clamped internally by the VDD and Vss power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins by default after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Pin Configuration registers in the I/O ports module (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a '0'.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.
- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD - 0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.

5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH, and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of this data sheet. For example:

VOH = 2.4V @ IOH = -8 mA and VDD = 3.3VThe maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted. Refer to the VOH/IOH graphs in Section 30.0 "Electrical Characteristics" for additional information.

- 6. The Peripheral Pin Select (PPS) pin mapping rules are as follows:
 - a) Only one "output" function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
 - b) It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
 - c) If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
 - d) If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
 - e) If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADC to convert the digital output logic level, or to toggle a digital output on a comparator or ADC input provided there is no external analog input, such as for a built-in self-test.
 - f) Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable "output".

FIGURE 13-3: TYPE B/TYPE C TIMER PAIR BLOCK DIAGRAM (32-BIT TIMER)

3: Timery is a Type C timer (y = 3 and 5).

Timerx/y Resources 13.1

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/
	wwwproducts/Devices.aspx?d DocName=en555464

KEY RESOURCES 13.1.1

- "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- · Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 17-13: QEI1LECH: QEI1 LESS THAN OR EQUAL COMPARE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEILE	C<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEILE	C<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplem	ented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown

bit 15-0 QEILEC<31:16>: High Word Used to Form 32-Bit Less Than or Equal Compare Register (QEI1LEC) bits

REGISTER 17-14: QEI1LECL: QEI1 LESS THAN OR EQUAL COMPARE LOW WORD REGISTER

R = Readable t		W = Writable '1' = Bit is set		U = Unimplen '0' = Bit is cle		ad as '0' x = Bit is unknown	
Legend:							
bit 7							bit
			QEIL	EC<7:0>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit
			QEILE	EC<15:8>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-0 QEILEC<15:0>: Low Word Used to Form 32-Bit Less Than or Equal Compare Register (QEI1LEC) bits

REGISTER 21-6: CxINTF: ECANx INTERRUPT FLAG REGISTER (CONTINUED)

- bit 1 **RBIF:** RX Buffer Interrupt Flag bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 **TBIF:** TX Buffer Interrupt Flag bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
_	—	—		—	—	—	_					
bit 15							bit					
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
IVRIE	WAKIE	ERRIE	—	FIFOIE	RBOVIE	RBIE	TBIE					
bit 7							bit					
Legend: R = Readab	la hit	W = Writable b	.it		montod bit rook	l oo 'O'						
n = Value a		'1' = Bit is set	אנ	0 = Onimpler	mented bit, read	x = Bit is unkr						
	IL POR	I = DILIS SEL			areu		IOWI					
bit 15-8	Unimplemen	ted: Read as '0	,									
bit 7	-	Message Inter		bit								
		request is enabl	•	~								
		request is not er										
bit 6	WAKIE: Bus Wake-up Activity Interrupt Enable bit											
	1 = Interrupt request is enabled											
	0 = Interrupt request is not enabled											
bit 5	ERRIE: Error Interrupt Enable bit											
		request is enabl request is not er										
bit 4		ted: Read as '0										
bit 3	-	Almost Full Int		o hit								
DIL J		request is enabl	•	ebit								
		request is not er										
bit 2	RBOVIE: RX	Buffer Overflow	/ Interrupt Er	nable bit								
	1 = Interrupt	equest is enabl	ed									
	0 = Interrupt i	request is not er	nabled									
bit 1		ffer Interrupt En										
		equest is enabl										
		request is not er	nabled									
	•	•										
bit 0	TBIE: TX Buf	fer Interrupt Ena request is enabl	able bit									

REGISTER 21-7: CXINTE: ECANX INTERRUPT ENABLE REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1				
bit 15							bit 8				
U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
—	—	—	RB0	DLC3	DLC2	DLC1	DLC0				
bit 7							bit 0				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown					
bit 15-10	EID<5:0>: E	xtended Identifi	er bits								
bit 9	RTR: Remot	RTR: Remote Transmission Request bit									
	When IDE =	When IDE = 1:									
	1 = Message will request remote transmission										
		0 = Normal message									
		<u>When IDE = 0:</u> The RTR bit is ignored.									
bit 8		RB1: Reserved Bit 1									
		User must set this bit to '0' per CAN protocol.									
bit 7-5		nted: Read as '	-								
bit 4	RB0: Reserv		-								
		et this bit to '0' p	per CAN proto	ocol.							
hit 2 0		Data Langth Ca	-								

BUFFER 21-3: ECAN™ MESSAGE BUFFER WORD 2

bit 3-0 DLC<3:0>: Data Length Code bits

BUFFER 21-4: ECAN[™] MESSAGE BUFFER WORD 3

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	/te 1			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	rte 0			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		0' = Bit is cleared x = Bit is unk		nown	

bit 15-8 Byte 1<15:8>: ECAN Message Byte 1 bits

bit 7-0 Byte 0<7:0>: ECAN Message Byte 0 bits

27.2 User ID Words

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices contain four User ID Words, located at addresses, 0x800FF8 through 0x800FFE. The User ID Words can be used for storing product information such as serial numbers, system manufacturing dates, manufacturing lot numbers and other application-specific information.

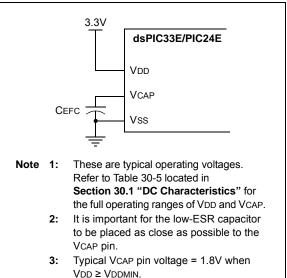
The User ID Words register map is shown in Table 27-3.

TABLE 27-3:USER ID WORDS REGISTER
MAP

File Name	Address	Bits 23-16	Bits 15-0
FUID0	0x800FF8	_	UID0
FUID1	0x800FFA	_	UID1
FUID2	0x800FFC	_	UID2
FUID3	0x800FFE	_	UID3

Legend: — = unimplemented, read as '1'.

27.3 On-Chip Voltage Regulator


All of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X devices power their core digital logic at a nominal 1.8V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family incorporate an onchip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. A low-ESR (less than 1 Ohm) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 27-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 30-5 located in **Section 30.0 "Electrical Characteristics"**.

Note: It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin.

FIGURE 27-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE

REGULATOR^(1,2,3)

27.4 Brown-out Reset (BOR)

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to Parameter SY35 in Table 30-22 of **Section 30.0 "Electrical Characteristics"** for specific TFSCM values.

The BOR status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#litl6,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws , Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit literal to DSRPAG	1	1	None
		MOVPAG	#lit9,DSWPAG	Move 9-bit literal to DSWPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit literal to TBLPAG	1	1	None
		MOVPAG	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None
		MOVPAG	Ws, DSWPAG	Move Ws<8:0> to DSWPAG	1	1	None
		MOVPAG	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None
48	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB ⁽¹⁾	Prefetch and store accumulator	1	1	None
49	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd(1)	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd ⁽¹⁾	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
50	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd(1)	-(Multiply Wm by Wn) to Accumulator	1	1	None
51	MSC	MSC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd, AWB ⁽¹⁾	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

DC CHARACTERISTICS			(unless	d Operating otherwise g temperat	stated) ure -40°	C ≤ TA ≤	/ to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characteristic	Min. Typ. Max. Units Condit				Conditions
	liL	Input Leakage Current ^(1,2)					
DI50		I/O Pins 5V Tolerant ⁽³⁾	-1	—	+1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in at high-impedance} \end{split}$
DI51		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ Pin \text{ at high-impedance}, \\ -40^\circC \leq TA \leq +85^\circC \end{array}$
DI51a		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +85^{\circ}C$
DI51b		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance, -40°C ≤ TA ≤ +125°C
DI51c		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$
DI55		MCLR	-5	—	+5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSC1	-5	—	+5	μΑ	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$

TABLE 30-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- 2: Negative current is defined as current sourced by the pin.
- 3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 4: VIL source < (Vss 0.3). Characterized but not tested.
- **5:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.

8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

AC CHA	RACTER	ISTICS		Standard Operatin (unless otherwise Operating tempera	stated) iture -40)°C ≤ Ta ≤	+85°C for Industrial			
Param No. Symbol		Characteristic ⁽⁴⁾		Min. ⁽¹⁾ Max.		Units	+125°C for Extended Conditions			
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μS				
			400 kHz mode	TCY/2 (BRG + 2)		μS				
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)		μs				
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 2)		μS				
		Ū	400 kHz mode	Tcy/2 (BRG + 2)		μ S				
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)		μ S				
IM20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be			
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF			
			1 MHz mode ⁽²⁾		100	ns	-			
IM21	TR:SCL	SDAx and SCLx	100 kHz mode		1000	ns	CB is specified to be			
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF			
			1 MHz mode ⁽²⁾		300	ns	-			
IM25	TSU:DAT	DAT Data Input	100 kHz mode	250		ns				
		Setup Time	400 kHz mode	100	_	ns				
			1 MHz mode ⁽²⁾	40		ns	-			
IM26 THD:DAT	THD:DAT	Data Input Hold Time	100 kHz mode	0	_	μS				
			400 kHz mode	0	0.9	μS				
			1 MHz mode ⁽²⁾	0.2		μs	-			
IM30	TSU:STA	Start Condition Setup Time	100 kHz mode	Tcy/2 (BRG + 2)		μ S	Only relevant for			
			400 kHz mode	Tcy/2 (BRG + 2)		μS	Repeated Start condition			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μs				
IM31	THD:STA	TA Start Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 2)		μ s	After this period, the			
			400 kHz mode	Tcy/2 (BRG +2)		μS	first clock pulse is			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μS	generated			
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μs				
					Setup Time	400 kHz mode	Tcy/2 (BRG + 2)	_	μs	1
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)	—	μS				
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μs				
		Hold Time	400 kHz mode	Tcy/2 (BRG + 2)	—	μS				
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 2)	—	μS				
IM40	TAA:SCL	Output Valid	100 kHz mode		3500	ns				
		From Clock	400 kHz mode	—	1000	ns	İ.			
			1 MHz mode ⁽²⁾	—	400	ns	İ.			
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be			
			400 kHz mode	1.3	_	μ s	free before a new			
			1 MHz mode ⁽²⁾	0.5	_	μ s	transmission can star			
IM50	Св	Bus Capacitive L		_	400	pF				
IM51	TPGD	Pulse Gobbler De	-	65	390	ns	(Note 3)			

TABLE 30-49: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the l²C[™] Baud Rate Generator. Refer to "Inter-Integrated Circuit (l²C[™])" (DS70330) in the "dsPIC33/PIC24 Family Reference Manual". Please see the Microchip web site for the latest family reference manual sections.

- 2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
- **3:** Typical value for this parameter is 130 ns.
- 4: These parameters are characterized, but not tested in manufacturing.

Revision E (April 2012)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table A-3.

TABLE A-4:	MAJOR SECTION UPDATES
------------	-----------------------

Section Name	Update Description						
"16-bit Microcontrollers and Digital Signal	The following 512-Kbyte devices were added to the General Purpose Families table (see Table 1):						
Controllers (up to	 PIC24EP512GP202 						
512-Kbyte Flash and	• PIC24EP512GP204						
48-Kbyte SRAM) with High-	• PIC24EP512GP206						
Speed PWM, Op amps, and Advanced Analog"	• dsPIC33EP512GP502						
Advanced Analog	• dsPIC33EP512GP504						
	• dsPIC33EP512GP506						
	The following 512-Kbyte devices were added to the Motor Control Families table (see Table 2):						
	• PIC24EP512MC202						
	• PIC24EP512MC204						
	• PIC24EP512MC206						
	• dsPIC33EP512MC202						
	• dsPIC33EP512MC204						
	• dsPIC33EP512MC206						
	• dsPIC33EP512MC502						
	• dsPIC33EP512MC504						
	• dsPIC33EP512MC506						
	Certain Pin Diagrams were updated to include the new 512-Kbyte devices.						
Section 4.0 "Memory	Added a Program Memory Map for the new 512-Kbyte devices (see Figure 4-4).						
Organization"	Added a Data Memory Map for the new dsPIC 512-Kbyte devices (see Figure 4-11).						
	Added a Data Memory Map for the new PIC24 512-Kbyte devices (see Figure 4-16).						
Section 7.0 "Interrupt Controller"	Updated the VECNUM bits in the INTTREG register (see Register 7-7).						
Section 11.0 "I/O Ports"	Added tip 6 to Section 11.5 "I/O Helpful Tips".						
Section 27.0 "Special Features"	The following modifications were made to the Configuration Byte Register Map (see Table 27-1):						
	 Added the column Device Memory Size (Kbytes) 						
	Removed Notes 1 through 4						
	Added addresses for the new 512-Kbyte devices						
Section 30.0 "Electrical	Updated the Minimum value for Parameter DC10 (see Table 30-4).						
Characteristics"	Added Power-Down Current (Ipd) parameters for the new 512-Kbyte devices (see Table 30-8).						
	Updated the Minimum value for Parameter CM34 (see Table 30-53).						
	Updated the Minimum and Maximum values and the Conditions for paramteer SY12 (see Table 30-22).						

Revision H (August 2013)

This revision includes minor typographical and formatting changes throughout the text.

Other major changes are referenced by their respective section in Table A-6.

Section Name	Update Description
Cover Section	Adds Peripheral Pin Select (PPS) to allow Digital Function Remapping and Change Notification Interrupts to Input/Output section
	Adds heading information to 64-Pin TQFP
Section 4.0 "Memory	Corrects Reset values for ANSELE, TRISF, TRISC, ANSELC and TRISA
Organization"	 Corrects address range from 0x2FFF to 0x7FFF
	Corrects DSRPAG and DSWPAG (now 3 hex digits)
	Changes Call Stack Frame from <15:1> to PC<15:0>
	Word length in Figure 4-20 is changed to 50 words for clarity
Section 5.0 "Flash Program	Corrects descriptions of NVM registers
Memory"	
Section 9.0 "Oscillator	Removes resistor from Figure 9-1
Configuration"	Adds Fast RC Oscillator with Divide-by-16 (FRCDIV16) row to Table 9-1
	Removes incorrect information from ROI bit in Register 9-2
Section 14.0 "Input Capture"	Changes 31 user-selectable Trigger/Sync interrupts to 19 user-selectable Trigger/ Sync interrupts
	Corrects ICTSEL<12:10> bits (now ICTSEL<2:0>)
Section 17.0 "Quadrature Encoder Interface (QEI)	Corrects QCAPEN bit description
Module	
(dsPIC33EPXXXMC20X/50X	
and PIC24EPXXXMC20X Devices Only)"	
Section 19.0 "Inter-	Adds note to clarify that 100kbit/sec operation of I ² C is not possible at high processor
Integrated Circuit™ (I ² C™)"	speeds
Section 22.0 "Charge Time Measurement Unit (CTMU)"	Clarifies Figure 22-1 to accurately reflect peripheral behavior
Section 23.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC)"	Correct Figure 23-1 (changes CH123x to CH123Sx)
Section 24.0 "Peripheral Trigger Generator (PTG) Module"	 Adds footnote to Register 24-1 (In order to operate with CVRSS=1, at least one of the comparator modules must be enabled.
Section 25.0 "Op Amp/ Comparator Module"	Adds note to Figure 25-3 (In order to operate with CVRSS=1, at least one of the comparator modules must be enabled)
	 Adds footnote to Register 25-2 (COE is not available when OPMODE (CMxCON<10>) = 1)
Section 27.0 "Special Features"	Corrects the bit description for FNOSC<2:0>
Section 30.0 "Electrical	Corrects 512K part power-down currents based on test data
Characteristics"	Corrects WDT timing limits based on LPRC oscillator tolerance
Section 31.0 "High- Temperature Electrical Characteristics"	Adds Table 31-5 (DC Characteristics: Idle Current (IIDLE)
Unarautenstics	