

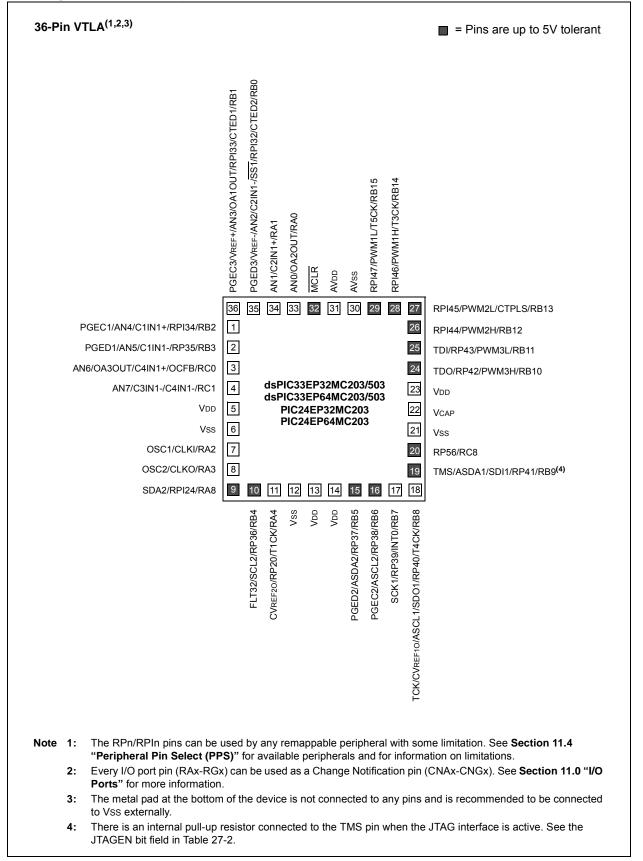
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

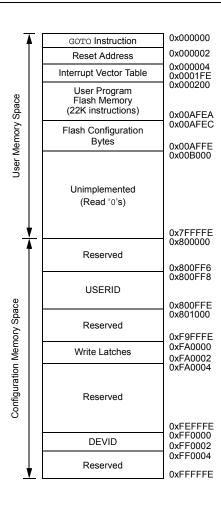

E·XFI

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep128mc202-h-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)



R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1 ⁽¹⁾	US0 ⁽¹⁾	EDT ^(1,2)	DL2 ⁽¹⁾	DL1 ⁽¹⁾	DL0 ⁽¹⁾
bit 15							bit
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA ⁽¹⁾	SATB ⁽¹⁾	SATDW ⁽¹⁾	ACCSAT ⁽¹⁾	IPL3(3)	SFA	RND ⁽¹⁾	IF(1)
bit 7	I				1	1	bit
Legend:		C = Clearable	e bit				
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	1 = Variable	le Exception Pro exception proce	essing latency	is enabled			
bit 14		nted: Read as '					
bit 13-12	-	SP Multiply Uns		Control bits ⁽¹⁾			
	01 = DSP er 00 = DSP er	ngine multiplies ngine multiplies ngine multiplies	are unsigned are signed				
bit 11	•	O Loop Terminatives executing Dot t			iteration		
bit 10-8		Loop Nesting oops are active		(1)			
	•						
	•						
	001 = 1 DO k 000 = 0 DO k	oop is active oops are active					
bit 7	SATA: ACCA	A Saturation En	able bit ⁽¹⁾				
		ator A saturatio ator A saturatio					
bit 6	SATB: ACCE	B Saturation En	able bit ⁽¹⁾				
		ator B saturatio ator B saturatio					
bit 5	SATDW: Dat	ta Space Write	from DSP Engi	ne Saturation	Enable bit ⁽¹⁾		
		ace write satura ace write satura		I			
bit 4		cumulator Satu		elect bit ⁽¹⁾			
		uration (super s uration (normal	,				
bit 3		nterrupt Priority					
		errupt Priority Le errupt Priority Le					
	nis bit is availabl		PXXXMC20X/	50X and dsPl	C33EPXXXGP	50X devices on	ly.
2: Th	nis bit is always	reau as 0.					

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

FIGURE 4-2: PROGRAM MEMORY MAP FOR dsPIC33EP64GP50X, dsPIC33EP64MC20X/50X AND PIC24EP64GP/MC20X DEVICES

Note: Memory areas are not shown to scale.

4.2 Data Address Space

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X CPU has a separate 16-bit-wide data memory space. The Data Space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps, which are presented by device family and memory size, are shown in Figure 4-7 through Figure 4-16.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the Data Space. This arrangement gives a base Data Space address range of 64 Kbytes (32K words).

The base Data Space address is used in conjunction with a Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space, which has a total address range of 16 Mbytes.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices implement up to 52 Kbytes of data memory (4 Kbytes of data memory for Special Function Registers and up to 48 Kbytes of data memory for RAM). If an EA points to a location outside of this area, an all-zero word or byte is returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit-wide blocks. Data is aligned in data memory and registers as 16-bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve Data Space memory usage efficiency, the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB. The MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 4 Kbytes of the Near Data Space, from 0x0000 to 0x0FFF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area, between 0x0000 and 0x1FFF, is referred to as the Near Data Space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

1:	CPU C	ORE RE	EGISTEI	R MAP F	OR dsF	PIC33EP	XXXMC	20X/50X	(AND d	sPIC33	EPXXX	GP50X	DEVICE	S ONL	Y (CON	TINUE	D)
Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
0044	VAR	_	US<	:1:0>	EDT		DL<2:0>		SATA	SATB	SATDW	ACCSAT	IPL3	SFA	RND	IF	0020
0046	XMODEN	YMODEN	_	_		BWM	I<3:0>			YWM<	<3:0>	-		XWM<	<3:0>		0000
0048		XMODSRT<15:0> — 00											0000				
004A			XMODEND<15:0>00											0001			
004C							YMC	DSRT<15:0)>								0000
004E							YMC	DEND<15:0)>								0001
0050	BREN							XBF	REV<14:0>								0000
0052	_	- — DISICNT<13:0> 00										0000					
0054	_	_	_	_	_	_	_					TBLPA	G<7:0>				0000
0058				•	•	•	•	MSTRPR<	<15:0>								0000
	Addr. 0042 0044 0046 0048 0048 004A 004C 004C 004E 0050 0052 0054	Addr. Bit 15 0042 OA 0044 VAR 0046 XMODEN 0048 - 0044 - 0045 - 0046 BREN 0047 -	Addr. Bit 15 Bit 14 0042 OA OB 0044 VAR — 0046 XMODEN YMODEN 0048 —	Addr. Bit 15 Bit 14 Bit 13 0042 OA OB SA 0044 VAR — US<	Addr. Bit 15 Bit 14 Bit 13 Bit 12 0042 OA OB SA SB 0044 VAR — US<1:0> 0046 XMODEN YMODEN — — 0048 —	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 0042 OA OB SA SB OAB 0044 VAR — US<1:0> EDT 0046 XMODEN YMODEN — — — 0048	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 0042 OA OB SA SB OAB SAB 0044 VAR — US<1:0> EDT 0046 XMODEN MODEN — — BWM 0048	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 0042 OA OB SA SB OAB SAB DA 0044 VAR — US<1:0> EDT DL<2:0> 0046 XMODEN MODEN — — BWM<3:0> 0048 — — — BWM<3:0> XMC 0040 — — — BWM<3:0> XMC 0044 O — — — MC 0048 — — — — MC 00404 — — — — MC 00404 — — — — YMC 00404 — — — YMC YMC 00410 — — — YMC YMC 0050 BREN — — — — — 0051 — — <td>Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0042 OA OB SA SB OAB SAB DA DC 0044 VAR — US<1:0> EDT DL<2:0> D04 DC 0046 XMODEN MODEN — — BWM<3:0> XMODENDRT<15:0</td> 0048 — — XMODENDRT<15:0	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0042 OA OB SA SB OAB SAB DA DC 0044 VAR — US<1:0> EDT DL<2:0> D04 DC 0046 XMODEN MODEN — — BWM<3:0> XMODENDRT<15:0	Addr.Bit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 70042OAOBSASBOABSABDADCIPL20044VARUS<1:0>EDT $DL<2:0>$ SATA0046XMODENYMODENBWM<3:0>SATA0048 $$ BWM<3:0>SATA0044 $$ BWM<3:0>SATA0045 $$ BWM<3:0>SATA0046 $$ SATA0047 $$ $$ SATA0048 $$ $$ $$ 0047 $$ $$ $$ 0048 $$ $$ $$ 0049 $$ $$ $$ 0040 $$ $$ $$ 0041 $$ $$ $$ 0042 $$ $$ $$ 0043 $$ $$ $$ 0044 $$ $$ $$ 0045 $$ $$ $$ 0050BREN $$ $$ $$ 0051 $$ $$ $$ $$ 0052 $$ $$ $$ $$ 0054 $$ $$ $$ $$ 0054 $$ $$ $$ $$ 0054 $$ $$ $$ $$	Addr.Bit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 60042OAOBSASBOABSABDADCIPL2IPL10044VARUS<1:0>EDT $DL<2:0>$ SATASATB0046XMODENMODEN $BWM<3:0>$ VMODSRT<15:0>0048 $VMODEN$ $MMODENYWM0044VMODENMMODENYWM0045VMODENMMODENYWM0046VMODENMMODENYWM0047VMODENYMODEND<15:0>0048VMODENYMODEND<15:0>0049VMODENYMODEND<15:0>0040VMODENYMODEND<15:0>0041VMODENYMODEND<15:0>0050BRENVMODEN00510052005400540054$	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 0042 OA OB SA SB OAB SAB DA DC IPL2 IPL1 IPL0 0044 VAR — US<1:0> EDT DL<2:0> SATA SATB SATDW 0046 XMODEN YMODEN — — BUM<	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 0042 OA OB SA SB OAB SAB DA DC IPL2 IPL1 IPL0 RA 0044 VAR US<1:0> EDT DL<2:0> SATA SATB SATDW ACCSAT 0046 XMODEN MODEN BWM<3:0> YWM<-:	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 0042 OA OB SA SB OAB SAB DA DC IPL2 IPL1 IPL0 RA N 0044 VAR US<1:0> EDT DL<2:0> SATA SATB SATDW ACCSAT IPL3 0046 XMODEN YMODEN BWH<3:0> YWMODSRT<15:0> YWM IPL3 0046 V BWH<3:0> YWMODSRT<15:0> YWM YMODSRT<15:0> VWMOSRT<15:0> VWMOSRT<15:0> VMODEN YMODEN YMODSRT<15:0> VWMOSRT<15:0> VWM YMODSRT<15:0> VWMOSRT<15:0> VWMOSRT<15:0> VWMOSRT<15:0> VWMOSRT<15:0> VWMOSRT<15:0> VWMOSRT<15:0> VWMOSRT<15:0> VWMOSRT<15:0> VWMOSRT<1	Addr.Bit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9Bit 8Bit 7Bit 6Bit 5Bit 4Bit 3Bit 3Bit 20042OAOBSASBOABSABDADCIPL2IPL1IPL0RANOV0044VAR-US<1:0-	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 0042 OA OB SA SB OAB SAB DA DC IPL2 IPL1 IPL0 RA N OV Z 0044 VAR — US<1:0> EDT DL<2:0> SATA SATB SATDW ACCSAT IPL3 SFA RND 0046 XMODEN YMODEN — — BWM<3:0> YWM<3:0> XWM<3:0> XWM<3:0	Addr. Bit 13 Bit 13 Bit 13 Bit 13 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0042 OA OB SA SB OAB SAB DA DC IPL2 IPL1 IPL0 RA N OV Z C 0044 VAR - US<1:> EDT DL<2:> SATA SATB SATDW ACCSAT IPL3 SFA RND IFF 0046 VMODEN YMODEN - - BWM<3:> ST SATA SATB SATDW ACCSAT IPL3 SFA RND IFF 0048 VMODEN YMODEN - - BWM<3:> ST SATA SATB SATDW ACCSAT IPL3 SAT RND IFF 0044 U VMOTEN VMOTEN VMOTEN VMOTEN VMOTEN VMOTEN - - - -

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657H-page 64

TABLE 4-17: I2C1 AND I2C2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	—	—	—	—	—	—	—	_				I2C1 Recei	ve Register				0000
I2C1TRN	0202	_	_	_	_	—	_	—	_				I2C1 Transi	mit Register				OOFF
I2C1BRG	0204	_	_	_	_	_	_	_				Bau	d Rate Gene	erator				0000
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	_	_	_					I2C1 Addr	ess Register	r				0000
I2C1MSK	020C	_	_	_	_	_	_					I2C1 Add	dress Mask					0000
I2C2RCV	0210	_	_	_	_	_	_	_	_				I2C2 Recei	ve Register				0000
I2C2TRN	0212	_	_	_	_	_	_	_	_				I2C2 Transi	mit Register				OOFF
I2C2BRG	0214	_	_	_	_	_	_	_				Bau	d Rate Gene	erator				0000
I2C2CON	0216	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	_	_	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C2ADD	021A	_	_	_	_	—	_					I2C2 Addr	ess Register	r				0000
I2C2MSK	021C	_	_	_	_	_	-		I2C2 Address Mask						0000			

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: UART1 AND UART2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	_	UEN<	:1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_	_	UART1 Transmit Register xx							xxxx			
U1RXREG	0226	_	_	_	_	_	_	_	UART1 Receive Register 0							0000		
U1BRG	0228							Baud	Rate Gen	erator Pre	scaler							0000
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN<	:1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_	_	_				UART2	Transmit F	Register				xxxx
U2RXREG	0236	_	_	_	_	—	_	_	UART2 Receive Register 00							0000		
U2BRG	0238							Baud	Rate Gen	erator Pre	scaler							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-42: OP AMP/COMPARATOR REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0A80	PSIDL	_	-	—	C4EVT	C3EVT	C2EVT	C1EVT	_	-	—	—	C4OUT	C3OUT	C2OUT	C10UT	0000
CVRCON	0A82		CVR2OE	_	_	_	VREFSEL	_	_	CVREN	CVR10E	CVRR	CVRSS		CVR<	3:0>		0000
CM1CON	0A84	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPOL	_<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM1MSKSRC	0A86		_	_	_		SELSR	CC<3:0>			SELSRC	B<3:0>			SELSRC	A<3:0>		0000
CM1MSKCON	0A88	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM1FLTR	0A8A		_	_	_	_	_	_	_	_	C	FSEL<2:0	>	CFLTREN	(CFDIV<2:0	>	0000
CM2CON	0A8C	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPOL	_<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM2MSKSRC	0A8E		_	_	_		SELSR	CC<3:0>			SELSRC	B<3:0>			SELSRC	A<3:0>		0000
CM2MSKCON	0A90	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM2FLTR	0A92	_	_	_	_	_	_	_	_		C	FSEL<2:0	>	CFLTREN	(CFDIV<2:0	>	0000
CM3CON ⁽¹⁾	0A94	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPOL	_<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM3MSKSRC(1)	0A96	_	_	_	_		SELSR	CC<3:0>			SELSRC	B<3:0>			SELSRC	A<3:0>		0000
CM3MSKCON ⁽¹⁾	0A98	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM3FLTR ⁽¹⁾	0A9A	_	_	_	_	_	_	_	_		C	FSEL<2:0	>	CFLTREN	(CFDIV<2:0	>	0000
CM4CON	0A9C	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPOL	_<1:0>	_	CREF	—	_	CCH	<1:0>	0000
CM4MSKSRC	0A9E	_	_		_		SELSR	CC<3:0>	-		SELSRC	B<3:0>	•		SELSRC	A<3:0>		0000
CM4MSKCON	0AA0	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM4FLTR	0AA2	_	_		_	_	_	_	_	—	C	FSEL<2:0	>	CFLTREN	(CFDIV<2:0	>	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers are unavailable on dsPIC33EPXXXGP502/MC502/MC502/MC202 and PIC24EP256GP/MC202 (28-pin) devices.

TABLE 4-43: CTMU REGISTER MAP

File N	lame	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CTMUC	CON1	033A	CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	_	_	_	_	_	_	_	_	0000
CTMUC	CON2	033C	EDG1MOD	EDG1POL		EDG1	SEL<3:0>		EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL		EDG2S	EL<3:0>		_	-	0000
CTMU	ICON	033E			ITRIM<5	5:0>			IRNG	<1:0>		_	_	_	_	_	-	_	0000

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-44: JTAG INTERFACE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
JDATAH	0FF0	_	—	_	_		JDATAH<27:16> x								xxxx			
JDATAL	0FF2		JDATAL<15:0> 0(0000							

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657H-page 97

7.3 Interrupt Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

7.3.1 KEY RESOURCES

- "Interrupts" (DS70600) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

7.4 Interrupt Control and Status Registers

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- INTTREG

7.4.1 INTCON1 THROUGH INTCON4

Global interrupt control functions are controlled from INTCON1, INTCON2, INTCON3 and INTCON4.

INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS), as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior and also contains the Global Interrupt Enable bit (GIE).

INTCON3 contains the status flags for the DMA and DO stack overflow status trap sources.

The INTCON4 register contains the software generated hard trap status bit (SGHT).

7.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.4.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number bits (VECNUM<7:0>) and Interrupt Priority Level bits (ILR<3:0>) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

7.4.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers refer to "**CPU**" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual".

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-3 through Register 7-7 in the following pages.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				SS2R<6:0>			
bit 7							bit 0
l egend:							

REGISTER 11-13: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6-0	SS2R<6:0>: Assign SPI2 Slave Select (SS2) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)
	1111001 = Input tied to RPI121
	•
	0000001 = Input tied to CMP1 0000000 = Input tied to Vss

REGISTER 11-14: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26 (dsPIC33EPXXXGP/MC50X DEVICES ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	_	_	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				C1RXR<6:0>	>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7	Unimplemented: Read as '0'
bit 6-0	C1RXR<6:0>: Assign CAN1 RX Input (CRX1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers)
	1111001 = Input tied to RPI121
	•
	0000001 = Input tied to CMP1 0000000 = Input tied to Vss

REGISTER 11-15: RPINR37: PERIPHERAL PIN SELECT INPUT REGISTER 37 (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				SYNCI1R<6:03	>		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_			—			<u> </u>	_
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15	Unimplemer	nted: Read as '	0'				
bit 15 bit 14-8	SYNCI1R<6:		M Synchroniz	zation Input 1 to nbers)	the Correspon	ding RPn Pin b	its
	SYNCI1R<6: (see Table 11	0>: Assign PW	M Synchroniz selection nur		the Correspon	ding RPn Pin b	its
	SYNCI1R<6: (see Table 11	• 0>: Assign PWI I-2 for input pin	M Synchroniz selection nur		the Correspon	ding RPn Pin b	its
	SYNCI1R<6: (see Table 11	• 0>: Assign PWI I-2 for input pin	M Synchroniz selection nur		the Correspon	ding RPn Pin b	its
	SYNCI1R<6: (see Table 11 1111001 = I	• 0>: Assign PWI I-2 for input pin	M Synchroniz selection nur 121 P1		the Correspon	ding RPn Pin b	its

16.3 PWMx Control Registers

REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER

R/W-0	U-0	R/W-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN ⁽¹⁾	SYNCSRC2 ⁽¹⁾	SYNCSRC1 ⁽¹⁾	SYNCSRC0 ⁽¹⁾	SEVTPS3 ⁽¹⁾	SEVTPS2 ⁽¹⁾	SEVTPS1 ⁽¹⁾	SEVTPS0 ⁽¹⁾
bit 7	•						bit 0

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit	t
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	PTEN: PWMx Module Enable bit
	 1 = PWMx module is enabled 0 = PWMx module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	PTSIDL: PWMx Time Base Stop in Idle Mode bit
	 1 = PWMx time base halts in CPU Idle mode 0 = PWMx time base runs in CPU Idle mode
bit 12	SESTAT: Special Event Interrupt Status bit
	 1 = Special event interrupt is pending 0 = Special event interrupt is not pending
bit 11	SEIEN: Special Event Interrupt Enable bit
	1 = Special event interrupt is enabled
	0 = Special event interrupt is disabled
bit 10	EIPU: Enable Immediate Period Updates bit ⁽¹⁾
	 1 = Active Period register is updated immediately 0 = Active Period register updates occur on PWMx cycle boundaries
bit 9	SYNCPOL: Synchronize Input and Output Polarity bit ⁽¹⁾
	1 = SYNCI1/SYNCO1 polarity is inverted (active-low)
	0 = SYNCI1/SYNCO1 is active-high
bit 8	SYNCOEN: Primary Time Base Sync Enable bit ⁽¹⁾
	1 = SYNCO1 output is enabled
L:1 7	0 = SYNCO1 output is disabled
bit 7	SYNCEN: External Time Base Synchronization Enable bit ⁽¹⁾
	 1 = External synchronization of primary time base is enabled 0 = External synchronization of primary time base is disabled
Note 1:	These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user
	application must program the period register with a value that is slightly larger than the expected period of

the external synchronization input signal.

2: See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

Legend: R = Readable bi	t	W = Writable bit		U = Unimpler	mented bit, read	l as '0'	
bit 7							bit 0
			PTPE	ER<7:0>			
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
bit 15							bit 8
			PTPE	R<15:8>			
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1

'0' = Bit is cleared

x = Bit is unknown

REGISTER 16-3: PTPER: PWMx PRIMARY MASTER TIME BASE PERIOD REGISTER

bit 15-0 **PTPER<15:0>:** Primary Master Time Base (PMTMR) Period Value bits

'1' = Bit is set

REGISTER 16-4: SEVTCMP: PWMx PRIMARY SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVTC	MP<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVT	CMP<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	t	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		

bit 15-0 SEVTCMP<15:0>: Special Event Compare Count Value bits

-n = Value at POR

REGISTER 16-15: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER⁽¹⁾

- bit 7-3 FLTSRC<4:0>: Fault Control Signal Source Select for PWM Generator # bits 11111 = Fault 32 (default) 11110 = Reserved . . 01100 = Reserved 01011 = Comparator 4 01010 = Op Amp/Comparator 3
 - 01001 = Op Amp/Comparator 2
 - 01000 = Op Amp/Comparator 1
 - 00111 = Reserved
 - 00110 = Reserved
 - 00101 = Reserved
 - 00100 = Reserved
 - 00011 = Fault 4
 - 00010 = Fault 3
 - 00001 = Fault 2 00000 = Fault 1
- bit 2 **FLTPOL:** Fault Polarity for PWM Generator # bit⁽²⁾
 - 1 = The selected Fault source is active-low
 - 0 = The selected Fault source is active high
- bit 1-0 **FLTMOD<1:0>:** Fault Mode for PWM Generator # bits
 - 11 = Fault input is disabled
 - 10 = Reserved
 - 01 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (cycle)
 - 00 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (latched condition)
- **Note 1:** If the PWMLOCK Configuration bit (FOSCSEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.
 - 2: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F15BP<3:0>				F14BP<3:0>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
1010 0		P<3:0>				P<3:0>	1010 0	
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	t POR	'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-12	1111 = Filte 1110 = Filte	RX Buffer Ma r hits received in r hits received in r hits received in r hits received in r hits received in	n RX FIFO bu n RX Buffer 1 n RX Buffer 1	ıffer 4				
bit 11-8	F14BP<3:0;	RX Buffer Ma	sk for Filter 1	4 bits (same val	ues as bits<15	:12>)		
bit 7-4	F13BP<3:0;	RX Buffer Ma	sk for Filter 1	13 bits (same values as bits<15:12>)				
bit 3-0	0 F12BP<3:0>: RX Buffer Mask for Filter 12			2 bits (same val	ues as bits<15	:12>)		

REGISTER 21-15: CxBUFPNT4: ECANx FILTER 12-15 BUFFER POINTER REGISTER 4

REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2 OR 3) (CONTINUED)

bit 7-6	EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits
	 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): High-to-low transition of the comparator output.
	01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity-selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): High-to-low transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): Low-to-high transition of the comparator output
	00 = Trigger/event/interrupt generation is disabled
bit 5	Unimplemented: Read as '0'
bit 4	CREF: Comparator Reference Select bit (VIN+ input) ⁽¹⁾
	 1 = VIN+ input connects to internal CVREFIN voltage⁽²⁾ 0 = VIN+ input connects to CxIN1+ pin
bit 3-2	Unimplemented: Read as '0'
bit 1-0	CCH<1:0>: Op Amp/Comparator Channel Select bits ⁽¹⁾
	 11 = Unimplemented 10 = Unimplemented 01 = Inverting input of the comparator connects to the CxIN2- pin⁽²⁾ 00 = Inverting input of the op amp/comparator connects to the CxIN1- pin

- **Note 1:** Inputs that are selected and not available will be tied to Vss. See the "**Pin Diagrams**" section for available inputs for each package.
 - 2: This output is not available when OPMODE (CMxCON<10>) = 1.

29.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

29.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

29.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

29.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

29.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

DC CHARACTERISTICS			$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$						
Param No. Symbol Characteristic			Min.	Тур.	Max.	Units	Conditions		
Operati	ng Voltag	e							
DC10	Vdd	Supply Voltage	3.0		3.6	V			
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	-	_	Vss	V			
DC17	Svdd	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.03	_	—	V/ms	0V-1V in 100 ms		

TABLE 30-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

TABLE 30-5: FILTER CAPACITOR (CEFC) SPECIFICATIONS

	Standard Operating Conditions (unless otherwise stated):Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No. Symbol Characteristics				Тур.	Max.	Units	Comments		
	Cefc	External Filter Capacitor Value ⁽¹⁾	4.7	10		μF	Capacitor must have a low series resistance (< 1 Ohm)		

Note 1: Typical VCAP voltage = 1.8 volts when VDD \ge VDDMIN.

TABLE 30-18: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	ymbol Characteristic		Typ. ⁽¹⁾	Max.	Units	Conditions		
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8	—	8.0	MHz	ECPLL, XTPLL modes		
OS51	Fvco	On-Chip VCO System Frequency	120	—	340	MHz			
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	ms			
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%			

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases, or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Time Base or Communication Clock}}}$$

For example, if Fosc = 120 MHz and the SPIx bit rate = 10 MHz, the effective jitter is as follows:

Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 30-19: INTERNAL FRC ACCURACY

AC CHARACTERISTICS		$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$								
Param No. Characteristic		Min.	Тур.	Max.	Units	Conditions				
Internal FRC Accuracy @ FRC Frequency = 7.37 MHz ⁽¹⁾										
F20a	FRC	-1.5	0.5	+1.5	%	$-40^{\circ}C \le TA \le -10^{\circ}C$	VDD = 3.0-3.6V			
		-1	0.5	+1	%	$-10^{\circ}C \le TA \le +85^{\circ}C$	VDD = 3.0-3.6V			
F20b	FRC	-2	1	+2	%	$+85^{\circ}C \le TA \le +125^{\circ}C$	VDD = 3.0-3.6V			

Note 1: Frequency is calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.

TABLE 30-20: INTERNAL LPRC ACCURACY

AC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$									
Param No. Characteristic		Min.	Тур.	Max.	Units	Conditions					
LPRC @ 32.768 kHz ⁽¹⁾											
F21a	LPRC	-30	—	+30	%	$-40^{\circ}C \le TA \le -10^{\circ}C$	VDD = 3.0-3.6V				
		-20		+20	%	$-10^{\circ}C \leq TA \leq +85^{\circ}C$	VDD = 3.0-3.6V				
F21b	LPRC	-30	_	+30	%	$+85^{\circ}C \leq TA \leq +125^{\circ}C$	VDD = 3.0-3.6V				

Note 1: The change of LPRC frequency as VDD changes.

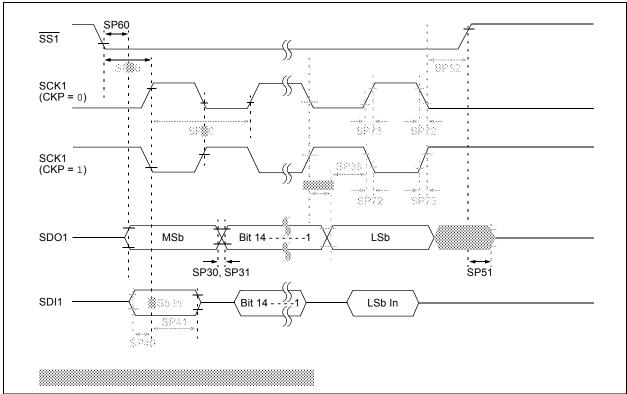


FIGURE 30-26: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

NOTES: