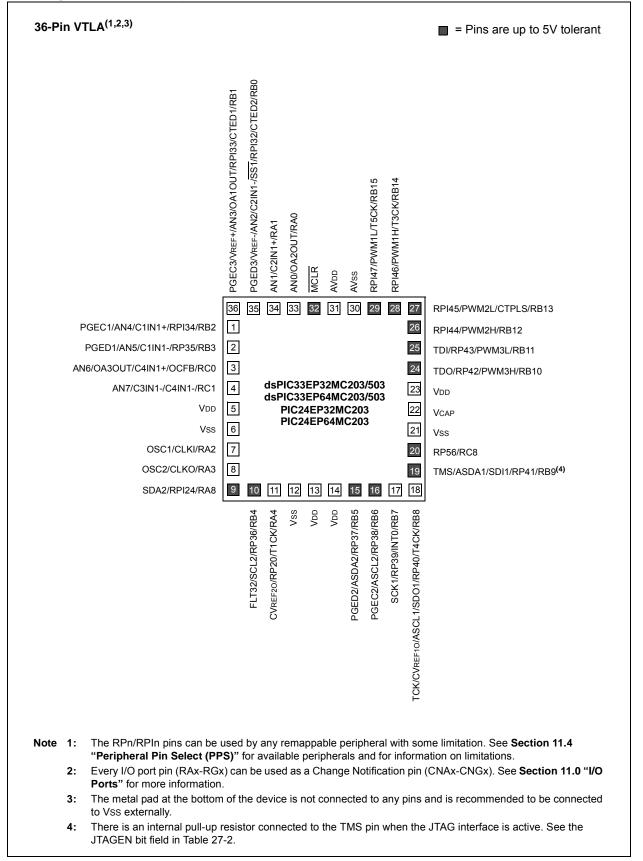

E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	- ·
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep128mc202-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Name ⁽⁴⁾	Pin Type	Buffer Type	PPS	Description					
AN0-AN15	Ι	Analog	No	Analog input channels.					
CLKI	I	ST/ CMOS	No	External clock source input. Always associated with OSC1 pin function					
CLKO	0	—	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.					
OSC1	Ι	ST/	No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS					
OSC2	I/O	CMOS —	No	otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.					
REFCLKO	0		Yes	Reference clock output.					
IC1-IC4	Ι	ST	Yes	Capture Inputs 1 through 4.					
OCFA OCFB OC1-OC4	 0	ST ST	Yes No Yes	Compare Fault A input (for Compare channels). Compare Fault B input (for Compare channels). Compare Outputs 1 through 4.					
INT0	I	ST	No	External Interrupt 0.					
INT1 INT2		ST ST	Yes Yes	External Interrupt 1. External Interrupt 2.					
RA0-RA4, RA7-RA12	I/O	ST	No	PORTA is a bidirectional I/O port.					
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port.					
RC0-RC13, RC15	I/O	ST	No	PORTC is a bidirectional I/O port.					
RD5, RD6, RD8	I/O	ST	No	PORTD is a bidirectional I/O port.					
RE12-RE15	I/O	ST	No	PORTE is a bidirectional I/O port.					
RF0, RF1	I/O	ST	No	PORTF is a bidirectional I/O port.					
RG6-RG9	I/O	ST	No	PORTG is a bidirectional I/O port.					
T1CK	Ι	ST	No	Timer1 external clock input.					
T2CK T3CK		ST ST	Yes	Timer2 external clock input.					
T4CK		ST	No No	Timer3 external clock input. Timer4 external clock input.					
T5CK	i	ST	No	Timer5 external clock input.					
CTPLS	0	ST	No	CTMU pulse output.					
CTED1	Ι	ST	No	CTMU External Edge Input 1.					
CTED2	Ι	ST	No	CTMU External Edge Input 2.					
U1CTS	Ι	ST	No	UART1 Clear-To-Send.					
U1RTS	0		No	UART1 Ready-To-Send.					
U1RX		ST	Yes	UART1 receive. UART1 transmit.					
U1TX BCLK1	0	ST	Yes No	UART1 Iransmit. UART1 IrDA [®] baud clock output.					
Legend: CMOS = CM ST = Schmi PPS = Perip	MOS co itt Trigg	ompatible er input v	input with CN	or output Analog = Analog input P = Power					

TABLE 1-1:PINOUT I/O DESCRIPTIONS

Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.

3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.

4: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

5: There is an internal pull-up resistor connected to the TMS pin when the JTAG interface is active. See the JTAGEN bit field in Table 27-2.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)								
Pin Name ⁽⁴⁾	Pin Type	Buffer Type	PPS	Description				
U2CTS	Ι	ST	No	UART2 Clear-To-Send.				
U2RTS	0	—	No	UART2 Ready-To-Send.				
U2RX	Ι	ST	Yes	UART2 receive.				
U2TX	0	—	Yes	UART2 transmit.				
BCLK2	0	ST	No	UART2 IrDA [®] baud clock output.				
SCK1	I/O	ST	No	Synchronous serial clock input/output for SPI1.				
SDI1	I	ST	No	SPI1 data in.				
SDO1	0	—	No	SPI1 data out.				
SS1	I/O	ST	No	SPI1 slave synchronization or frame pulse I/O.				
SCK2	I/O	ST	Yes	Synchronous serial clock input/output for SPI2.				
SDI2	I	ST	Yes	SPI2 data in.				
SDO2	0	_	Yes	SPI2 data out.				
SS2	I/O	ST	Yes	SPI2 slave synchronization or frame pulse I/O.				
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.				
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.				
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.				
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1.				
SCL2	I/O	ST	No	Synchronous serial clock input/output for I2C2.				
SDA2	I/O	ST	No	Synchronous serial data input/output for I2C2.				
ASCL2	I/O	ST	No	Alternate synchronous serial clock input/output for I2C2.				
ASDA2	I/O	ST	No	Alternate synchronous serial data input/output for I2C2.				
TMS ⁽⁵⁾	Ι	ST	No	JTAG Test mode select pin.				
TCK	Ι	ST	No	JTAG test clock input pin.				
TDI	I	ST	No	JTAG test data input pin.				
TDO	0	_	No	JTAG test data output pin.				
C1RX ⁽²⁾	Ι	ST	Yes	ECAN1 bus receive pin.				
C1TX ⁽²⁾	0	_	Yes	ECAN1 bus transmit pin.				
FLT1 ⁽¹⁾ , FLT2 ⁽¹⁾	Ι	ST	Yes	PWM Fault Inputs 1 and 2.				
FLT3 ⁽¹⁾ , FLT4 ⁽¹⁾	Ι	ST	No	PWM Fault Inputs 3 and 4.				
FLT32 ^(1,3)	Ι	ST	No	PWM Fault Input 32 (Class B Fault).				
DTCMP1-DTCMP3 ⁽¹⁾	Ι	ST	Yes	PWM Dead-Time Compensation Inputs 1 through 3.				
PWM1L-PWM3L ⁽¹⁾	0	—	No	PWM Low Outputs 1 through 3.				
PWM1H-PWM3H ⁽¹⁾	0	—	No	PWM High Outputs 1 through 3.				
SYNCI1 ⁽¹⁾	Ι	ST		PWM Synchronization Input 1.				
SYNCO1 ⁽¹⁾	0		Yes	PWM Synchronization Output 1.				
INDX1 ⁽¹⁾	Ι	ST	Yes	Quadrature Encoder Index1 pulse input.				
HOME1 ⁽¹⁾	Ι	ST	Yes	Quadrature Encoder Home1 pulse input.				
QEA1 ⁽¹⁾	Ι	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary timer				
QEB1 ⁽¹⁾	,	ст	Vee	external clock/gate input in Timer mode.				
	Ι	ST	Yes	Quadrature Encoder Phase B input in QEI1 mode. Auxiliary timer				
CNTCMP1 ⁽¹⁾	0		Yes	external clock/gate input in Timer mode. Quadrature Encoder Compare Output 1.				
	0		162					

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

 Legend:
 CMOS = CMOS compatible input or output
 Analog = Analog input

 ST = Schmitt Trigger input with CMOS levels
 O = Output

 PPS = Peripheral Pin Select
 TTL = TTL input buffer

P = Power I = Input

Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.

3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.

4: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

5: There is an internal pull-up resistor connected to the TMS pin when the JTAG interface is active. See the JTAGEN bit field in Table 27-2.

																		All
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Resets
PTGCST	0AC0	PTGEN	—	PTGSIDL	PTGTOGL		PTGSWT	PTGSSEN	PTGIVIS	PTGSTRT	PTGWTO	_	_	—	—	PTGIT	M<1:0>	0000
PTGCON	0AC2	F	PTGCLK<2	:0>		F	PTGDIV<4:0	>			PTGPWD	<3:0>		_	P	TGWDT<2:	0>	0000
PTGBTE	0AC4		ADC	TS<4:1>		IC4TSS	IC3TSS	IC2TSS	IC1TSS	OC4CS	OC3CS	OC2CS	OC1CS	OC4TSS	OC3TSS	OC2TSS	OC1TSS	0000
PTGHOLD	0AC6								PTGHOLD	<15:0>								0000
PTGT0LIM	0AC8		PTGT0LIM<15:0> 0										0000					
PTGT1LIM	0ACA								PTGT1LIM	<15:0>								0000
PTGSDLIM	0ACC								PTGSDLIN	l<15:0>								0000
PTGC0LIM	0ACE								PTGC0LIN	<15:0>								0000
PTGC1LIM	0AD0								PTGC1LIN	<15:0>								0000
PTGADJ	0AD2								PTGADJ<	:15:0>								0000
PTGL0	0AD4								PTGL0<	15:0>								0000
PTGQPTR	0AD6	—	—	—	—	_	—	—	_	—	—	-		P	TGQPTR<4	4:0>		0000
PTGQUE0	0AD8				STEP	1<7:0>							STEPO)<7:0>				0000
PTGQUE1	0ADA				STEP	'3<7:0>							STEP2	2<7:0>				0000
PTGQUE2	0ADC				STEP	25<7:0>							STEP4	<7:0>				0000
PTGQUE3	0ADE				STEP	7<7:0>							STEP6	6<7:0>				0000
PTGQUE4	0AE0				STEP	9<7:0>							STEP8	8<7:0>				0000
PTGQUE5	0AE2				STEP	11<7:0>							STEP1	0<7:0>				0000
PTGQUE6	0AE4				STEP	13<7:0>							STEP1	2<7:0>				0000
PTGQUE7	0AE6				STEP	15<7:0>							STEP1	4<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657H-page 78

4.5 Instruction Addressing Modes

The addressing modes shown in Table 4-63 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.5.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.5.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can either be a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- · Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal
- Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

TABLE 4-63: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

	Vector	IRQ		Interrupt Bit Location				
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority		
QEI1 – QEI1 Position Counter Compare ⁽²⁾	66	58	0x000088	IFS3<10>	IEC3<10>	IPC14<10:8>		
Reserved	67-72	59-64	0x00008A-0x000094	_	_	_		
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>		
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4<2>	IEC4<2>	IPC16<10:8>		
CRC – CRC Generator Interrupt	75	67	0x00009A	IFS4<3>	IEC4<3>	IPC16<14:12>		
Reserved	76-77	68-69	0x00009C-0x00009E	—	_	—		
C1TX – CAN1 TX Data Request ⁽¹⁾	78	70	0x000A0	IFS4<6>	IEC4<6>	IPC17<10:8>		
Reserved	79-84	71-76	0x0000A2-0x0000AC	—	_	—		
CTMU – CTMU Interrupt	85	77	0x0000AE	IFS4<13>	IEC4<13>	IPC19<6:4>		
Reserved	86-101	78-93	0x0000B0-0x0000CE	—	_	—		
PWM1 – PWM Generator 1 ⁽²⁾	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>		
PWM2 – PWM Generator 2 ⁽²⁾	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>		
PWM3 – PWM Generator 3 ⁽²⁾	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>		
Reserved	105-149	97-141	0x0001D6-0x00012E	—	_	—		
ICD – ICD Application	150	142	0x000142	IFS8<14>	IEC8<14>	IPC35<10:8>		
JTAG – JTAG Programming	151	143	0x000130	IFS8<15>	IEC8<15>	IPC35<14:12>		
Reserved	152	144	0x000134	—	—	_		
PTGSTEP – PTG Step	153	145	0x000136	IFS9<1>	IEC9<1>	IPC36<6:4>		
PTGWDT – PTG Watchdog Time-out	154	146	0x000138	IFS9<2>	IEC9<2>	IPC36<10:8>		
PTG0 – PTG Interrupt 0	155	147	0x00013A	IFS9<3>	IEC9<3>	IPC36<14:12>		
PTG1 – PTG Interrupt 1	156	148	0x00013C	IFS9<4>	IEC9<4>	IPC37<2:0>		
PTG2 – PTG Interrupt 2	157	149	0x00013E	IFS9<5>	IEC9<5>	IPC37<6:4>		
PTG3 – PTG Interrupt 3	158	150	0x000140	IFS9<6>	IEC9<6>	IPC37<10:8>		
Reserved	159-245	151-245	0x000142-0x0001FE	—	—	_		
	Lowe	est Natura	I Order Priority					

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

Note 1: This interrupt source is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

2: This interrupt source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR ⁽¹⁾	OVBERR ⁽¹⁾	COVAERR ⁽¹⁾	COVBERR ⁽¹⁾	OVATE ⁽¹⁾	OVBTE ⁽¹⁾	COVTE ⁽¹⁾
pit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR ⁽¹) DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—
pit 7							bit 0
_egend:							
R = Readable		W = Writable		U = Unimpleme			
n = Value at	POR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unk	nown
bit 15	NSTDIS: Inte	errupt Nesting	Disable hit				
		nesting is disa					
	•	nesting is ena					
pit 14	-	-	Overflow Trap F	lag bit ⁽¹⁾			
			erflow of Accur				
	=		overflow of A				
pit 13			Overflow Trap F	•			
			erflow of Accur				
pit 12	-			Overflow Trap Fla	ag bit ⁽¹⁾		
	1 = Trap was	caused by ca	tastrophic over	flow of Accumula	ator A		
pit 11				Overflow Trap Fla			
			•	flow of Accumula	•		
	=		-	overflow of Accur	nulator B		
pit 10			erflow Trap Ena	able bit ⁽¹⁾			
	1 = Trap ove 0 = Trap is d	rflow of Accum	ulator A				
pit 9	OVBTE: Acc	umulator B Ov	erflow Trap En	able bit ⁽¹⁾			
	1 = Trap ove 0 = Trap is d	rflow of Accum isabled	ulator B				
oit 8	COVTE: Cat	astrophic Over	flow Trap Enat	ole bit ⁽¹⁾			
	1 = Trap on o 0 = Trap is d		erflow of Accu	mulator A or B is	enabled		
oit 7	SFTACERR:	Shift Accumul	ator Error Statu	us bit ⁽¹⁾			
		•	•	alid accumulator invalid accumula			
oit 6	DIV0ERR: D	ivide-by-Zero I	Error Status bit				
			used by a divide caused by a d				
	DMACERR:			-			
oit 5							

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

11.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code, or a complete redesign, may be the only option.

Peripheral Pin Select configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.4.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the label, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

11.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital-only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs. In comparison, some digital-only peripheral modules are never included in the Peripheral Pin Select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I^2C^{TM} and the PWM. A similar requirement excludes all modules with analog inputs, such as the ADC Converter.

A key difference between remappable and nonremappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.4.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of SFRs: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheralselectable pin is handled in two different ways, depending on whether an input or output is being mapped.

REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER (CONTINUED)

bit 6-4	SYNCSRC<2:0>: Synchronous Source Selection bits ⁽¹⁾ 111 = Reserved 100 = Reserved
bit 3-0	100 = Reserved 011 = PTGO17 ⁽²⁾ 010 = PTGO16 ⁽²⁾ 001 = Reserved 000 = SYNCI1 input from PPS SEVTPS<3:0>: PWMx Special Event Trigger Output Postscaler Select bits ⁽¹⁾
	 1111 = 1:16 Postscaler generates Special Event Trigger on every sixteenth compare match event . <l< td=""></l<>
	0000 = 1:1 Postscaler generates Special Event Trigger on every second compare match event

- **Note 1:** These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the period register with a value that is slightly larger than the expected period of the external synchronization input signal.
 - 2: See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

REGISTER 17-1: QEI1CON: QEI1 CONTROL REGISTER (CONTINUED)

bit 6-4	INTDIV<2:0>: Timer Input Clock Prescale Select bits (interval timer, main timer (position counter), velocity counter and index counter internal clock divider select) ⁽³⁾
	<pre>111 = 1:128 prescale value 110 = 1:64 prescale value 101 = 1:32 prescale value 100 = 1:16 prescale value 011 = 1:8 prescale value 010 = 1:4 prescale value 001 = 1:2 prescale value 000 = 1:1 prescale value</pre>
bit 3	CNTPOL: Position and Index Counter/Timer Direction Select bit 1 = Counter direction is negative unless modified by external up/down signal
	 0 = Counter direction is positive unless modified by external up/down signal
bit 2	GATEN: External Count Gate Enable bit
	 1 = External gate signal controls position counter operation 0 = External gate signal does not affect position counter/timer operation
bit 1-0	CCM<1:0>: Counter Control Mode Selection bits
	 11 = Internal Timer mode with optional external count is selected 10 = External clock count with optional external count is selected 01 = External clock count with external up/down direction is selected 00 = Quadrature Encoder Interface (x4 mode) Count mode is selected
Note 1:	When CCM<1:0> = 10 or 11, all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored.

- 2: When CCM<1:0> = 00, and QEA and QEB values match the Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset. QEA/QEB signals used for the index match have swap and polarity values applied, as determined by the SWPAB and QEAPOL/QEBPOL bits.
- 3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

18.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on $\frac{1}{SSx}$.

Note:	This insures		that	the	first	fr	ame		
	transr	nission	after	initializ	ation	is	not		
	shifte	shifted or corrupted.							

- 2. In Non-Framed 3-Wire mode, (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = 0, always place a pull-down resistor on SSx.
 - **Note:** This will insure that during power-up and initialization the master/slave will not lose Sync due to an errant SCKx transition that would cause the slave to accumulate data shift errors for both transmit and receive appearing as corrupted data.
- FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame Sync pulse is active on the SSx pin, which indicates the start of a data frame.
 - Note: Not all third-party devices support Frame mode timing. Refer to the SPIx specifications in Section 30.0 "Electrical Characteristics" for details.
- In Master mode only, set the SMP bit (SPIxCON1<9>) to a '1' for the fastest SPIx data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set.

To avoid invalid slave read data to the master, the user's master software must ensure enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF Transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPIx Shift register and is empty once the data transmission begins.

18.2 SPI Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

18.2.1 KEY RESOURCES

- "Serial Peripheral Interface (SPI)" (DS70569) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 21-17: CxRXFnEID: ECANx ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTER (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Message address bit, EIDx, must be '1' to match filter

0 = Message address bit, EIDx, must be '0' to match filter

REGISTER 21-18: CxFMSKSEL1: ECANx FILTER 7-0 MASK SELECTION REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F7MSK<1:0>		F6MSK<1:0>		F5MSK<1:0>		F4MS	<<1:0>
bit 15		·					bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F3MS	SK<1:0>	F2MS	< <1:0>	F1MS	K<1:0>	F0MS	<<1:0>
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown	
	01 = Accept	ed ance Mask 2 reg ance Mask 1 reg ance Mask 0 reg	gisters contain	mask			
bit 13-12	F6MSK<1:0	>: Mask Source	for Filter 6 bit	s (same values	s as bits<15:14	>)	
bit 11-10	F5MSK<1:0	>: Mask Source	for Filter 5 bit	s (same values	s as bits<15:14	>)	
bit 9-8	F4MSK<1:0	>: Mask Source	for Filter 4 bit	bits (same values as bits<15:14>)			
bit 7-6	F3MSK<1:0	>: Mask Source	for Filter 3 bit	s (same values	s as bits<15:14	>)	
bit 5-4	F2MSK<1:0	>: Mask Source	for Filter 2 bit	s (same values	s as bits<15:14	>)	
bit 3-2	F1MSK<1:0	>: Mask Source	for Filter 1 bit	s (same values	s as bits<15:14	>)	

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

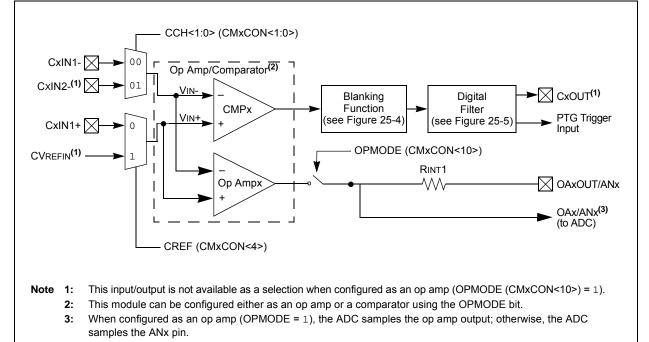
REGISTER 21-19: CxFMSKSEL2: ECANx FILTER 15-8 MASK SELECTION REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F15N	F15MSK<1:0>		F14MSK<1:0>		F13MSK<1:0>		K<1:0>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F11MSK<1:0> F10MSK<1:0				K<1:0>		<1:0>
bit 7							bit C
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown	
bit 15-14	F15MSK<1:	0>: Mask Sourc	e for Filter 15	bits			
bit 15-14	11 = Reserv	ed					
bit 15-14	11 = Reserv 10 = Accepta	ed ance Mask 2 reg	gisters contair	n mask			
bit 15-14	11 = Reserv 10 = Accept 01 = Accept	ed	gisters contair gisters contair	n mask n mask			
bit 15-14 bit 13-12	11 = Reserv 10 = Accepta 01 = Accepta 00 = Accepta	red ance Mask 2 reg ance Mask 1 reg	gisters contair gisters contair gisters contair	n mask n mask n mask	les as bits<15∷	14>)	
	11 = Reserv 10 = Accept 01 = Accept 00 = Accept F14MSK<1:	red ance Mask 2 reg ance Mask 1 reg ance Mask 0 reg	gisters contair gisters contair gisters contair e for Filter 14	n mask n mask n mask n mask bits (same valu			
bit 13-12	11 = Reserv 10 = Accept 01 = Accept 00 = Accept F14MSK<1: F13MSK<1:	red ance Mask 2 reg ance Mask 1 reg ance Mask 0 reg 0>: Mask Sourc	gisters contair gisters contair gisters contair e for Filter 14 e for Filter 13	n mask n mask n mask n mask bits (same valu bits (same valu	ies as bits<15:	14>)	
bit 13-12 bit 11-10	11 = Reserv 10 = Accepta 01 = Accepta 00 = Accepta F14MSK<1: F13MSK<1: F12MSK<1:	red ance Mask 2 reg ance Mask 1 reg ance Mask 0 reg 0>: Mask Sourc 0>: Mask Sourc	gisters contair gisters contair gisters contair e for Filter 14 e for Filter 13 e for Filter 12	n mask n mask n mask bits (same valu bits (same valu bits (same valu	ies as bits<15: ies as bits<15:	14>) 14>)	
bit 13-12 bit 11-10 bit 9-8	11 = Reserv 10 = Accept 01 = Accept 00 = Accept F14MSK<1: F13MSK<1: F12MSK<1:	red ance Mask 2 reg ance Mask 1 reg ance Mask 0 reg 0>: Mask Sourc 0>: Mask Sourc 0>: Mask Sourc	gisters contair gisters contair gisters contair e for Filter 14 e for Filter 13 e for Filter 12 e for Filter 11	n mask n mask n mask bits (same valu bits (same valu bits (same valu bits (same valu	ies as bits<15: ies as bits<15: es as bits<15:′	14>) 14>) 14>)	
bit 13-12 bit 11-10 bit 9-8 bit 7-6	11 = Reserv 10 = Accepta 01 = Accepta 00 = Accepta F14MSK<1: F13MSK<1: F12MSK<1: F11MSK<1: F10MSK<1:	red ance Mask 2 reg ance Mask 1 reg ance Mask 0 reg 0>: Mask Sourc 0>: Mask Sourc 0>: Mask Sourc	gisters contair gisters contair gisters contair e for Filter 14 e for Filter 13 e for Filter 13 e for Filter 11 e for Filter 10	n mask n mask n mask bits (same valu bits (same valu bits (same valu bits (same valu bits (same valu	ies as bits<15: ies as bits<15: es as bits<15: ies as bits<15:	14>) 14>) 14>) 14>)	

25.0 OP AMP/COMPARATOR MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Op Amp/Comparator" (DS70357) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices contain up to four comparators, which can be configured in various ways. Comparators, CMP1, CMP2 and CMP3, also have the option to be configured as op amps, with the output being brought to an external pin for gain/filtering connections. As shown in Figure 25-1, individual comparator options are specified by the comparator module's Special Function Register (SFR) control bits.


Note: Op Amp/Comparator 3 is not available on the dsPIC33EPXXXGP502/MC502/MC202 and PIC24EP256GP/MC202 (28-pin) devices.

These options allow users to:

- · Select the edge for trigger and interrupt generation
- · Configure the comparator voltage reference
- · Configure output blanking and masking
- Configure as a comparator or op amp (CMP1, CMP2 and CMP3 only)

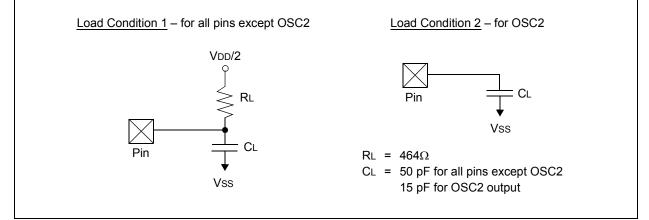
Note: Not all op amp/comparator input/output connections are available on all devices. See the "Pin Diagrams" section for available connections.

FIGURE 25-1: OP AMP/COMPARATOR x MODULE BLOCK DIAGRAM (MODULES 1, 2 AND 3)

REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2 OR 3) (CONTINUED)

bit 7-6	EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits
	 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): High-to-low transition of the comparator output.
	01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity-selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): High-to-low transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): Low-to-high transition of the comparator output
	00 = Trigger/event/interrupt generation is disabled
bit 5	Unimplemented: Read as '0'
bit 4	CREF: Comparator Reference Select bit (VIN+ input) ⁽¹⁾
	 1 = VIN+ input connects to internal CVREFIN voltage⁽²⁾ 0 = VIN+ input connects to CxIN1+ pin
bit 3-2	Unimplemented: Read as '0'
bit 1-0	CCH<1:0>: Op Amp/Comparator Channel Select bits ⁽¹⁾
	 11 = Unimplemented 10 = Unimplemented 01 = Inverting input of the comparator connects to the CxIN2- pin⁽²⁾ 00 = Inverting input of the op amp/comparator connects to the CxIN1- pin

- **Note 1:** Inputs that are selected and not available will be tied to Vss. See the "**Pin Diagrams**" section for available inputs for each package.
 - 2: This output is not available when OPMODE (CMxCON<10>) = 1.


30.2 AC Characteristics and Timing Parameters

This section defines dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X AC characteristics and timing parameters.

TABLE 30-15: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended Operating voltage VDD range as described in Section 30.1 "DC
	Characteristics".

FIGURE 30-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

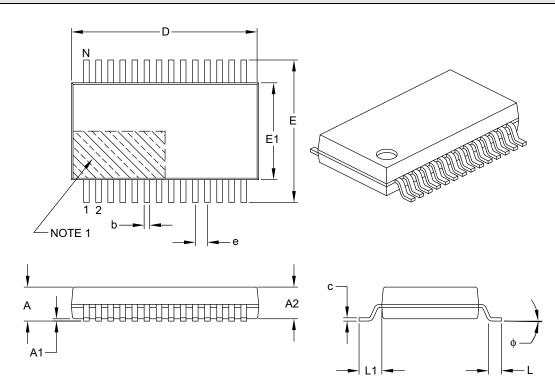
TABLE 30-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	_	—	15		In XT and HS modes, when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—	_	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	_	400	pF	In I ² C™ mode

TABLE 30-40:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK2 Input Frequency	—	—	11	MHz	(Note 3)
SP72	TscF	SCK2 Input Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK2 Input Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS2}$ ↓ to SCK2 ↑ or SCK2 ↓ Input	120	—	_	ns	
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	(Note 4)
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 TCY + 40	—		ns	(Note 4)

Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 91 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

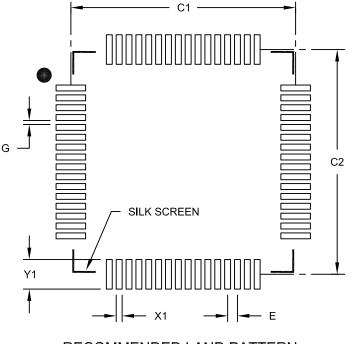
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dime	Dimension Limits			MAX			
Number of Pins	N		28				
Pitch	е		0.65 BSC				
Overall Height	A	-	-	2.00			
Molded Package Thickness	A2	1.65	1.75	1.85			
Standoff	A1	0.05	-	-			
Overall Width	E	7.40	7.80	8.20			
Molded Package Width	E1	5.00	5.30	5.60			
Overall Length	D	9.90	10.20	10.50			
Foot Length	L	0.55	0.75	0.95			
Footprint	L1	1.25 REF					
Lead Thickness	С	0.09	-	0.25			
Foot Angle	ф	0°	4°	8°			
Lead Width	b	0.22	-	0.38			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.


- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimensio	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B

TABLE A-5: MAJOR SECTION UPDATES (CONTINUED)