

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I²C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep128mc202t-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

IABLE 4	-14:	PVVIVI G	ENERA	IOR 2 R	EGIST		FOR as	PIC33EP		202/202		16246	PXXX			CES UNL	_ T	
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON2	0C40	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC	<1:0>	DTCP	_	MTBS	CAM	XPRES	IUE	0000
IOCON2	0C42	PENH	PENL	POLH	POLL	PMOD	0<1:0>	OVRENH	OVRENL	OVRDA	\T<1:0>	FLTD	\T<1:0>	CLDA	AT<1:0>	SWAP	OSYNC	C000
FCLCON2	0C44	_		(CLSRC<4:0)>		CLPOL	CLMOD		FLT	SRC<4:0	>		FLTPOL	FLTMO	D<1:0>	00F8
PDC2	0C46								PDC2<15:0>									0000
PHASE2	0C48							Р	HASE2<15:0)>								0000
DTR2	0C4A	_	_						[DTR2<13:0	>							0000
ALTDTR2	0C4C	_	_						AL	TDTR2<13	:0>							0000
TRIG2	0C52							TI	RGCMP<15:0)>								0000
TRGCON2	0C54		TRGDI	V<3:0>		_	—	_	_	_	-			TRO	GSTRT<5:	0>		0000
LEBCON2	0C5A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	-	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY2	0C5C	_	_	_	_						LEB<11:0)>						0000
AUXCON2	0C5E	_	_	_	—		BLANK	SEL<3:0>		_	_		CHOPS	SEL<3:0>		CHOPHEN	CHOPLEN	0000

I- DIGGOEDV/V/MOGOV/FOV AND DIGGOEDV/V/MOGOV DEV/ICEO ONI V

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-15: PWM GENERATOR 3 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON3	0C60	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	<1:0>	DTCP	—	MTBS	CAM	XPRES	IUE	0000
IOCON3	0C62	PENH	PENL	POLH	POLL	PMOD)<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTD	AT<1:0>	CLD	AT<1:0>	SWAP	OSYNC	C000
FCLCON3	0C64			(CLSRC<4:0)>		CLPOL	CLMOD		FLT	SRC<4:0	>		FLTPOL	FLTMO	D<1:0>	00F8
PDC3	0C66								PDC3<15:0>	•								0000
PHASE3	0C68				PHASE3<15:0> 01							0000						
DTR3	0C6A		—						[DTR3<13:0	>							0000
ALTDTR3	0C6C		—						AL	TDTR3<13	:0>							0000
TRIG3	0C72							Т	RGCMP<15:0	0>								0000
TRGCON3	0C74		TRGDI	V<3:0>		_	_	_	_	_	_			TR	GSTRT<5:	0>		0000
LEBCON3	0C7A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	—		—	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY3	0C7C	_	_	_	_	LEB<11:0> 00						0000						
AUXCON3	0C7E		—	—	—		BLANKSEL<3:0> — — CHOPSEL<3:0> CHOPHEN CHOPLEN						0000					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

.

.

4.8.1 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the Program Space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a Program Space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit-wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from Program Space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the Program Space location (P<15:0>) to a data address (D<15:0>)

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>) is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a Program Space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-23: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment	Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment
000 0000	I	Vss	010 1101	I	RPI45
000 0001	I	C1OUT ⁽¹⁾	010 1110	I	RPI46
000 0010	I	C2OUT ⁽¹⁾	010 1111	I	RPI47
000 0011	I	C3OUT ⁽¹⁾	011 0000	_	_
000 0100	I	C4OUT ⁽¹⁾	011 0001		—
000 0101	_	_	011 0010		_
000 0110	I	PTGO30 ⁽¹⁾	011 0011	I	RPI51
000 0111	I	PTGO31 ⁽¹⁾	011 0100	I	RPI52
000 1000	I	FINDX1 ^(1,2)	011 0101	I	RPI53
000 1001	I	FHOME1 ^(1,2)	011 0110	I/O	RP54
000 1010	—	—	011 0111	I/O	RP55
000 1011	_	—	011 1000	I/O	RP56
000 1100	_	—	011 1001	I/O	RP57
000 1101		—	011 1010	I	RPI58
000 1110	_	—	011 1011	_	—
000 1111	_	—	011 1100	_	—
001 0000		—	011 1101		—
001 0001		_	011 1110	_	_
001 0010		_	011 1111	—	_
001 0011		—	100 0000		—
001 0100	I/O	RP20	100 0001	_	—
001 0101	_	—	100 0010	_	—
001 0110	—	—	100 0011	—	_
001 0111	—	—	100 0100		—
001 1000	I	RPI24	100 0101	—	—
001 1001	I	RPI25	100 0110	—	—
001 1010			100 0111		—
001 1011	I	RPI27	100 1000	_	—
001 1100	I	RPI28	100 1001	—	—
001 1101	—	—	100 1010	_	—
001 1110	_	—	100 1011	_	—
001 1111	—	—	100 1100	—	—
010 0000	I	RPI32	100 1101		—
010 0001	I	RPI33	100 1110	_	—
010 0010	I	RPI34	100 1111	—	—
010 0011	I/O	RP35	101 0000		
010 0100	I/O	RP36	101 0001	_	_
010 0101	I/O	RP37	101 0010	_	—
010 0110	I/O	RP38	101 0011		—
010 0111	I/O	RP39	101 0100	_	—

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES

Legend: Shaded rows indicate PPS Input register values that are unimplemented.

Note 1: See Section 11.4.4.1 "Virtual Connections" for more information on selecting this pin assignment.

2: These inputs are available on dsPIC33EPXXXGP/MC50X devices only.

15.2 Output Compare Control Registers

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
		OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	ENFLTB
bit 15							bit 8
R/W-0	U-0	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0
ENFLTA		OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0
bit 7							bit 0
Legend:		HSC = Hardw	are Settable/Cl	earable bit			
R = Reada	ible bit	W = Writable I	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as '0)'				
bit 13	OCSIDL: Out	tput Compare x	Stop in Idle Mo	de Control bit			
	1 = Output C	compare x Halts	in CPU Idle me	ode via CDU Idia m	odo		
bit 12 10			nues lo operale		oue		
DIL 12-10	111 = Perinh	eral clock (Ep)	pare x Clock S				
	110 = Reserv	/ed					
	101 = PTGO	x clock ⁽²⁾					
	100 = T1CLK	is the clock so	urce of the OC	k (only the sync	hronous clock	is supported)	
	011 = 15CLK	is the clock sou	urce of the OC	х ~			
	001 = T3CLK	is the clock so	urce of the OC	x X			
	000 = T2CLK	is the clock so	urce of the OC	ĸ			
bit 9	Unimplemen	ted: Read as '0)'				
bit 8	ENFLTB: Fau	ult B Input Enab	le bit				
	1 = Output C 0 = Output C	compare Fault B compare Fault B	input (OCFB) input (OCFB)	is enabled is disabled			
bit 7	ENFLTA: Fau	ult A Input Enabl	le bit				
	1 = Output C	ompare Fault A	input (OCFA)	is enabled			
	0 = Output C	ompare Fault A	input (OCFA)	is disabled			
bit 6	Unimplemen	ted: Read as '0)'				
bit 5	OCFLTB: PW	M Fault B Cond	dition Status bit				
	1 = PWM Fa 0 = No PWM	ult B condition of Fault B condition	on OCFB pin ha on on OCFB pi	as occurred n has occurred			
bit 4	OCFLTA: PW	/M Fault A Cond	dition Status bit				
	1 = PWM Fa	ult A condition of	on OCFA pin ha	as occurred			
	0 = No PWM	I Fault A condition	on on OCFA pi	n has occurred			
Note 1:	OCxR and OCxF	RS are double-b	ouffered in PWN	A mode only.			
2:	Each Output Cor	mpare x module	(OCx) has one	PTG clock sou	urce. See Secti	on 24.0 "Perip	oheral Trigger
	Generator (PTG PTGO4 = OC1) wodule" for r	nore informatio	n.			
	PTGO5 = OC2						
	PTGO6 = OC3						
	PTGO7 = OC4						

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 17-19: INT1HLDH: INTERVAL 1 TIMER HOLD HIGH WORD REGIS	TER
---	-----

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTHL	D<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTHL	D<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 INTHLD<31:16>: Hold Register for Reading and Writing INT1TMRH bits

REGISTER 17-20: INT1HLDL: INTERVAL 1 TIMER HOLD LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTHL	D<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTH	_D<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	pit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 INTHLD<15:0>: Hold Register for Reading and Writing INT1TMRL bits

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—		—	AMSK9	AMSK8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7							bit 0

REGISTER 19-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

r			
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSK<9:0>: Address Mask Select bits

For 10-Bit Address:

1 = Enables masking for bit Ax of incoming message address; bit match is not required in this position

0 = Disables masking for bit Ax; bit match is required in this position

For 7-Bit Address (I2CxMSK<6:0> only):

1 = Enables masking for bit Ax + 1 of incoming message address; bit match is not required in this position

0 = Disables masking for bit Ax + 1; bit match is required in this position

REGISTER 21-6: CxINTF: ECANx INTERRUPT FLAG REGISTER (CONTINUED)

- bit 1 **RBIF:** RX Buffer Interrupt Flag bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 **TBIF:** TX Buffer Interrupt Flag bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

BUFFER 21-5: ECAN™ MESSAGE BUFFER WORD 4

R = Readable bi	t ND	W = Writable b	it	U = Unimplen	nented bit, read ared	l as '0' x = Bit is unkr	
Legend:							
bit 7							bit 0
			Ву	rte 2			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
bit 15							bit 8
			Ву	rte 3			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x

bit 15-8 Byte 3<15:8>: ECAN Message Byte 3 bits

bit 7-0 Byte 2<7:0>: ECAN Message Byte 2 bits

BUFFER 21-6: ECAN™ MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	/te 5			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	/te 4			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
-							

bit 15-8 Byte 5<15:8>: ECAN Message Byte 5 bits

bit 7-0 Byte 4<7:0>: ECAN Message Byte 4 bits

REGISTER 24-8: PTGC1LIM: PTG COUNTER 1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC1L	IM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC1L	_IM<7:0>			
bit 7							bit 0
Logond							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGC1LIM<15:0>:** PTG Counter 1 Limit Register bits May be used to specify the loop count for the PTGJMPC1 Step command or as a limit register for the General Purpose Counter 1.

REGISTER 24-9: PTGHOLD: PTG HOLD REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGHOL	_D<15:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	PTGHOLD<7:0>								
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGHOLD<15:0>:** PTG General Purpose Hold Register bits Holds user-supplied data to be copied to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 registers with the PTGCOPY command.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

25.1.2 OP AMP CONFIGURATION B

Figure 25-7 shows a typical inverting amplifier circuit with the output of the op amp (OAxOUT) externally routed to a separate analog input pin (ANy) on the device. This op amp configuration is slightly different in terms of the op amp output and the ADC input connection, therefore, RINT1 is not included in the transfer function. However, this configuration requires the designer to externally route the op amp output (OAxOUT) to another analog input pin (ANy). See Table 30-53 in **Section 30.0 "Electrical Characteristics"** for the typical value of RINT1. Table 30-60 and Table 30-61 in **Section 30.0 "Electrical Characteristics"** describe the minimum sample time (TSAMP) requirements for the ADC module in this configuration.

Figure 25-7 also defines the equation to be used to calculate the expected voltage at point VOAxOUT. This is the typical inverting amplifier equation.

25.2 Op Amp/Comparator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

25.2.1 KEY RESOURCES

- "Op Amp/Comparator" (DS70357) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- Software Libraries
- · Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

FIGURE 25-7: OP AMP CONFIGURATION B

					-		
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
CON	COE ⁽²⁾	CPOL	_		OPMODE	CEVT	COUT
bit 15	•					•	bit 8
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
EVPOL1	EVPOL0		CREF ⁽¹⁾	—	_	CCH1 ⁽¹⁾	CCH0 ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit		mented bit, read	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	IOWN
bit 1E		n/Comporator	Enabla bit				
DIL 15		ip/Comparator is e					
	0 = Op amp/o	comparator is d	lisabled				
bit 14	COE: Compa	arator Output E	nable bit ⁽²⁾				
	1 = Compara	itor output is pr	esent on the C	xOUT pin			
	0 = Compara	itor output is int	ernal only				
bit 13	CPOL: Comp	parator Output	Polarity Select	bit			
	1 = Compara	tor output is inv	verted				
h: 40 44		itor output is no	o, inverted				
		ited: Read as	0 	- Maria Oalaat			
DIT 10		p Amp/Compa	rator Operation	n Mode Select	DIT		
	1 = Circuit op 0 = Circuit op	perates as an o	p amp mparator				
bit 9	CEVT: Comp	arator Event bi	t				
	1 = Compara	ator event acco	ording to the E	VPOL<1:0> se	ettings occurred	; disables futur	e triggers and
	interrupt	s until the bit is	cleared				
	0 = Compara	ator event did n	ot occur				
bit 8	COUT: Comp	parator Output I	oit				
	<u>When CPOL</u> 1 = Vin + > Vi		ed polarity):				
	0 = VIN + < VI	IN-					
	When CPOL	= 1 (inverted p	olarity):				
	1 = VIN+ < VI	N-					
	0 = VIN + > VI	N-					
Note 1. Inn	uts that are sel	ected and not a	vailable will be	tied to Vss. S	See the " Pin Dia	arams" section	n for available

REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2 OR 3)

- Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.
 - 2: This output is not available when OPMODE (CMxCON<10>) = 1.

Bit Field	Description
WDTPRE	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32
WDTPOST<3:0>	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • • • • • • • • • • • •
WDTWIN<1:0>	Watchdog Window Select bits 11 = WDT window is 25% of WDT period 10 = WDT window is 37.5% of WDT period 01 = WDT window is 50% of WDT period 00 = WDT window is 75% of WDT period
ALTI2C1	Alternate I2C1 pin 1 = I2C1 is mapped to the SDA1/SCL1 pins 0 = I2C1 is mapped to the ASDA1/ASCL1 pins
ALTI2C2	Alternate I2C2 pin 1 = I2C2 is mapped to the SDA2/SCL2 pins 0 = I2C2 is mapped to the ASDA2/ASCL2 pins
JTAGEN ⁽²⁾	JTAG Enable bit 1 = JTAG is enabled 0 = JTAG is disabled
ICS<1:0>	ICD Communication Channel Select bits 11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved, do not use

TABLE 27-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

2: When JTAGEN = 1, an internal pull-up resistor is enabled on the TMS pin. Erased devices default to JTAGEN = 1. Applications requiring I/O pins in a high-impedance state (tri-state) in Reset should use pins other than TMS for this purpose.

29.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16 and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

29.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

29.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

29.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
		Program Flash Memory					
D130	Eр	Cell Endurance	10,000		_	E/W	-40°C to +125°C
D131	Vpr	VDD for Read	3.0		3.6	V	
D132b	VPEW	VDD for Self-Timed Write	3.0		3.6	V	
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated, -40°C to +125°C
D135	IDDP	Supply Current during Programming ⁽²⁾	—	10	—	mA	
D136	IPEAK	Instantaneous Peak Current During Start-up	_	_	150	mA	
D137a	TPE	Page Erase Time	17.7	—	22.9	ms	TPE = 146893 FRC cycles, Ta = +85°C (See Note 3)
D137b	Тре	Page Erase Time	17.5	—	23.1	ms	TPE = 146893 FRC cycles, TA = +125°C (See Note 3)
D138a	Tww	Word Write Cycle Time	41.7	—	53.8	μs	Tww = 346 FRC cycles, TA = +85°C (See Note 3)
D138b	Tww	Word Write Cycle Time	41.2	—	54.4	μs	Tww = 346 FRC cycles, Ta = +125°C (See Note 3)

TABLE 30-14: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: Parameter characterized but not tested in manufacturing.

3: Other conditions: FRC = 7.37 MHz, TUN<5:0> = 011111 (for Minimum), TUN<5:0> = 100000 (for Maximum). This parameter depends on the FRC accuracy (see Table 30-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time, see Section 5.3 "Programming Operations".

FIGURE 30-3: I/O TIMING CHARACTERISTICS

TABLE 30-21: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature } -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min. Typ. ⁽¹⁾ Max. Units Conditions			Conditions	
DO31	TIOR	Port Output Rise Time	_	5	10	ns	
DO32	TIOF	Port Output Fall Time	—	5	10	ns	
DI35	TINP	INTx Pin High or Low Time (input)	20	_		ns	
DI40	TRBP	CNx High or Low Time (input)	2		_	TCY	

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 30-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS

FIGURE 30-20: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

31.2 **AC Characteristics and Timing Parameters**

The information contained in this section defines dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X AC characteristics and timing parameters for high-temperature devices. However, all AC timing specifications in this section are the same as those in Section 30.2 "AC Characteristics and Timing Parameters", with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter OS53 in Section 30.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 31-9: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

	Standard Operating Conditions: 3.0V to 3.6V
	(unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$
	Operating voltage VDD range as described in Table 31-1.

FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 31-10: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$					
Param No.	Symbol	Characteristic	Min Typ Max Units Condition				Conditions	
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5	0.5	5	%	Measured over 100 ms period	

These parameters are characterized by similarity, but are not tested in manufacturing. This specification is Note 1: based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks use this formula:

$$Peripheral Clock Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Peripheral Bit Rate Clock}}}$$

For example: FOSC = 32 MHz, DCLK = 5%, SPIx bit rate clock (i.e., SCKx) is 2 MHz. Г

$$SPI SCK Jitter = \left\lfloor \frac{D_{CLK}}{\sqrt{\left(\frac{32 MHz}{2 MHz}\right)}} \right\rfloor = \left\lfloor \frac{5\%}{\sqrt{16}} \right\rfloor = \left\lfloor \frac{5\%}{4} \right\rfloor = 1.25\%$$

٦

© 2011-2013 Microchip Technology Inc.