

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I²C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep128mc204-e-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 3 MHz < F_{IN} < 5.5 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLFBD, to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

2.9 Application Examples

- · Induction heating
- Uninterruptable Power Supplies (UPS)
- DC/AC inverters
- · Compressor motor control
- · Washing machine 3-phase motor control
- BLDC motor control
- · Automotive HVAC, cooling fans, fuel pumps
- Stepper motor control
- · Audio and fluid sensor monitoring
- · Camera lens focus and stability control
- Speech (playback, hands-free kits, answering machines, VoIP)
- Consumer audio
- Industrial and building control (security systems and access control)
- · Barcode reading
- Networking: LAN switches, gateways
- Data storage device management
- · Smart cards and smart card readers

Examples of typical application connections are shown in Figure 2-4 through Figure 2-8.

FIGURE 2-4: BOOST CONVERTER IMPLEMENTATION

REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

bit 2	SFA: Stack Frame Active Status bit
	1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and
	DSWPAG values
	0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space
hit 1	PND: Dounding Mode Select hit(1)

- bit 1 **RND:** Rounding Mode Select bit⁽¹⁾
 - 1 = Biased (conventional) rounding is enabled
 - 0 = Unbiased (convergent) rounding is enabled

bit 0 IF: Integer or Fractional Multiplier Mode Select bit⁽¹⁾ 1 = Integer mode is enabled for DSP multiply 0 = Fractional mode is enabled for DSP multiply

- Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.
 - **2:** This bit is always read as '0'.
 - 3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	-	—	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	—	—	—		—	_	_	_		IC4IF	IC3IF	DMA3IF	_	—	SPI2IF	SPI2EIF	0000
IFS3	0806	—	—	—		—	—	_	_		—	—	_	—	MI2C2IF	SI2C2IF	—	0000
IFS4	0808	_	_	CTMUIF		_	_	_	_		—	_	_	CRCIF	U2EIF	U1EIF	_	0000
IFS8	0810	JTAGIF	ICDIF	—	_	—	—	—	—	_	—	—	—	—	—	—	—	0000
IFS9	0812	—	—	—	_	—	—	—	—	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF	—	0000
IEC0	0820	—	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	—	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	—	—	—	_	—	—	—	—	_	IC4IE	IC3IE	DMA3IE	—	—	SPI2IE	SPI2EIE	0000
IEC3	0826	—	—	—	_	—	—	—	—		—	_	—	—	MI2C2IE	SI2C2IE	—	0000
IEC4	0828	—	—	CTMUIE	_	—	—	—	—	_	—	—	—	CRCIE	U2EIE	U1EIE	—	0000
IEC8	0830	JTAGIE	ICDIE	—	_	—	—	—	—		—	_	—	—	—	—	—	0000
IEC9	0832	—	—	—	_	—	—	—	_	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	—	0000
IPC0	0840	—		T1IP<2:0>		—		OC1IP<2:0	2:0> —			IC1IP<2:0>		—		INT0IP<2:0>		4444
IPC1	0842	—		T2IP<2:0>		—		OC2IP<2:0)>		— IC2IP<2:0>		—	0	0MA0IP<2:0>		4444	
IPC2	0844	—	ι	J1RXIP<2:0	>	—	:	SPI1IP<2:0)>	_		SPI1EIP<2:0	>	—		T3IP<2:0>		4444
IPC3	0846	—	—	—	—	—	0)MA1IP<2:	0>			AD1IP<2:0>	•	—	ι	J1TXIP<2:0>		0444
IPC4	0848	—		CNIP<2:0>		—		CMIP<2:0	>	_		MI2C1IP<2:0	>	—	5	SI2C1IP<2:0>		4444
IPC5	084A	—	—	—	_	—	—	—	—	_	—	—	—	—		INT1IP<2:0>		0004
IPC6	084C	—		T4IP<2:0>		—		OC4IP<2:0)>	_		OC3IP<2:0>	•	—	0	0MA2IP<2:0>		4444
IPC7	084E	—	l	J2TXIP<2:0	>	—	ι	J2RXIP<2:	0>	_		INT2IP<2:0>	>	—		T5IP<2:0>		4444
IPC8	0850	—	—	—	_	—	—	—	—	_		SPI2IP<2:0>	>	—	S	SPI2EIP<2:0>		0044
IPC9	0852	—	—	—	_	—		IC4IP<2:0	>	_		IC3IP<2:0>		—	0	0MA3IP<2:0>		0444
IPC12	0858	—	—	—	_	—	N	112C2IP<2:	0>	_		SI2C2IP<2:0	>	—	—	—	—	0440
IPC16	0860	—		CRCIP<2:0	>	—		U2EIP<2:0	>	_		U1EIP<2:0>		—	—	—	—	4440
IPC19	0866	—	—	—	_	—	—	—	—	_		CTMUIP<2:0	>	—	—	—	—	0040
IPC35	0886	—		JTAGIP<2:0	>	—		ICDIP<2:0	>	_	—	—	—	—	—	—	—	4400
IPC36	0888	—	F	PTG0IP<2:0	>	—	PT	GWDTIP<	2:0>	_	P	TGSTEPIP<2	2:0>	—	—	—	—	4440
IPC37	088A	—	—	—		—	F	PTG3IP<2:	0>			PTG2IP<2:0	>	—	F	PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	_	—	—	—	—	_	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	—	_	—	—	_	—	_	_	—	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	—	—	_	—	_	—	—	_	—	DAE	DOOVR	—	_	—	—	0000
INTCON4	08C6	—	—	—	—	—	—	—	—	_	—	—	—	—	—	—	SGHT	0000
INTTREG	08C8	_	_	_	—		ILR<	3:0>					VECN	JM<7:0>				0000

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

Allocating different Page registers for read and write access allows the architecture to support data movement between different pages in data memory. This is accomplished by setting the DSRPAG register value to the page from which you want to read, and configuring the DSWPAG register to the page to which it needs to be written. Data can also be moved from different PSV to EDS pages, by configuring the DSRPAG and DSWPAG registers to address PSV and EDS space, respectively. The data can be moved between pages by a single instruction.

When an EDS or PSV page overflow or underflow occurs, EA<15> is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the EDS or PSV pages can occur at the page boundaries when:

- The initial address prior to modification addresses an EDS or PSV page
- The EA calculation uses Pre-Modified or Post-Modified Register Indirect Addressing; however, this does not include Register Offset Addressing

In general, when an overflow is detected, the DSxPAG register is incremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. When an underflow is detected, the DSxPAG register is decremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. This creates a linear EDS and PSV address space, but only when using Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0, EDS and PSV spaces. Table 4-61 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when overflow or underflow occurs, the EA<15> bit is set and the DSxPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- · Register Indirect with Register Offset Addressing
- Modulo Addressing
- · Bit-Reversed Addressing

			Before			After	
0/U, R/W	Operation	DSxPAG	DS EA<15>	Page Description	DSxPAG	DS EA<15>	Page Description
O, Read		DSRPAG = 0x1FF	1	EDS: Last page	DSRPAG = 0x1FF	0	See Note 1
O, Read	[++\Wn]	DSRPAG = 0x2FF	1	PSV: Last lsw page	DSRPAG = 0x300	1	PSV: First MSB page
O, Read	[Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB page	DSRPAG = 0x3FF	0	See Note 1
O, Write		DSWPAG = 0x1FF	1	EDS: Last page	DSWPAG = 0x1FF	0	See Note 1
U, Read		DSRPAG = 0x001	1	PSV page	DSRPAG = 0x001	0	See Note 1
U, Read	[Wn] Or	DSRPAG = 0x200	1	PSV: First Isw page	DSRPAG = 0x200	0	See Note 1
U, Read	[WII —]	DSRPAG = 0x300	1	PSV: First MSB page	DSRPAG = 0x2FF	1	PSV: Last Isw page

TABLE 4-61: OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0, EDS and PSV SPACE BOUNDARIES^(2,3,4)

Legend: O = Overflow, U = Underflow, R = Read, W = Write

Note 1: The Register Indirect Addressing now addresses a location in the base Data Space (0x0000-0x8000).

2: An EDS access with DSxPAG = 0x000 will generate an address error trap.

- **3:** Only reads from PS are supported using DSRPAG. An attempt to write to PS using DSWPAG will generate an address error trap.
- 4: Pseudo-Linear Addressing is not supported for large offsets.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_		_	_		_	
bit 15			•				bit 8
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1
—	—		_		LSTCI	H<3:0>	
bit 7				-			bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimpler	mented bit, read	1 as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-4	Unimplemen	ted: Read as '	0'				
bit 3-0	LSTCH<3:0>	: Last DMAC C	hannel Active	e Status bits			
	1111 = No DI 1110 = Reser	MA transfer ha rved	s occurred sir	nce system Re	set		
	•						
	•						
	•						
	0100 = Reser 0011 = Last c 0010 = Last c 0001 = Last c	rved Jata transfer wa Jata transfer wa Jata transfer wa	as handled by as handled by as handled by	/ Channel 3 / Channel 2 / Channel 1			

REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE STATUS REGISTER

0000 = Last data transfer was handled by Channel 0 0000 = Last data transfer was handled by Channel 0

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
	—	_	_	_	_	_	PLLDIV8	
bit 15		·					bit 8	
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	
PLLDIV7	PLLDIV6	PLLDIV5	PLLDIV4	PLLDIV3	PLLDIV2	PLLDIV1	PLLDIV0	
bit 7		·					bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	'0' = Bit is cleared		nown	
bit 15-9	Unimplemen	ted: Read as '	0'					
bit 8-0	PLLDIV<8:0	>: PLL Feedba	ck Divisor bits	(also denoted	as 'M', PLL mu	ltiplier)		
	111111111	= 513						
	•							
	•							
	•							
	000110000:	= 50 (default)						
	•							
	•							
	•							
	00000010:	= 4						
	000000001	= 3 = 2						
	000000000000	-						

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

11.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports" (DS70598) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Many of the device pins are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

Generally, a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have eight registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Latch register (LATx) read the latch. Writes to the Latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device is disabled. This means the corresponding LATx and TRISx registers and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

12.2 Timer1 Control Register

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON ⁽¹⁾	—	TSIDL	—	_	—	—	—				
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0				
	TGATE	TCKPS1	TCKPS0	_	TSYNC ⁽¹⁾	TCS ⁽¹⁾	—				
bit 7							bit 0				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own				
bit 15	TON: Timer1	On bit ⁽¹⁾									
	1 = Starts 16-	bit Limer1 bit Timer1									
bit 1/	Unimplement	ted: Pead as '	ı'								
bit 13		1 Stop in Idle N	/ode hit								
DIC 15	JIL IS I Stop in fale Mode bit 1 = Discontinues module operation when device enters Idle mode										
	0 = Continues module operation in Idle mode										
bit 12-7	Unimplement	Jnimplemented: Read as '0'									
bit 6	TGATE: Time	TGATE: Timer1 Gated Time Accumulation Enable bit									
	When TCS =	<u>1:</u> prod									
	When TCS =	0. 0.									
	1 = Gated tim	<u>e</u> accumulatior	n is enabled								
	0 = Gated tim	e accumulatior	n is disabled								
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Prescal	e Select bits							
	11 = 1:256										
	10 = 1:64 01 = 1:8										
	01 = 1.0 00 = 1.1										
bit 3	Unimplement	ted: Read as ')'								
bit 2	TSYNC: Time	er1 External Clo	ock Input Sync	chronization Se	elect bit ⁽¹⁾						
	When TCS =	1:									
	1 = Synchroni	izes external cl	ock input								
	0 = Does not	synchronize ex	ternal clock in	nput							
	This bit is jand	<u>ored</u> .									
bit 1	TCS: Timer1 (Clock Source S	Select bit ⁽¹⁾								
	1 = External c	lock is from pir	n, T1CK (on th	ne rising edge)							
	0 = Internal cl	ock (FP)		5 5-7							
bit 0	Unimplement	ted: Read as ')'								
Note 1: \	When Timer1 is en attempts by user so	abled in Exterr oftware to write	al Synchrono to the TMR1	us Counter mo register are ig	ode (TCS = 1, T nored.	SYNC = 1, TO	N = 1), any				

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

© 2011-2013 Microchip Technology Inc.

19.2 I²C Control Registers

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0				
I2CEN	_	I2CSIDL	SCLREL	IPMIEN ⁽¹⁾	A10M	DISSLW	SMEN				
bit 15					•		bit 8				
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN				
bit 7							bit 0				
Legend:		HC = Hardware	Clearable bit								
R = Readable	e bit	W = Writable bit	t	U = Unimpler	mented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown				
bit 15	12CEN: 12Cx	Enable bit									
	1 = Enables t	he I2Cx module a	and configures	the SDAx and	SCLx pins as	serial port pins	;				
h it 4.4			all I-C ···· pins a	are controlled	by port function	15					
DIL 14		ted: Read as 0	da hit								
DIE 13	I2CSIDL: I2Cx Stop in Idle Mode bit										
	 1 = Discontinues module operation when device enters an Idle mode 0 = Continues module operation in Idle mode 										
bit 12	SCLREL: SCLx Release Control bit (when operating as I ² C slave)										
	1 = Releases SCLx clock										
	0 = Holds SC	Lx clock low (cloo	ck stretch)								
	$\frac{\text{If STREN} = 1}{\text{Distance}}$	<u>:</u>			· · · · · · · · · · · · · · · · · · ·						
	Bit is R/W (i.e	., software can w	rite '0' to initiate o data byte tra	e stretch and w	rite '1' to relea	se clock). Harc	dware is clear				
	address byte	reception. Hardw	are is clear at	the end of eve	ry slave data b	yte reception.	l every slave				
	If STREN = 0	<u>:</u>			-						
	Bit is R/S (i.e.	, software can on	ly write '1' to re	elease clock). I	Hardware is cle	ar at the begin	ning of every				
	slave data by		Hardware is cle	ar at the end o	of every slave a	address byte re	eception.				
bit 11	IPMIEN: Intel	ligent Peripheral	Management I	nterface (IPMI)) Enable bit						
	1 = IPMI mod 0 = IPMI mod	e is enabled, all a		Acknowledged	I						
bit 10	A10M: 10-Bit	Slave Address b	it								
	1 = I2CxADD	is a 10-bit slave	address								
	0 = I2CxADD	is a 7-bit slave a	ddress								
bit 9	DISSLW: Disa	able Slew Rate C	Control bit								
	1 = Slew rate 0 = Slew rate	control is disable control is enable	ed d								
bit 8	SMEN: SMBL	us Input Levels bi	t								
	1 = Enables I 0 = Disables \$	/O pin thresholds SMBus input thre	compliant with sholds	SMBus speci	fication						
bit 7	GCEN: Gene	ral Call Enable bi	it (when operat	ing as I ² C slav	re)						
	1 = Enables in 0 = General c	terrupt when a ge all address disab	neral call addre	ss is received ir	12CxRSR (mo	dule is enabled	for reception)				

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—		—	AMSK9	AMSK8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7							bit 0

REGISTER 19-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

r			
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSK<9:0>: Address Mask Select bits

For 10-Bit Address:

1 = Enables masking for bit Ax of incoming message address; bit match is not required in this position

0 = Disables masking for bit Ax; bit match is required in this position

For 7-Bit Address (I2CxMSK<6:0> only):

1 = Enables masking for bit Ax + 1 of incoming message address; bit match is not required in this position

0 = Disables masking for bit Ax + 1; bit match is required in this position

20.3 UARTx Control Registers

REGISTER 20-1: UXMODE: UARTX MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0				
UARTEN	יין <u>-</u>	USIDL	IREN ⁽²⁾	RTSMD	—	UEN1	UEN0				
bit 15							bit 8				
R/W-0, H	C R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL				
bit 7							bit 0				
Legend:		HC = Hardwa	re Clearable bi	t							
R = Reada	able bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'					
-n = Value	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown										
 bit 15 UARTEN: UARTx Enable bit⁽¹⁾ 1 = UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0> 0 = UARTx is disabled; all UARTx pins are controlled by PORT latches; UARTx power consumption is minimal 											
bit 14	Unimplemen	ted: Read as '	כ'								
bit 13	USIDL: UART	USIDL: UARTx Stop in Idle Mode bit									
	1 = Discontin 0 = Continue	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 									
bit 12	IREN: IrDA [®] I	Encoder and D	ecoder Enable	bit ⁽²⁾							
	1 = IrDA ence	oder and decor	der are enabled	ł							
	0 = IrDA enco	oder and decod	der are disable	d							
bit 11	RTSMD: Mod	le Selection for	UxRTS Pin bit								
	1 = UXRISp 0 = UXRISp	in is in Simplex	mode								
bit 10		ted: Read as '	n'								
hit 9-8			ole hits								
	11 = UxTX. U	JxRX and BCL	(x pins are ena	bled and used:	UxCTS pin is c	ontrolled by PC)RT latches ⁽³⁾				
	10 = UxTX , U	IxRX, UxCTS a	nd UxRTS pin	s are enabled a	nd used ⁽⁴⁾	, ,					
	01 = UxTX, U	JxRX and UxRT	S pins are ena	bled and used;	UxCTS pin is c	ontrolled by PC	ORT latches ⁽⁴⁾				
	00 = UXIX ai PORT la	nd UXRX pins a	are enabled ar	id used; UXCTS	s and UXRIS/E	CLKx pins are	controlled by				
hit 7	WAKE: Wake	-un on Start hit	Detect During	Sleen Mode Fr	nahle hit						
	1 = UARTx c	ontinues to sar	nple the UxRX	pin: interrupt is	generated on t	he falling edge	: bit is cleared				
	in hardwa	are on the follow	wing rising edg	e	g		,				
	0 = No wake	-up is enabled									
bit 6	LPBACK: UA	RTx Loopback	Mode Select b	bit							
	1 = Enables	Loopback mod	e								
	0 = Loopbacl	k mode is disab	Died								
Note 1:	Refer to the "UAF enabling the UAR	RT " (DS70582) Tx module for r	section in the " eceive or transi	dsPIC33/PIC24 mit operation.	Family Referen	<i>ce Manual"</i> for i	nformation on				
2:	This feature is on	ly available for	the 16x BRG r	mode (BRGH =	0).						
3:	This feature is on	ly available on	44-pin and 64-	pin devices.							

4: This feature is only available on 64-pin devices.

BUFFER 21-7: ECAN™ MESSAGE BUFFER WORD 6

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			Ву	te 7				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			By	te 6				
bit 7							bit 0	
Legend:								
R = Readable b	oit	W = Writable b	bit	U = Unimplemented bit, read as '0'				
-n = Value at PO	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown	

bit 15-8 Byte 7<15:8>: ECAN Message Byte 7 bits

bit 7-0 Byte 6<7:0>: ECAN Message Byte 6 bits

BUFFER 21-8: ECAN[™] MESSAGE BUFFER WORD 7

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	—	_	FILHIT4 ⁽¹⁾	FILHIT3 ⁽¹⁾	FILHIT2 ⁽¹⁾	FILHIT1 ⁽¹⁾	FILHITO ⁽¹⁾
bit 15	- -						bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—		_	_		—	_
bit 7							bit 0
Legend:							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	FILHIT<4:0>: Filter Hit Code bits ⁽¹⁾
	Encodes number of filter that resulted in writing this buffer.
bit 7-0	Unimplemented: Read as '0'

Note 1: Only written by module for receive buffers, unused for transmit buffers.

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2) (CONTINUED)

bit 4	OC1CS: Clock Source for OC1 bit
	 1 = Generates clock pulse when the broadcast command is executed 0 = Does not generate clock pulse when the broadcast command is executed
bit 3	OC4TSS: Trigger/Synchronization Source for OC4 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed
bit 2	OC3TSS: Trigger/Synchronization Source for OC3 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed
bit 1	OC2TSS: Trigger/Synchronization Source for OC2 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed
bit 0	OC1TSS: Trigger/Synchronization Source for OC1 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed

- **Note 1:** This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).
 - 2: This register is only used with the PTGCTRL OPTION = 1111 Step command.

bit 3-0	Step Command	OPTION<3:0>	Option Description
	PTGCTRL(1)	0000	Reserved.
		0001	Reserved.
		0010	Disable Step Delay Timer (PTGSD).
		0011	Reserved.
		0100	Reserved.
		0101	Reserved.
		0110	Enable Step Delay Timer (PTGSD).
		0111	Reserved.
		1000	Start and wait for the PTG Timer0 to match the Timer0 Limit Register.
		1001	Start and wait for the PTG Timer1 to match the Timer1 Limit Register.
		1010	Reserved.
		1011	Wait for the software trigger bit transition from low-to-high before continuing (PTGSWT = 0 to 1).
		1100	Copy contents of the Counter 0 register to the AD1CHS0 register.
		1101	Copy contents of the Counter 1 register to the AD1CHS0 register.
		1110	Copy contents of the Literal 0 register to the AD1CHS0 register.
		1111	Generate triggers indicated in the Broadcast Trigger Enable register (PTGBTE).
	PTGADD(1)	0000	Add contents of the PTGADJ register to the Counter 0 Limit register (PTGC0LIM).
		0001	Add contents of the PTGADJ register to the Counter 1 Limit register (PTGC1LIM).
		0010	Add contents of the PTGADJ register to the Timer0 Limit register (PTGT0LIM).
		0011	Add contents of the PTGADJ register to the Timer1 Limit register (PTGT1LIM).
		0100	Add contents of the PTGADJ register to the Step Delay Limit register (PTGSDLIM).
		0101	Add contents of the PTGADJ register to the Literal 0 register (PTGL0).
		0110	Reserved.
		0111	Reserved.
	PTGCOPY(1)	1000	Copy contents of the PTGHOLD register to the Counter 0 Limit register (PTGC0LIM).
		1001	Copy contents of the PTGHOLD register to the Counter 1 Limit register (PTGC1LIM).
		1010	Copy contents of the PTGHOLD register to the Timer0 Limit register (PTGT0LIM).
		1011	Copy contents of the PTGHOLD register to the Timer1 Limit register (PTGT1LIM).
		1100	Copy contents of the PTGHOLD register to the Step Delay Limit register (PTGSDLIM).
		1101	Copy contents of the PTGHOLD register to the Literal 0 register (PTGL0).
		1110	Reserved.
		1111	Reserved.

TABLE 24-1: PTG STEP COMMAND FORMAT (CONTINUED)

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 24-2 for the trigger output descriptions.

3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

REGISTER 25-5:	CMxMSKCON: COMPARATOR x MASK GATING
	CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
HLMS		OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN				
bit 7							bit 0				
Legend											
R = Readable	e hit	W = Writable	hit	II = Unimple	mented hit read	l as 'N'					
n = Value at		'1' = Rit is set		(0) = Offinities classical (0) = Rit is cla	eared	x = Ritis unk	nown				
	1010	1 - Dit 13 3C			carca		nown				
bit 15	HLMS: Hiah	or Low-Level	/asking Select	bits							
	1 = The mask	king (blanking)	function will pre	event any asse	erted ('0') compa	rator signal fro	m propagating				
	0 = The mas	king (blanking)	function will pre	event any asse	erted ('1') compa	rator signal fro	m propagating				
bit 14	Unimpleme	nted: Read as	'0'								
bit 13	OCEN: OR (Gate C Input Er	nable bit								
	1 = MCI is co	onnected to OF	t gate								
	0 = MCI is no	ot connected to	OR gate								
bit 12	OCNEN: OR	Gate C Input	nverted Enable	e bit							
	1 = Inverted	L = Inverted MCI is connected to OR gate									
hit 11		Sate B Input Fr	heeled to on g	Juic							
Sit II	1 = MBI is co	onnected to OR	aate								
	0 = MBI is no	ot connected to	OR gate								
bit 10	OBNEN: OR	Gate B Input I	nverted Enable	e bit							
	1 = Inverted	MBI is connect	ed to OR gate								
	0 = Inverted	0 = Inverted MBI is not connected to OR gate									
bit 9	OAEN: OR (Gate A Input Er	nable bit								
	1 = MAI is co	1 = MAI is connected to OR gate									
hit 8			Norted Enable	a hit							
DILO	1 = Inverted	MAL is connect	red to OR date								
	0 = Inverted	MAI is not con	nected to OR g	jate							
bit 7	NAGS: AND	Gate Output In	nverted Enable	bit							
	1 = Inverted	ANDI is conne	cted to OR gat	e							
	0 = Inverted	ANDI is not co	nnected to OR	gate							
bit 6		Gate Output E	nable bit								
	0 = ANDI is r	not connected to O	o OR gate								
bit 5	ACEN: AND	Gate C Input E	Enable bit								
	1 = MCI is co	onnected to AN	D gate								
	0 = MCI is no	ot connected to	AND gate								
bit 4	ACNEN: AN	D Gate C Input	Inverted Enab	ole bit							
	1 = Inverted	MCI is connect	ed to AND gat	e							
	0 = Inverted	MCI is not con	nected to AND	gate							

REGISTER 25-5: CMxMSKCON: COMPARATOR x MASK GATING CONTROL REGISTER (CONTINUED)

bit 3 ABEN: AND Gate B Input Enable bit 1 = MBI is connected to AND gate 0 = MBI is not connected to AND gate bit 2 ABNEN: AND Gate B Input Inverted Enable bit 1 = Inverted MBI is connected to AND gate 0 = Inverted MBI is not connected to AND gate bit 1 AAEN: AND Gate A Input Enable bit 1 = MAI is connected to AND gate 0 = MAI is not connected to AND gate bit 0 AANEN: AND Gate A Input Inverted Enable bit 1 = Inverted MAI is connected to AND gate 0 = Inverted MAI is not connected to AND gate

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws , Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit literal to DSRPAG	1	1	None
		MOVPAG	#lit9,DSWPAG	Move 9-bit literal to DSWPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit literal to TBLPAG	1	1	None
		MOVPAG	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None
		MOVPAG	Ws, DSWPAG	Move Ws<8:0> to DSWPAG	1	1	None
		MOVPAG	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None
48	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB ⁽¹⁾	Prefetch and store accumulator	1	1	None
49	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd ⁽¹⁾	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd ⁽¹⁾	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
50	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd(1)	-(Multiply Wm by Wn) to Accumulator	1	1	None
51	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd,AWB(1)	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

29.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16 and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

29.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

29.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

29.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param.	Symbol	Characteristic	Min. Typ. Max. Units				Conditions
DO10 Vol		Output Low Voltage 4x Sink Driver Pins ⁽²⁾		—	0.4	V	VDD = 3.3V, $IOL \le 6 \text{ mA}, -40^{\circ}\text{C} \le Ta \le +85^{\circ}\text{C}$ $IOL \le 5 \text{ mA}, +85^{\circ}\text{C} < Ta \le +125^{\circ}\text{C}$
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾		—	0.4	V	
DO20	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4	_	_	V	$IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	_	—	V	$IOH \ge -15 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
DO20A	Voн1	Output High Voltage	1.5 ⁽¹⁾	_		V	$IOH \ge -14 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
		4x Source Driver Pins	2.0 ⁽¹⁾	_			$IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
			3.0(1)	—	—		$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
		Output High Voltage	1.5 ⁽¹⁾	_		V	$IOH \ge -22 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
		8x Source Driver Pins	2.0 ⁽¹⁾	—	_		$IOH \ge -18 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
			3.0(1)	—	—		$IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{V}$

TABLE 30-12: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized but not tested.

2: Includes all I/O pins that are not 8x Sink Driver pins (see below).

Includes the following pins:
 For devices with less than 64 pins: RA3, RA4, RA9, RB<7:15> and RC3
 For 64-pin devices: RA4, RA9, RB<7:15>, RC3 and RC15

TABLE 30-13: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	Min. ⁽²⁾	Тур.	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low	2.65	_	2.95	V	VDD (Notes 2 and 3)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance.

2: Parameters are for design guidance only and are not tested in manufacturing.

3: The VBOR specification is relative to VDD.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

FIGURE 30-6: INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS

TABLE 30-26: INPUT CAPTURE x MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operati (unless otherwise Operating temperation	ng Con e stated ature	ditions:) -40°C ≤ -40°C ≤	3.0V to 3.6V TA \leq +85°C for Indu TA \leq +125°C for Ext	strial ended
Param. No.SymbolCharacteristics(1)			Min.	Max.	Units	Con	ditions
IC10	TccL	ICx Input Low Time	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25	—	ns	Must also meet Parameter IC15	
IC11	ТссН	ICx Input High Time	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25	—	ns	Must also meet Parameter IC15	N = prescale value (1, 4, 16)
IC15	TccP	ICx Input Period	Greater of 25 + 50 or (1 Tcy/N) + 50	_	ns		

Note 1: These parameters are characterized, but not tested in manufacturing.