Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Active | | Core Processor | PIC | | Core Size | 16-Bit | | Speed | 60 MIPs | | Connectivity | I ² C, IrDA, LINbus, QEI, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT | | Number of I/O | 53 | | Program Memory Size | 128KB (43K x 24) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 8K x 16 | | Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V | | Data Converters | A/D 16x10b/12b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 125°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 64-TQFP | | Supplier Device Package | 64-TQFP (10x10) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic24ep128mc206-e-pt | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED) | Pin Name ⁽⁴⁾ | Pin
Type | Buffer
Type | PPS | Description | |---|-------------|----------------|-----|--| | U2CTS | - 1 | ST | No | UART2 Clear-To-Send. | | U2RTS | 0 | _ | No | UART2 Ready-To-Send. | | U2RX | - 1 | ST | Yes | UART2 receive. | | U2TX | 0 | _ | Yes | UART2 transmit. | | BCLK2 | 0 | ST | No | UART2 IrDA [®] baud clock output. | | SCK1 | I/O | ST | No | Synchronous serial clock input/output for SPI1. | | SDI1 | I | ST | No | SPI1 data in. | | SDO1 | 0 | _ | No | SPI1 data out. | | SS1 | I/O | ST | No | SPI1 slave synchronization or frame pulse I/O. | | SCK2 | I/O | ST | Yes | Synchronous serial clock input/output for SPI2. | | SDI2 | I | ST | Yes | SPI2 data in. | | SDO2 | 0 | _ | Yes | SPI2 data out. | | SS2 | I/O | ST | Yes | SPI2 slave synchronization or frame pulse I/O. | | SCL1 | I/O | ST | No | Synchronous serial clock input/output for I2C1. | | SDA1 | I/O | ST | No | Synchronous serial data input/output for I2C1. | | ASCL1 | I/O | ST | No | Alternate synchronous serial clock input/output for I2C1. | | ASDA1 | I/O | ST | No | Alternate synchronous serial data input/output for I2C1. | | SCL2 | I/O | ST | No | Synchronous serial clock input/output for I2C2. | | SDA2 | I/O | ST | No | Synchronous serial data input/output for I2C2. | | ASCL2 | I/O | ST | No | Alternate synchronous serial clock input/output for I2C2. | | ASDA2 | I/O | ST | No | Alternate synchronous serial data input/output for I2C2. | | TMS ⁽⁵⁾ | - 1 | ST | No | JTAG Test mode select pin. | | TCK | I | ST | No | JTAG test clock input pin. | | TDI | I | ST | No | JTAG test data input pin. | | TDO | 0 | _ | No | JTAG test data output pin. | | C1RX ⁽²⁾ | - 1 | ST | Yes | ECAN1 bus receive pin. | | C1TX ⁽²⁾ | 0 | _ | Yes | ECAN1 bus transmit pin. | | FLT1 ⁽¹⁾ , FLT2 ⁽¹⁾ | - 1 | ST | Yes | PWM Fault Inputs 1 and 2. | | FLT3 ⁽¹⁾ , FLT4 ⁽¹⁾ | - 1 | ST | No | PWM Fault Inputs 3 and 4. | | FLT32 ^(1,3) | - 1 | ST | No | PWM Fault Input 32 (Class B Fault). | | DTCMP1-DTCMP3 ⁽¹⁾ | - 1 | ST | Yes | PWM Dead-Time Compensation Inputs 1 through 3. | | PWM1L-PWM3L ⁽¹⁾ | 0 | _ | No | PWM Low Outputs 1 through 3. | | PWM1H-PWM3H ⁽¹⁾ | 0 | _ | No | PWM High Outputs 1 through 3. | | SYNCI1 ⁽¹⁾ | - 1 | ST | Yes | PWM Synchronization Input 1. | | SYNCO1 ⁽¹⁾ | 0 | _ | Yes | PWM Synchronization Output 1. | | INDX1 ⁽¹⁾ | I | ST | Yes | Quadrature Encoder Index1 pulse input. | | HOME1 ⁽¹⁾ | - 1 | ST | Yes | Quadrature Encoder Home1 pulse input. | | QEA1 ⁽¹⁾ | - 1 | ST | Yes | Quadrature Encoder Phase A input in QEI1 mode. Auxiliary timer | | (4) | | | | external clock/gate input in Timer mode. | | QEB1 ⁽¹⁾ | I | ST | Yes | Quadrature Encoder Phase B input in QEI1 mode. Auxiliary timer | | ONTO 45 (1) | | | ., | external clock/gate input in Timer mode. | | CNTCMP1 ⁽¹⁾ | 0 | _ | Yes | Quadrature Encoder Compare Output 1. | Legend:CMOS = CMOS compatible input or output
ST = Schmitt Trigger input with CMOS levels
PPS = Peripheral Pin SelectAnalog = Analog input
O = Output
TTL = TTL input bufferP = Power
I = Input - Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only. - 2: This pin is available on dsPIC33EPXXXGP/MC50X devices only. - 3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information. - 4: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability. - 5: There is an internal pull-up resistor connected to the TMS pin when the JTAG interface is active. See the JTAGEN bit field in Table 27-2. **EXAMPLE 4-2: EXTENDED DATA SPACE (EDS) WRITE ADDRESS GENERATION** The paged memory scheme provides access to multiple 32-Kbyte windows in the EDS and PSV memory. The Data Space Page registers, DSxPAG, in combination with the upper half of the Data Space address, can provide up to 16 Mbytes of additional address space in the EDS and 8 Mbytes (DSRPAG only) of PSV address space. The paged data memory space is shown in Example 4-3. The Program Space (PS) can be accessed with a DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG. Writes to PS are not supported, so DSWPAG is dedicated to DS, including EDS only. The Data Space and EDS can be read from, and written to, using DSRPAG and DSWPAG, respectively. In addition, DMA transfers can be triggered by timers as well as external interrupts. Each DMA channel is unidirectional. Two DMA channels must be allocated to read and write to a peripheral. If more than one channel receives a request to transfer data, a simple fixed priority scheme based on channel number, dictates which channel completes the transfer and which channel, or channels, are left pending. Each DMA channel moves a block of data, after which, it generates an interrupt to the CPU to indicate that the block is available for processing. The DMA Controller provides these functional capabilities: - · Four DMA channels - Register Indirect with Post-Increment Addressing mode - Register Indirect without Post-Increment Addressing mode - Peripheral Indirect Addressing mode (peripheral generates destination address) - CPU interrupt after half or full block transfer complete - · Byte or word transfers - · Fixed priority channel arbitration - Manual (software) or automatic (peripheral DMA requests) transfer initiation - One-Shot or Auto-Repeat Block Transfer modes - Ping-Pong mode (automatic switch between two SRAM start addresses after each block transfer is complete) - DMA request for each channel can be selected from any supported interrupt source - Debug support features The peripherals that can utilize DMA are listed in Table 8-1. TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS | Peripheral to DMA Association | DMAxREQ Register
IRQSEL<7:0> Bits | DMAxPAD Register
(Values to Read from
Peripheral) | DMAxPAD Register
(Values to Write to
Peripheral) | |-------------------------------|--------------------------------------|---|--| | INT0 – External Interrupt 0 | 0000000 | _ | | | IC1 – Input Capture 1 | 0000001 | 0x0144 (IC1BUF) | _ | | IC2 – Input Capture 2 | 00000101 | 0x014C (IC2BUF) | _ | | IC3 – Input Capture 3 | 00100101 | 0x0154 (IC3BUF) | _ | | IC4 – Input Capture 4 | 00100110 | 0x015C (IC4BUF) | _ | | OC1 – Output Compare 1 | 00000010 | _ | 0x0906 (OC1R)
0x0904 (OC1RS) | | OC2 – Output Compare 2 | 00000110 | _ | 0x0910 (OC2R)
0x090E (OC2RS) | | OC3 – Output Compare 3 | 00011001 | _ | 0x091A (OC3R)
0x0918 (OC3RS) | | OC4 – Output Compare 4 | 00011010 | _ | 0x0924 (OC4R)
0x0922 (OC4RS) | | TMR2 – Timer2 | 00000111 | _ | _ | | TMR3 – Timer3 | 00001000 | _ | _ | | TMR4 – Timer4 | 00011011 | _ | _ | | TMR5 – Timer5 | 00011100 | _ | _ | | SPI1 Transfer Done | 00001010 | 0x0248 (SPI1BUF) | 0x0248 (SPI1BUF) | | SPI2 Transfer Done | 00100001 | 0x0268 (SPI2BUF) | 0x0268 (SPI2BUF) | | UART1RX – UART1 Receiver | 00001011 | 0x0226 (U1RXREG) | _ | | UART1TX – UART1 Transmitter | 00001100 | _ | 0x0224 (U1TXREG) | | UART2RX – UART2 Receiver | 00011110 | 0x0236 (U2RXREG) | _ | | UART2TX – UART2 Transmitter | 00011111 | _ | 0x0234 (U2TXREG) | | ECAN1 – RX Data Ready | 00100010 | 0x0440 (C1RXD) | _ | | ECAN1 – TX Data Request | 01000110 | _ | 0x0442 (C1TXD) | | ADC1 – ADC1 Convert Done | 00001101 | 0x0300 (ADC1BUF0) | _ | #### REGISTER 11-10: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18 | U-0 |--------|-----|-----|-----|-----|-----|-----|-------| | _ | _ | _ | _ | _ | | _ | _ | | bit 15 | | | | | | | bit 8 | | U-0 | R/W-0 |-------|-------|-------|-------|------------|-------|-------|-------| | _ | | | | U1RXR<6:0> | > | | | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-7 **Unimplemented:** Read as '0' bit 6-0 U1RXR<6:0>: Assign UART1 Receive (U1RX) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 : 0000001 = Input tied to CMP1 0000000 = Input tied to Vss #### REGISTER 11-11: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19 | U-0 |--------|-----|-----|-----|-----|-----|-----|-------| | _ | _ | _ | _ | _ | _ | _ | | | bit 15 | | | | | | | bit 8 | | U-0 | R/W-0 |-------|-------|-------|-------|-----------|-------|-------|-------| | _ | | | | U2RXR<6:0 | > | | | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-7 **Unimplemented:** Read as '0' bit 6-0 **U2RXR<6:0>:** Assign UART2 Receive (U2RX) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 • 0000001 = Input tied to CMP1 0000000 = Input tied to Vss #### 16.2 PWM Resources Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information. Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464 #### 16.2.1 KEY RESOURCES - "High-Speed PWM" (DS70645) in the "dsPIC33/PIC24 Family Reference Manual" - · Code Samples - · Application Notes - · Software Libraries - · Webinars - All Related "dsPIC33/PIC24 Family Reference Manual" Sections - · Development Tools #### REGISTER 16-7: PWMCONx: PWMx CONTROL REGISTER | HS/HC-0 | HS/HC-0 | HS/HC-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |------------------------|-----------------------|---------|--------|-------|--------|--------------------|---------------------| | FLTSTAT ⁽¹⁾ | CLSTAT ⁽¹⁾ | TRGSTAT | FLTIEN | CLIEN | TRGIEN | ITB ⁽²⁾ | MDCS ⁽²⁾ | | bit 15 | | | | | | | bit 8 | | R/W-0 | R/W-0 | R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |-------|-------|---------------------|-----|-------|----------------------|----------------------|--------------------| | DTC1 | DTC0 | DTCP ⁽³⁾ | _ | MTBS | CAM ^(2,4) | XPRES ⁽⁵⁾ | IUE ⁽²⁾ | | bit 7 | | | | | | | bit 0 | | Legend: | HC = Hardware Clearable bit | HS = Hardware Settable bit | | | |-------------------|-----------------------------|----------------------------|--------------------|--| | R = Readable bit | W = Writable bit | U = Unimplemented bit, rea | d as '0' | | | -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown | | bit 15 **FLTSTAT:** Fault Interrupt Status bit⁽¹⁾ 1 = Fault interrupt is pending 0 = No Fault interrupt is pending This bit is cleared by setting FLTIEN = 0. bit 14 CLSTAT: Current-Limit Interrupt Status bit⁽¹⁾ 1 = Current-limit interrupt is pending 0 = No current-limit interrupt is pending This bit is cleared by setting CLIEN = 0. bit 13 TRGSTAT: Trigger Interrupt Status bit 1 = Trigger interrupt is pending 0 = No trigger interrupt is pending This bit is cleared by setting TRGIEN = 0. bit 12 **FLTIEN:** Fault Interrupt Enable bit 1 = Fault interrupt is enabled 0 = Fault interrupt is disabled and the FLTSTAT bit is cleared bit 11 CLIEN: Current-Limit Interrupt Enable bit 1 = Current-limit interrupt is enabled 0 = Current-limit interrupt is disabled and the CLSTAT bit is cleared bit 10 **TRGIEN:** Trigger Interrupt Enable bit 1 = A trigger event generates an interrupt request 0 = Trigger event interrupts are disabled and the TRGSTAT bit is cleared bit 9 **ITB:** Independent Time Base Mode bit⁽²⁾ 1 = PHASEx register provides time base period for this PWM generator 0 = PTPER register provides timing for this PWM generator bit 8 MDCS: Master Duty Cycle Register Select bit⁽²⁾ 1 = MDC register provides duty cycle information for this PWM generator 0 = PDCx register provides duty cycle information for this PWM generator - Note 1: Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller. - 2: These bits should not be changed after the PWMx is enabled (PTEN = 1). - 3: DTC<1:0> = 11 for DTCP to be effective; otherwise, DTCP is ignored. - **4:** The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored. - 5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'. ## REGISTER 16-16: LEBCONX: PWMx LEADING-EDGE BLANKING CONTROL REGISTER | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | U-0 | U-0 | |--------|-------|-------|-------|----------|---------|-----|-------| | PHR | PHF | PLR | PLF | FLTLEBEN | CLLEBEN | _ | _ | | bit 15 | | | | | | | bit 8 | | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |-------|-----|--------------------|--------------------|-------|-------|-------|-------| | _ | _ | BCH ⁽¹⁾ | BCL ⁽¹⁾ | BPHH | BPHL | BPLH | BPLL | | bit 7 | | | | | | | bit 0 | | R = Readable bit | | W = Writable bit | W = Writable bit U = Unimplemented bit, read as '0' | | | | | | |------------------|-------------|---|---|----------------------------------|--|--|--|--| | -n = Value a | | | '1' = Bit is set '0' = Bit is cleared | | | | | | | -II – Value a | IT OIL | i - Dit is set | 0 - Dit is cleared | x = Bit is unknown | | | | | | bit 15 | 1 = Rising | MxH Rising Edge Trigger E
I edge of PWMxH will trigge
ng-Edge Blanking ignores ri | er Leading-Edge Blanking cour | nter | | | | | | bit 14 | 1 = Falling | MxH Falling Edge Trigger E
g edge of PWMxH will triggen
ng-Edge Blanking ignores fa | er Leading-Edge Blanking cou | nter | | | | | | bit 13 | 1 = Rising | MxL Rising Edge Trigger Er
edge of PWMxL will trigge
ng-Edge Blanking ignores ri | r Leading-Edge Blanking coun | iter | | | | | | bit 12 | 1 = Falling | MxL Falling Edge Trigger Er
g edge of PWMxL will trigge
ng-Edge Blanking ignores fa | er Leading-Edge Blanking cour | nter | | | | | | bit 11 | 1 = Leadii | N: Fault Input Leading-Edg
ng-Edge Blanking is applied
ng-Edge Blanking is not app | | | | | | | | bit 10 | 1 = Leadii | | lge Blanking Enable bit
If to selected current-limit input
plied to selected current-limit in | | | | | | | bit 9-6 | Unimplen | nented: Read as '0' | | | | | | | | bit 5 | 1 = State | nking in Selected Blanking s
blanking (of current-limit an
anking when selected blank | d/or Fault input signals) when | selected blanking signal is high | | | | | | bit 4 | 1 = State | nking in Selected Blanking S
blanking (of current-limit an
anking when selected blank | d/or Fault input signals) when | selected blanking signal is low | | | | | | bit 3 | 1 = State | anking in PWMxH High Ena
blanking (of current-limit an
anking when PWMxH outpu | d/or Fault input signals) when | PWMxH output is high | | | | | | bit 2 | 1 = State | anking in PWMxH Low Ena
blanking (of current-limit an
anking when PWMxH outpu | d/or Fault input signals) when | PWMxH output is low | | | | | | bit 1 | 1 = State | anking in PWMxL High Ena
blanking (of current-limit an
anking when PWMxL output | d/or Fault input signals) when | PWMxL output is high | | | | | | bit 0 | 1 = State | anking in PWMxL Low Enab
blanking (of current-limit an
anking when PWMxL output | d/or Fault input signals) when | PWMxL output is low | | | | | Note 1: The blanking signal is selected via the BLANKSELx bits in the AUXCONx register. Legend: ### REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED) bit 3 S: Start bit 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware is set or clear when a Start, Repeated Start or Stop is detected. bit 2 **R_W:** Read/Write Information bit (when operating as I²C slave) 1 = Read – Indicates data transfer is output from the slave 0 = Write - Indicates data transfer is input to the slave Hardware is set or clear after reception of an I²C device address byte. bit 1 RBF: Receive Buffer Full Status bit 1 = Receive is complete, I2CxRCV is full 0 = Receive is not complete, I2CxRCV is empty Hardware is set when I2CxRCV is written with a received byte. Hardware is clear when software reads I2CxRCV. bit 0 TBF: Transmit Buffer Full Status bit 1 = Transmit in progress, I2CxTRN is full 0 = Transmit is complete, I2CxTRN is empty Hardware is set when software writes to I2CxTRN. Hardware is clear at completion of a data transmission. ## REGISTER 21-6: CXINTF: ECANX INTERRUPT FLAG REGISTER (CONTINUED) bit 1 RBIF: RX Buffer Interrupt Flag bit 1 = Interrupt request has occurred0 = Interrupt request has not occurred bit 0 TBIF: TX Buffer Interrupt Flag bit 1 = Interrupt request has occurred0 = Interrupt request has not occurred #### REGISTER 21-11: CxFEN1: ECANx ACCEPTANCE FILTER ENABLE REGISTER 1 | R/W-1 |---------|---------|---------|---------|---------|---------|--------|--------| | FLTEN15 | FLTEN14 | FLTEN13 | FLTEN12 | FLTEN11 | FLTEN10 | FLTEN9 | FLTEN8 | | bit 15 | | | | | | | bit 8 | | R/W-1 |--------|--------|--------|--------|--------|--------|--------|--------| | FLTEN7 | FLTEN6 | FLTEN5 | FLTEN4 | FLTEN3 | FLTEN2 | FLTEN1 | FLTEN0 | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' x = Bit is unknown-n = Value at POR '1' = Bit is set '0' = Bit is cleared bit 15-0 FLTEN<15:0>: Enable Filter n to Accept Messages bits > 1 = Enables Filter n 0 = Disables Filter n #### REGISTER 21-12: CxBUFPNT1: ECANx FILTER 0-3 BUFFER POINTER REGISTER 1 | R/W-0 | |--------|-------|-------|-------|-----------|-------|-------|-------|--| | | F3BP< | <3:0> | | F2BP<3:0> | | | | | | bit 15 | | | | | | | bit 8 | | | R/W-0 |-------|-------|-------|-------|-----------|-------|-------|-------| | | F1BP< | <3:0> | | F0BP<3:0> | | | | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' '1' = Bit is set '0' = Bit is cleared -n = Value at POR x = Bit is unknown bit 15-12 F3BP<3:0>: RX Buffer Mask for Filter 3 bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14 0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0 F2BP<3:0>: RX Buffer Mask for Filter 2 bits (same values as bits<15:12>) bit 11-8 bit 7-4 F1BP<3:0>: RX Buffer Mask for Filter 1 bits (same values as bits<15:12>) bit 3-0 F0BP<3:0>: RX Buffer Mask for Filter 0 bits (same values as bits<15:12>) #### REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER (CONTINUED) ``` CH0SA<4:0>: Channel 0 Positive Input Select for Sample MUXA bits(1) bit 4-0 11111 = Open; use this selection with CTMU capacitive and time measurement 11110 = Channel 0 positive input is connected to the CTMU temperature measurement diode (CTMU TEMP) 11101 = Reserved 11100 = Reserved 11011 = Reserved 11010 = Channel 0 positive input is the output of OA3/AN6^(2,3) 11001 = Channel 0 positive input is the output of OA2/AN0⁽²⁾ 11000 = Channel 0 positive input is the output of OA1/AN3⁽²⁾ 10110 = Reserved 10000 = Reserved 01111 = Channel 0 positive input is AN15^(1,3) 01110 = Channel 0 positive input is AN14^(1,3) 01101 = Channel 0 positive input is AN13^(1,3) 00010 = Channel 0 positive input is AN2(1,3) 00001 = Channel 0 positive input is AN1^(1,3) 00000 = Channel 0 positive input is AN0^{(1,3)} ``` - Note 1: AN0 through AN7 are repurposed when comparator and op amp functionality is enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3. - 2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used. - **3:** See the "Pin Diagrams" section for the available analog channels for each device. TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED) | Base
Instr
| Assembly
Mnemonic | | Assembly Syntax | Description | # of
Words | # of
Cycles ⁽²⁾ | Status Flags
Affected | |--------------------|----------------------|--------|---|---|---------------|-------------------------------|--------------------------| | 25 | DAW | DAW | Wn | Wn = decimal adjust Wn | 1 | 1 | С | | 26 | DEC | DEC | f | f = f - 1 | 1 | 1 | C,DC,N,OV,Z | | | | DEC | f,WREG | WREG = f – 1 | 1 | 1 | C,DC,N,OV,Z | | | | DEC | Ws,Wd | Wd = Ws - 1 | 1 | 1 | C,DC,N,OV,Z | | 27 | DEC2 | DEC2 | f | f = f - 2 | 1 | 1 | C,DC,N,OV,Z | | | | DEC2 | f,WREG | WREG = f – 2 | 1 | 1 | C,DC,N,OV,Z | | | | DEC2 | Ws,Wd | Wd = Ws - 2 | 1 | 1 | C,DC,N,OV,Z | | 28 | DISI | DISI | #lit14 | Disable Interrupts for k instruction cycles | 1 | 1 | None | | 29 | DIV | DIV.S | Wm,Wn | Signed 16/16-bit Integer Divide | 1 | 18 | N,Z,C,OV | | | | DIV.SD | Wm,Wn | Signed 32/16-bit Integer Divide | 1 | 18 | N,Z,C,OV | | | | DIV.U | Wm,Wn | Unsigned 16/16-bit Integer Divide | 1 | 18 | N,Z,C,OV | | | | DIV.UD | Wm,Wn | Unsigned 32/16-bit Integer Divide | 1 | 18 | N,Z,C,OV | | 30 | DIVF | DIVF | _{Wm, Wn} (1) | Signed 16/16-bit Fractional Divide | 1 | 18 | N,Z,C,OV | | 31 | DO | DO | #lit15,Expr ⁽¹⁾ | Do code to PC + Expr, lit15 + 1 times | 2 | 2 | None | | | | DO | Wn, Expr(1) | Do code to PC + Expr, (Wn) + 1 times | 2 | 2 | None | | 32 | ED | ED | Wm*Wm, Acc, Wx, Wy, Wxd ⁽¹⁾ | Euclidean Distance (no accumulate) | 1 | 1 | OA,OB,OAB,
SA,SB,SAB | | 33 | EDAC | EDAC | Wm*Wm, Acc, Wx, Wy, Wxd ⁽¹⁾ | Euclidean Distance | 1 | 1 | OA,OB,OAB,
SA,SB,SAB | | 34 | EXCH | EXCH | Wns, Wnd | Swap Wns with Wnd | 1 | 1 | None | | 35 | FBCL | FBCL | Ws, Wnd | Find Bit Change from Left (MSb) Side | 1 | 1 | С | | 36 | FF1L | FF1L | Ws, Wnd | Find First One from Left (MSb) Side | 1 | 1 | С | | 37 | FF1R | FF1R | Ws, Wnd | Find First One from Right (LSb) Side | 1 | 1 | С | | 38 | GOTO | GOTO | Expr | Go to address | 2 | 4 | None | | | | GOTO | Wn | Go to indirect | 1 | 4 | None | | | | GOTO.L | Wn | Go to indirect (long address) | 1 | 4 | None | | 39 | INC | INC | f | f = f + 1 | 1 | 1 | C,DC,N,OV,Z | | | | INC | f,WREG | WREG = f + 1 | 1 | 1 | C,DC,N,OV,Z | | | | INC | Ws, Wd | Wd = Ws + 1 | 1 | 1 | C,DC,N,OV,Z | | 40 | INC2 | INC2 | f | f = f + 2 | 1 | 1 | C,DC,N,OV,Z | | | | INC2 | f,WREG | WREG = f + 2 | 1 | 1 | C,DC,N,OV,Z | | | | INC2 | Ws, Wd | Wd = Ws + 2 | 1 | 1 | C,DC,N,OV,Z | | 41 | IOR | IOR | f | f = f .IOR. WREG | 1 | 1 | N,Z | | | | IOR | f,WREG | WREG = f.IOR. WREG | 1 | 1 | N,Z | | | | IOR | #lit10,Wn | Wd = lit10 .IOR. Wd | 1 | 1 | N,Z | | | | IOR | Wb,Ws,Wd | Wd = Wb .IOR. Ws | 1 | 1 | N,Z | | | | IOR | Wb,#lit5,Wd | Wd = Wb .IOR. lit5 | 1 | 1 | N,Z | | 42 | LAC | LAC | Wso,#Slit4,Acc | Load Accumulator | 1 | 1 | OA,OB,OAB,
SA,SB,SAB | | 43 | LNK | LNK | #lit14 | Link Frame Pointer | 1 | 1 | SFA | | 44 | LSR | LSR | f | f = Logical Right Shift f | 1 | 1 | C,N,OV,Z | | | | LSR | f,WREG | WREG = Logical Right Shift f | 1 | 1 | C,N,OV,Z | | | | LSR | Ws,Wd | Wd = Logical Right Shift Ws | 1 | 1 | C,N,OV,Z | | | | LSR | Wb, Wns, Wnd | Wnd = Logical Right Shift Wb by Wns | 1 | 1 | N,Z | | | | LSR | Wb,#lit5,Wnd | Wnd = Logical Right Shift Wb by lit5 | 1 | 1 | N,Z | | 45 | MAC | MAC | Wm*Wn,Acc,Wx,Wxd,Wy,Wyd,AWB ⁽¹⁾ | Multiply and Accumulate | 1 | 1 | OA,OB,OAB,
SA,SB,SAB | | | | MAC | Wm*Wm, Acc, Wx, Wxd, Wy, Wyd ⁽¹⁾ | Square and Accumulate | 1 | 1 | OA,OB,OAB,
SA,SB,SAB | Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only. ^{2:} Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle. TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED) | Base
Instr
| Assembly
Mnemonic | | Assembly Syntax | Description | # of
Words | # of
Cycles ⁽²⁾ | Status Flags
Affected | |--------------------|----------------------|--------|-------------------------------|---|---------------|-------------------------------|--------------------------| | 53 | NEG | NEG | Acc(1) | Negate Accumulator | 1 | 1 | OA,OB,OAB,
SA,SB,SAB | | | | NEG | f | f = - - - - - - - - 1 | 1 | 1 | C,DC,N,OV,Z | | | | NEG | f,WREG | WREG = 1 + 1 | 1 | 1 | C,DC,N,OV,Z | | | | NEG | Ws,Wd | $Wd = \overline{Ws} + 1$ | 1 | 1 | C,DC,N,OV,Z | | 54 | NOP | NOP | | No Operation | 1 | 1 | None | | | | NOPR | | No Operation | 1 | 1 | None | | 55 | POP | POP | f | Pop f from Top-of-Stack (TOS) | 1 | 1 | None | | | | POP | Wdo | Pop from Top-of-Stack (TOS) to Wdo | 1 | 1 | None | | | | POP.D | Wnd | Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1) | 1 | 2 | None | | | | POP.S | | Pop Shadow Registers | 1 | 1 | All | | 56 | PUSH | PUSH | f | Push f to Top-of-Stack (TOS) | 1 | 1 | None | | | | PUSH | Wso | Push Wso to Top-of-Stack (TOS) | 1 | 1 | None | | | | PUSH.D | Wns | Push W(ns):W(ns + 1) to Top-of-Stack (TOS) | 1 | 2 | None | | | | PUSH.S | | Push Shadow Registers | 1 | 1 | None | | 57 | PWRSAV | PWRSAV | #lit1 | Go into Sleep or Idle mode | 1 | 1 | WDTO,Sleep | | 58 | RCALL | RCALL | Expr | Relative Call | 1 | 4 | SFA | | | | RCALL | Wn | Computed Call | 1 | 4 | SFA | | 59 | REPEAT | REPEAT | #lit15 | Repeat Next Instruction lit15 + 1 times | 1 | 1 | None | | | | REPEAT | Wn | Repeat Next Instruction (Wn) + 1 times | 1 | 1 | None | | 60 | RESET | RESET | | Software device Reset | 1 | 1 | None | | 61 | RETFIE | RETFIE | | Return from interrupt | 1 | 6 (5) | SFA | | 62 | RETLW | RETLW | #lit10,Wn | Return with literal in Wn | 1 | 6 (5) | SFA | | 63 | RETURN | RETURN | | Return from Subroutine | 1 | 6 (5) | SFA | | 64 | RLC | RLC | f | f = Rotate Left through Carry f | 1 | 1 | C,N,Z | | | | RLC | f,WREG | WREG = Rotate Left through Carry f | 1 | 1 | C,N,Z | | | | RLC | Ws,Wd | Wd = Rotate Left through Carry Ws | 1 | 1 | C,N,Z | | 65 | RLNC | RLNC | f | f = Rotate Left (No Carry) f | 1 | 1 | N,Z | | | | RLNC | f,WREG | WREG = Rotate Left (No Carry) f | 1 | 1 | N,Z | | | | RLNC | Ws,Wd | Wd = Rotate Left (No Carry) Ws | 1 | 1 | N,Z | | 66 | RRC | RRC | f | f = Rotate Right through Carry f | 1 | 1 | C,N,Z | | | | RRC | f,WREG | WREG = Rotate Right through Carry f | 1 | 1 | C,N,Z | | | | RRC | Ws,Wd | Wd = Rotate Right through Carry Ws | 1 | 1 | C,N,Z | | 67 | RRNC | RRNC | f | f = Rotate Right (No Carry) f | 1 | 1 | N,Z | | | | RRNC | f,WREG | WREG = Rotate Right (No Carry) f | 1 | 1 | N,Z | | | | RRNC | Ws,Wd | Wd = Rotate Right (No Carry) Ws | 1 | 1 | N,Z | | 68 | SAC | SAC | Acc, #Slit4, Wdo(1) | Store Accumulator | 1 | 1 | None | | | | SAC.R | Acc,#Slit4,Wdo ⁽¹⁾ | Store Rounded Accumulator | 1 | 1 | None | | 69 | SE | SE | Ws, Wnd | Wnd = sign-extended Ws | 1 | 1 | C,N,Z | | 70 | SETM | SETM | f | f = 0xFFFF | 1 | 1 | None | | | | SETM | WREG | WREG = 0xFFFF | 1 | 1 | None | | | | SETM | Ws | Ws = 0xFFFF | 1 | 1 | None | | 71 | SFTAC | SFTAC | Acc, Wn(1) | Arithmetic Shift Accumulator by (Wn) | 1 | 1 | OA,OB,OAB,
SA,SB,SAB | | | | SFTAC | Acc,#Slit6 ⁽¹⁾ | Arithmetic Shift Accumulator by Slit6 | 1 | 1 | OA,OB,OAB,
SA,SB,SAB | Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only. ^{2:} Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle. FIGURE 30-15: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS TABLE 30-34: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS | AC CHARACTERISTICS | | | Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industri $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extendition of the condition conditio | | | | | | |--------------------|-----------------------|---|---|---------------------|------|-------|-----------------------------|--| | Param. | Symbol | Characteristic ⁽¹⁾ | Min. | Typ. ⁽²⁾ | Max. | Units | Conditions | | | SP10 | FscP | Maximum SCK2 Frequency | _ | _ | 15 | MHz | (Note 3) | | | SP20 | TscF | SCK2 Output Fall Time | _ | _ | _ | ns | See Parameter DO32 (Note 4) | | | SP21 | TscR | SCK2 Output Rise Time | _ | _ | _ | ns | See Parameter DO31 (Note 4) | | | SP30 | TdoF | SDO2 Data Output Fall Time | _ | _ | _ | ns | See Parameter DO32 (Note 4) | | | SP31 | TdoR | SDO2 Data Output Rise Time | _ | _ | _ | ns | See Parameter DO31 (Note 4) | | | SP35 | TscH2doV,
TscL2doV | SDO2 Data Output Valid after SCK2 Edge | _ | 6 | 20 | ns | | | | SP36 | TdiV2scH,
TdiV2scL | SDO2 Data Output Setup to First SCK2 Edge | 30 | _ | _ | ns | | | - **Note 1:** These parameters are characterized, but are not tested in manufacturing. - 2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. - **3:** The minimum clock period for SCK2 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification. - 4: Assumes 50 pF load on all SPI2 pins. FIGURE 30-19: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS # 28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging RECOMMENDED LAND PATTERN | | Units | | MILLIM | ETERS | |----------------------------|--------|------|----------|-------| | Dimension | Limits | MIN | NOM | MAX | | Contact Pitch | Е | | 0.65 BSC | | | Optional Center Pad Width | W2 | | | 4.70 | | Optional Center Pad Length | T2 | | | 4.70 | | Contact Pad Spacing | C1 | | 6.00 | | | Contact Pad Spacing | C2 | | 6.00 | | | Contact Pad Width (X28) | X1 | | | 0.40 | | Contact Pad Length (X28) | Y1 | | | 0.85 | | Distance Between Pads | G | 0.25 | | | #### Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing No. C04-2124A # 44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Microchip Technology Drawing C04-157C Sheet 1 of 2 | TyCON (Timer3 and Timer5 Control) | 211 | Input Capture x (ICx) | 420 | |--|---------|---|-----| | UxMODE (UARTx Mode) | | OCx/PWMx | | | UxSTA (UARTx Status and Control) | | Output Compare x (OCx) | | | VEL1CNT (Velocity Counter 1) | | QEA/QEB Input | | | Resets | | QEI Module Index Pulse | | | Brown-out Reset (BOR) | | SPI1 Master Mode (Full-Duplex, CKE = 0, | | | Configuration Mismatch Reset (CM) | 123 | CKP = x, SMP = 1) | 441 | | Illegal Condition Reset (IOPUWR) | | SPI1 Master Mode (Full-Duplex, CKE = 1, | | | Illegal Opcode | | CKP = x, SMP = 1) | 440 | | Security | | SPI1 Master Mode (Half-Duplex, Transmit Only, | | | Uninitialized W Register | | CKE = 0) | 438 | | Master Clear (MCLR) Pin Reset | | SPI1 Master Mode (Half-Duplex, Transmit Only, | | | Power-on Reset (POR) | | CKE = 1) | 439 | | RESET Instruction (SWR) | | SPI1 Slave Mode (Full-Duplex, CKE = 0, | | | Resources | | CKP = 0, SMP = 0) | 448 | | Trap Conflict Reset (TRAPR) | | SPI1 Slave Mode (Full-Duplex, CKE = 0, | | | Watchdog Timer Time-out Reset (WDTO) | | CKP = 1, SMP = 0) | 446 | | Resources Required for Digital PFC | | SPI1 Slave Mode (Full-Duplex, CKE = 1, | 440 | | Revision History | | CKP = 0, SMP = 0) | 112 | | CONSIGNITING COLUMN | 507 | SPI1 Slave Mode (Full-Duplex, CKE = 1, | 472 | | S | | CKP = 1, SMP = 0) | 111 | | Serial Peripheral Interface (SPI) | 265 | SPI2 Master Mode (Full-Duplex, CKE = 0, | 444 | | Software Stack Pointer (SSP) | | | 420 | | Special Features of the CPU | | CKP = x, SMP = 1) | 429 | | SPI | 319 | SPI2 Master Mode (Full-Duplex, CKE = 1, | 420 | | Control Registers | 269 | CKP = x, SMP = 1) | 428 | | | | SPI2 Master Mode (Half-Duplex, Transmit Only, | 400 | | Helpful Tips
Resources. | | CKE = 0) | 426 | | Resources | 201 | SPI2 Master Mode (Half-Duplex, Transmit Only, | 407 | | Г | | CKE = 1) | 427 | | Temperature and Voltage Specifications | | SPI2 Slave Mode (Full-Duplex, CKE = 0, | 400 | | AC | 112 171 | CKP = 0, SMP = 0) | 436 | | | | SPI2 Slave Mode (Full-Duplex, CKE = 0, | | | Thermal Operating Conditions | | CKP = 1, SMP = 0) | 434 | | Thermal Packaging Characteristics | | SPI2 Slave Mode (Full-Duplex, CKE = 1, | | | Fimer1 | | CKP = 0, SMP = 0) | 430 | | Control Register | | SPI2 Slave Mode (Full-Duplex, CKE = 1, | | | Resources | | CKP = 1, SMP = 0) | | | Timer2/3 and Timer4/5 | | Timer1-Timer5 External Clock | | | Control Registers | | TimerQ (QEI Module) External Clock | | | Resources | 209 | UARTx I/O | 454 | | Timing Diagrams | | U | | | 10-Bit ADC Conversion (CHPS<1:0> = 01, | | | | | SIMSAM = 0, $ASAM = 0$, $SSRC < 2:0 > = 00$ | | Universal Asynchronous Receiver | | | SSRCG = 0) | 464 | Transmitter (UART) | | | 10-Bit ADC Conversion (CHPS<1:0> = 01, | | Control Registers | | | SIMSAM = 0, ASAM = 1, SSRC<2:0> = 11 | | Helpful Tips | | | SSRCG = 0, SAMC<4:0> = 00010) | 464 | Resources | 282 | | 12-Bit ADC Conversion (ASAM = 0, | | User ID Words | 384 | | SSRC<2:0> = 000, SSRCG = 0) | | V | | | BOR and Master Clear Reset | | | | | ECANx I/O | | Voltage Regulator (On-Chip) | 384 | | External Clock | | W | | | High-Speed PWMx Fault | | •• | | | High-Speed PWMx Module | | Watchdog Timer (WDT) | | | I/O Characteristics | 416 | Programming Considerations | | | I2Cx Bus Data (Master Mode) | | WWW Address | 524 | | I2Cx Bus Data (Slave Mode) | 452 | WWW, On-Line Support | 23 | | I2Cx Bus Start/Stop Bits (Master Mode) | | | | | I2Cx Bus Start/Stop Bits (Slave Mode) | | | | ### PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.