

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	8K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep128mc206-h-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

6.1 Reset Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

6.1.1 KEY RESOURCES

- "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR ⁽¹⁾	OVBERR ⁽¹⁾	COVAERR ⁽¹⁾	COVBERR ⁽¹⁾	OVATE ⁽¹⁾	OVBTE ⁽¹⁾	COVTE ⁽¹⁾
bit 15							bit 8
r							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR ⁽¹) DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0
[
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpleme	ented bit, read a	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unk	nown
bit 15	NSTDIS: Inte	errupt Nesting	Disable bit				
	\perp = Interrupt	nesting is disa	ibled				
bit 14	OVAFRR: A	ccumulator A (Overflow Trap F	lag bit(1)			
2	1 = Trap was	s caused by ov	erflow of Accur	nulator A			
	0 = Trap was	s not caused b	y overflow of A	ccumulator A			
bit 13	OVBERR: A	ccumulator B (Overflow Trap F	lag bit ⁽¹⁾			
	1 = Trap was	s caused by ow	erflow of Accur	nulator B			
	0 = Irap was	s not caused b	y overflow of A	ccumulator B	(1)		
bit 12	COVAERR:	Accumulator A	Catastrophic (Jverflow Trap FI	ag bit("		
	1 = Trap was 0 = Trap was	s not caused by ca	v catastrophic over	overflow of Accu	mulator A		
bit 11	COVBERR:	Accumulator E	Catastrophic (Overflow Trap Fl	ag bit ⁽¹⁾		
	1 = Trap was	s caused by ca	tastrophic over	flow of Accumul	ator B		
	0 = Trap was	s not caused b	y catastrophic o	overflow of Accu	mulator B		
bit 10	OVATE: Acc	umulator A Ov	erflow Trap En	able bit ⁽¹⁾			
	1 = Trap ove	rflow of Accun	nulator A				
hit 0			orflow Tran En	able bit(1)			
DIL 9	1 = Tran ove	rflow of Accun	nulator B				
	0 = Trap is d	isabled					
bit 8	COVTE: Cat	astrophic Ove	rflow Trap Enat	ole bit ⁽¹⁾			
	1 = Trap on o	catastrophic ov	erflow of Accu	mulator A or B is	s enabled		
	0 = Trap is d	isabled					
bit 7	SFTACERR:	Shift Accumu	lator Error Statu	us bit ⁽¹⁾			
	1 = Math erro	or trap was ca or trap was po	used by an inva t caused by an	alid accumulator	shift ator shift		
hit 6		ivide-hv-Zero	Error Status bit				
bit o	1 = Math erro	or trap was ca	used by a divide	e-bv-zero			
	0 = Math erro	or trap was no	t caused by a d	ivide-by-zero			
bit 5	DMACERR:	DMAC Trap F	lag bit				
	1 = DMAC tr	ap has occurre	ed				
	0 = DMAC tr	ap has not occ	curred				
Note 1: The	ese bits are ava	ailable on dsPl	C33EPXXXMC	20X/50X and de	PIC33EPXXX	GP50X devices	s only.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—	—	—	—			
bit 15	bit 15 bit 8									
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0			
—	—	—	_	PPST3	PPST2	PPST1	PPST0			
bit 7							bit 0			

REGISTER 8-14: DMAPPS: DMA PING-PONG STATUS REGISTER

Legend:										
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'							
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 15-4	Unimple	mented: Read as '0'								
bit 3	PPST3: [PPST3: DMA Channel 3 Ping-Pong Mode Status Flag bit								
	1 = DMA	STB3 register is selected								
	0 = DMA	0 = DMASTA3 register is selected								
bit 2	PPST2: [PST2: DMA Channel 2 Ping-Pong Mode Status Flag bit								
	1 = DMA	STB2 register is selected								
	0 = DMA	STA2 register is selected								
bit 1	PPST1: [MA Channel 1 Ping-Pong	Mode Status Flag bit							

- 1 = DMASTB1 register is selected0 = DMASTA1 register is selected
- bit 0 PPST0: DMA Channel 0 Ping-Pong Mode Status Flag bit
 - 1 = DMASTB0 register is selected
 - 0 = DMASTA0 register is selected

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
		_	_	_	_	_	PLLDIV8
bit 15		·					bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
PLLDIV7	PLLDIV6	PLLDIV5	PLLDIV4	PLLDIV3	PLLDIV2	PLLDIV1	PLLDIV0
bit 7		·					bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, rea		d as '0'	
-n = Value at F	POR	'1' = Bit is set	1' = Bit is set		ared	x = Bit is unknown	
bit 15-9	Unimplemen	ted: Read as '	0'				
bit 8-0	PLLDIV<8:0	>: PLL Feedba	ck Divisor bits	(also denoted	as 'M', PLL mu	ltiplier)	
	111111111	= 513					
	•						
	•						
	•						
	000110000:	= 50 (default)					
	•						
	•						
	•						
	00000010:	= 4					
	000000001	= 3 = 2					
	0000000000000	-					

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0
			DMA0MD ⁽¹⁾				
_	_	_	DMA1MD ⁽¹⁾	PTGMD	_	_	_
			DMA2MD ⁽¹⁾	1 TOME			
			DMA3MD ⁽¹⁾				
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-5	Unimplement	ted: Read as '	D'				
bit 4	DMA0MD: DN	/A0 Module Di	sable bit ⁽¹⁾				
	1 = DMA0 mo	dule is disable	d				
	0 = DMA0 mo	dule is enable	d 				
	DMA1MD: DN	/A1 Module Di	sable bit(")				
	1 = DMA1 mo 0 = DMA1 mo	dule is disable	d d				
			sable bit(1)				
	1 = DMA2 mo	dule is disable	d				
	0 = DMA2 mo	dule is enable	d				
	DMA3MD: DN	/A3 Module Di	sable bit ⁽¹⁾				
	1 = DMA3 mo	dule is disable	d				
	0 = DMA3 mo	dule is enable	b				
bit 3	PTGMD: PTG	Module Disab	le bit				
	1 = PTG mod	ule is disabled					
	$0 = PIG \mod 1$	uie is enabled	-1				
DIT 2-0	Unimplement	tea: Read as '	J.				
Note 1: Th	nis single bit ena	ables and disat	oles all four DM	A channels.			

REGISTER 10-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7

13.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter
- They also support these features:
- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (32-bit timer pairs, and Timer3 and Timer5 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, and T4CON, T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1. T3CON and T5CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (lsw); Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

A block diagram for an example 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 13-3.

Note: Only Timer2, 3, 4 and 5 can trigger a DMA data transfer.

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is cleared only by software
- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits
 - 111 = Center-Aligned PWM mode: Output set high when OCxTMR = OCxR and set low when OCxTMR = OCxRS⁽¹⁾
 - 110 = Edge-Aligned PWM mode: Output set high when OCxTMR = 0 and set low when OCxTMR = OCxR⁽¹⁾
 - 101 = Double Compare Continuous Pulse mode: Initializes OCx pin low, toggles OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initializes OCx pin low, toggles OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare mode: Compare event with OCxR, continuously toggles OCx pin
 - 010 = Single Compare Single-Shot mode: Initializes OCx pin high, compare event with OCxR, forces OCx pin low
 - 001 = Single Compare Single-Shot mode: Initializes OCx pin low, compare event with OCxR, forces OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: OCxR and OCxRS are double-buffered in PWM mode only.
 - 2: Each Output Compare x module (OCx) has one PTG clock source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.
 - PTGO4 = OC1 PTGO5 = OC2
 - PTGO6 = OC3 PTGO7 = OC4

16.2 PWM Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

16.2.1 KEY RESOURCES

- "High-Speed PWM" (DS70645) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			PTPE	R<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
			PTPE	:R<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bi	t	U = Unimpler	mented bit, read	d as '0'	

'0' = Bit is cleared

x = Bit is unknown

REGISTER 16-3: PTPER: PWMx PRIMARY MASTER TIME BASE PERIOD REGISTER

bit 15-0 **PTPER<15:0>:** Primary Master Time Base (PMTMR) Period Value bits

'1' = Bit is set

REGISTER 16-4: SEVTCMP: PWMx PRIMARY SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVTO	CMP<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVT	CMP<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplemented bit, read as '0'			
-n = Value at F	n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is ur		x = Bit is unkı	nown			

bit 15-0 SEVTCMP<15:0>: Special Event Compare Count Value bits

-n = Value at POR

20.1 UART Helpful Tips

- 1. In multi-node, direct-connect UART networks, receive inputs UART react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the Idle state, the default of which is logic high (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a Start bit detection and will cause the first byte received, after the device has been initialized, to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.
- 2. The first character received on a wake-up from Sleep mode caused by activity on the UxRX pin of the UARTx module will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock, relative to the incoming UxRX bit timing, is no longer synchronized, resulting in the first character being invalid; this is to be expected.

20.2 UART Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

20.2.1 KEY RESOURCES

- "UART" (DS70582) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0		
EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0		—		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15	EDG1MOD: E	Edge 1 Edge Sa	ampling Mode	Selection bit					
	1 = Edge 1 is	edge-sensitive	9						
h:+ 4 4		s level-sensitive							
DIT 14	EDG1POL: E	dge 1 Polarity	Select Dit	dao roopopoo					
	1 = Edge 1 is $0 = Edge 1$ is	s programmed f	or a positive e	edae response					
bit 13-10	EDG1SEL<3:	:0>: Edae 1 So	urce Select bits	3					
	1xxx = Rese	rved							
	01xx = Reser	rved							
	0011 = CTED)1 pin							
	00010 = CTEL	module							
	0000 = Timer	1 module							
bit 9	EDG2STAT: E	Edge 2 Status b	it						
	Indicates the	status of Edge	2 and can be v	vritten to contro	ol the edge sou	rce.			
	1 = Edge 2h	as occurred	J						
hit Q] ;+						
DILO	EDGISIAI: E	status of Edge	il 1 and can be y	written to contro	the edge sou	rce			
	1 = Edge 1 has occurred								
	0 = Edge 1 h	as not occurred	t						
bit 7	EDG2MOD: E	Edge 2 Edge Sa	ampling Mode	Selection bit					
	1 = Edge 2 is	edge-sensitive	9						
	0 = Edge 2 is	s level-sensitive							
bit 6	EDG2POL: E	dge 2 Polarity	Select bit						
	1 = Edge 2 Is 0 = Edge 2 is	s programmed i	or a positive e	age response					
bit 5-2	EDG2SEL<3:	:0>: Edge 2 So	urce Select bits	8					
	1111 = Reser	rved		-					
	01xx = Reser	rved							
	0100 = CMP1	1 module							
	0011 = CIEL 0010 = CTFF	o∠ pin)1 pin							
	0001 = OC1	module							
	0000 = IC1 m	nodule							
bit 1-0	Unimplemen	ted: Read as ')'						

REGISTER 22-2: CTMUCON2: CTMU CONTROL REGISTER 2

REGISTER 23-5: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	CH123NB1	CH123NB0	CH123SB
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0

0-0	0-0	0-0	0-0	0-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	CH123NA1	CH123NA0	CH123SA
bit 7							bit 0

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'

bit 10-9

CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample MUXB bits

In 12-bit mode (AD21B = 1), CH123NB is Unimplemented and is Read as '0':

Value		ADC Channel	
value	CH1	CH2	CH3
11	AN9	AN10	AN11
10 (1,2)	OA3/AN6	AN7	AN8
0x	VREFL	VREFL	VREFL

bit 8 **CH123SB:** Channel 1, 2, 3 Positive Input Select for Sample MUXB bit In 12-bit mode (AD21B = 1), CH123SB is Unimplemented and is Read as '0':

Value	ADC Channel							
value	CH1 CH2 CH3							
1 (2)	OA1/AN3	OA2/AN0	OA3/AN6					
0 (1,2)	OA2/AN0	AN1	AN2					

bit 7-3 Unimplemented: Read as '0'

bit 2-1 **CH123NA<1:0>:** Channel 1, 2, 3 Negative Input Select for Sample MUXA bits In 12-bit mode (AD21B = 1), CH123NA is Unimplemented and is Read as '<u>0</u>':

Value	ADC Channel						
value	CH1	CH2	CH3				
11	AN9	AN10	AN11				
10 (1,2)	OA3/AN6	AN7	AN8				
0x	VREFL	VREFL	VREFL				

- **Note 1:** AN0 through AN7 are repurposed when comparator and op amp functionality is enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB		_	CH0SB4 ⁽¹⁾	CH0SB3 ⁽¹⁾	CH0SB2 ⁽¹⁾	CH0SB1 ⁽¹⁾	CH0SB0 ⁽¹⁾
bit 15		·		•			bit 8
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA			CH0SA4 ⁽¹⁾	CH0SA3 ⁽¹⁾	CH0SA2 ⁽¹⁾	CH0SA1 ⁽¹⁾	CH0SA0 ⁽¹⁾
bit 7		•		•	•	•	bit 0
Legend:							
R = Read	able bit	W = Writable b	oit	U = Unimpler	nented bit, read	as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	CH0NB: Cha	nnel 0 Negative	Input Select fo	r Sample MUX	B bit		
	1 = Channel (0 negative input	is AN1 ⁽¹⁾				
	0 = Channel (0 negative input	i s Vrefl				
bit 14-13	Unimplemen	ted: Read as '0'	,				
bit 12-8	CH0SB<4:0>	Channel 0 Pos	itive Input Sele	ect for Sample	MUXB bits ⁽¹⁾		
	11111 = Ope	en; use this selec	tion with CTM	J capacitive ar	nd time measure	ement	
	11110 = Cha	nnel 0 positive inp	out is connected	to the CTMU te	emperature mea	surement diode	(CTMU TEMP)
	11101 = Res	erved					
	11011 = Res	erved					
	11010 = Cha	innel 0 positive ir	nput is the outp	out of OA3/AN6	₆ (2,3)		
	11001 = Cha	innel 0 positive ir	nput is the outp	out of OA2/AN)(2) (2)		
	11000 = Cha	innel 0 positive ir	nput is the outp	out of OA1/AN3	3(2)		
	•	erveu					
	•						
	•						
	10000 = Res	erved	anutia ANIZ (3)				
	01111 = Cha	innel 0 positive ir innel 0 positive ir	$\frac{1901 \text{ is AN 15}}{1001 \text{ is AN 14}}$				
	01101 = Cha	innel 0 positive ir	nput is AN13 ⁽³⁾				
	•						
	•						
	• $00010 = Cha$	innel () nositive ir	Dout is ANI2(3)				
	00001 = Cha	innel 0 positive ir	nput is AN1 ⁽³⁾				
	00000 = Cha	innel 0 positive ir	nput is AN0 ⁽³⁾				
bit 7	CH0NA: Cha	nnel 0 Negative	Input Select fo	r Sample MUX	A bit		
	1 = Channel (0 negative input	is AN1 ⁽¹⁾				
	0 = Channel (0 negative input	i s Vrefl				
bit 6-5	Unimplemen	ted: Read as '0'	,				
Note 1:	AN0 through AN to determine ho	17 are repurpose w enabling a par	ed when compa ticular op amp	rator and op a or comparator	mp functionality affects selection	v is enabled. Se on choices for C	e Figure 23-1 hannels 1, 2
2:	The OAx input is	s used if the corr	responding on a	amp is selecte	d (OPMODF (C	MxCON<10>) =	= 1):

REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

3: See the "**Pin Diagrams**" section for the available analog channels for each device.

otherwise, the ANx input is used.

R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
CSS31	CSS30		—	_	CSS26 ⁽²⁾	CSS25 ⁽²⁾	CSS24 ⁽²⁾
bit 15				•			bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_				—			
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable b	pit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	CSS31: ADC	1 Input Scan Se	election bit				
	1 = Selects C	TMU capacitive	and time me	asurement for	input scan (Ope	en)	
	0 = Skips CTI	MU capacitive a	ind time meas	surement for in	put scan (Open)	
bit 14	CSS30: ADC	1 Input Scan Se	election bit				
	1 = Selects C 0 = Skips CTI	TMU on-chip te MU on-chip tem	mperature mea	easurement fo surement for i	r input scan (CT nput scan (CTM	MU TEMP) IU TEMP)	
bit 13-11	Unimplemen	ted: Read as '0)'				
bit 10	CSS26: ADC	1 Input Scan Se	election bit ⁽²⁾				
	1 = Selects O	A3/AN6 for inpu	ut scan				
	0 = Skips OA	3/AN6 for input	scan				
bit 9	CSS25: ADC	1 Input Scan Se	election bit ⁽²⁾				
	1 = Selects O	A2/AN0 for inpu	ut scan				
	0 = Skips OA	2/AN0 for input	scan				
bit 8	CSS24: ADC	1 Input Scan Se	election bit ⁽²⁾				
	1 = Selects O 0 = Skips OA	A1/AN3 for input 1/AN3 for input	ut scan scan				
bit 7-0	Unimplemen	ted: Read as 'o)'				
Note 1: A	II AD1CSSH bits prresponding inpu	can be selected ut on the device	d by user softw , convert VRE	vare. However _{FL.}	r, inputs selecte	d for scan, with	out a

REGISTER 23-7: AD1CSSH: ADC1 INPUT SCAN SELECT REGISTER HIGH⁽¹⁾

2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.

REGISTER 24-8: PTGC1LIM: PTG COUNTER 1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC1L	IM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGC1L	_IM<7:0>			
bit 7							bit 0
Logond							

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGC1LIM<15:0>:** PTG Counter 1 Limit Register bits May be used to specify the loop count for the PTGJMPC1 Step command or as a limit register for the General Purpose Counter 1.

REGISTER 24-9: PTGHOLD: PTG HOLD REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGHOL	_D<15:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGHO	LD<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGHOLD<15:0>:** PTG General Purpose Hold Register bits Holds user-supplied data to be copied to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 registers with the PTGCOPY command.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Param No. Symbol Characteristic			Тур.	Max.	Units	Conditions	
Operati	Operating Voltage							
DC10	Vdd	Supply Voltage	3.0	_	3.6	V		
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	_	_	Vss	V		
DC17	Svdd	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.03	—	—	V/ms	0V-1V in 100 ms	

TABLE 30-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

TABLE 30-5: FILTER CAPACITOR (CEFC) SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated):Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.	Symbol	Characteristics Min. Typ. Max. Units Comments						
	Cefc	External Filter Capacitor Value ⁽¹⁾	4.7	10	_	μF	Capacitor must have a low series resistance (< 1 Ohm)	

Note 1: Typical VCAP voltage = 1.8 volts when VDD \geq VDDMIN.

30.2 AC Characteristics and Timing Parameters

This section defines dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X AC characteristics and timing parameters.

TABLE 30-15: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V					
	(unless otherwise stated)					
	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
AC CHARACTERISTICS	$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
	Operating voltage VDD range as described in Section 30.1 "DC					
	Characteristics".					

FIGURE 30-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 30-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	_	—	15	pF	In XT and HS modes, when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_		400	pF	In I ² C™ mode

TABLE 30-48:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK1 Input Frequency		_	11	MHz	(Note 3)	
SP72	TscF	SCK1 Input Fall Time	_		_	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCK1 Input Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time			_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	_	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{SS1}$ ↓ to SCK1 ↑ or SCK1 ↓ Input	120	Ι	—	ns		
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	(Note 4)	
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	—	_	ns	(Note 4)	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 91 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

1:128

70

Revision F (November 2012)

Removed "Preliminary" from data sheet footer.

Revision G (March 2013)

This revision includes the following global changes:

- changes "FLTx" pin function to "FLTx" on all occurrences
- adds Section 31.0 "High-Temperature Electrical Characteristics" for high-temperature (+150°C) data

This revision also includes minor typographical and formatting changes throughout the text.

Other major changes are referenced by their respective section in Table A-5.

Section Name	Update Description
Cover Section	 Changes internal oscillator specification to 1.0% Changes I/O sink/source values to 12 mA or 6 mA Corrects 44-pin VTLA pin diagram (pin 32 now shows as 5V tolerant)
Section 4.0 "Memory Organization"	 Deletes references to Configuration Shadow registers Corrects the spelling of the JTAGIP and PTGWDTIP bits throughout Corrects the Reset value of all IOCON registers as C000h Adds footnote to Table 4-42 to indicate the absence of Comparator 3 in 28-pin devices
Section 6.0 "Resets"	 Removes references to cold and warm Resets, and clarifies the initial configuration of the device clock source on all Resets
Section 7.0 "Interrupt Controller"	Corrects the definition of GIE as "Global Interrupt Enable" (not "General")
Section 9.0 "Oscillator Configuration"	 Clarifies the behavior of the CF bit when cleared in software Removes POR behavior footnotes from all control registers Corrects the tuning range of the TUN<5:0> bits in Register 9-4 to an overall range ±1.5%
Section 13.0 "Timer2/3 and Timer4/5"	Clarifies the presence of the ADC Trigger in 16-bit Timer3 and Timer5, as well as the 32-bit timers
Section 15.0 "Output Compare"	Corrects the first trigger source for SYNCSEL<4:0> (OCxCON2<4:0>) as OCxRS match
Section 16.0 "High-Speed PWM Module"	 Clarifies the source of the PWM interrupts in Figure 16-1 Corrects the Reset states of IOCONx<15:14> in Register 16-13 as '11'
Section 17.0 "Quadrature Encoder Interface (QEI) Module"	 Clarifies the operation of the IMV<1:0> bits (QEICON<9:8>) with updated text and additional notes Corrects the first prescaler value for QFVDIV<2:0> (QEI10C<13:11>), now 1:128
Section 23.0 "10-Bit/12-Bit Analog-to-Digital Converter (ADC)"	 Adds note to Figure 23-1 that Op Amp 3 is not available in 28-pin devices Changes "sample clock" to "sample trigger" in AD1CON1 (Register 23-1) Clarifies footnotes on op amp usage in Registers 23-5 and 23-6
Section 25.0 "Op Amp/ Comparator Module"	 Adds Note text to indicate that Comparator 3 is unavailable in 28-pin devices Splits Figure 25-1 into two figures for clearer presentation (Figure 25-1 for Op amp/ Comparators 1 through 3, Figure 25-2 for Comparator 4). Subsequent figures are renumbered accordingly. Corrects reference description in xxxxx (now (AVDD+AVss)/2) Changes CMSTAT<15> in Register 25-1 to "PSIDL"
Section 27.0 "Special Features"	Corrects the addresses of all Configuration bytes for 512 Kbyte devices

TABLE A-5: MAJOR SECTION UPDATES