

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

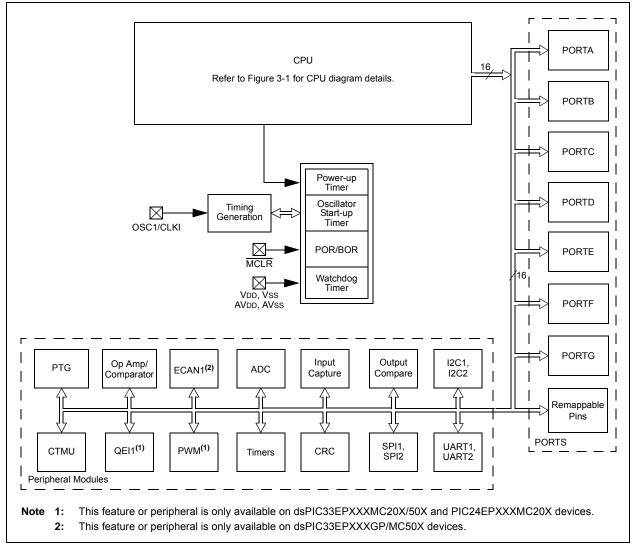
Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep256gp202-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X Digital Signal Controller (DSC) and Microcontroller (MCU) devices.

dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X BLOCK DIAGRAM

TABLE 4-33 :	PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY
---------------------	---

				-	-	-												
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	_				NT1R<6:0>					_	_	_	_		_	_	0000
RPINR1	06A2		—	—	-		-		-	-	INT2R<6:0>						0000	
RPINR3	06A6		_	_	_	_	_	_	_	_	T2CKR<6:0>							0000
RPINR7	06AE	_				IC2R<6:0>				—	IC1R<6:0>							0000
RPINR8	06B0	_		IC4R<6:0>						—	IC3R<6:0>							0000
RPINR11	06B6	_	_							—	OCFAR<6:0>							0000
RPINR12	06B8	_			l	=LT2R<6:0>				—				FLT1R<6:0>	`			0000
RPINR14	06BC	_			(QEB1R<6:0	>			—			(QEA1R<6:0>	>			0000
RPINR15	06BE	_			Н	OME1R<6:0)>			—	INDX1R<6:0>						0000	
RPINR18	06C4	_	_	_	—	_	_	_	_	—	U1RXR<6:0>						0000	
RPINR19	06C6	_	_	_	_	_	_	_	_	—	U2RXR<6:0>							0000
RPINR22	06CC	_		SCK2INR<6:0>						_				SDI2R<6:0>	•			0000
RPINR23	06CE	_							_	_				SS2R<6:0>				0000
RPINR37	06EA	_	SYNCI1R<6:0>							_	_	_	_	_	_	_	_	0000
RPINR38	06EC	_	DTCMP1R<6:0>							_						_	0000	
RPINR39	06EE	_			DT	CMP3R<6:	0>			—	DTCMP2R<6:0>						0000	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-56: PORTA REGISTER MAP FOR PIC24EPXXXGP/MC203 AND dsPIC33EPXXXGP/MC203/503 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_	_	_	_		_	_	TRISA8	_	—	—	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	011F
PORTA	0E02	_	_	_	_	_	_	_	RA8	_	_	_	RA4	RA3	RA2	RA1	RA0	0000
LATA	0E04	_	_	_	_	_	_	_	LATA8	_	_	_	LATA4	LATA3	LATA2	LA1TA1	LA0TA0	0000
ODCA	0E06	_	_	_	_	_	_	_	ODCA8	_	_	_	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
CNENA	0E08	_	_	_	_	_	_	_	CNIEA8	_	_	_	CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	0000
CNPUA	0E0A	_	_	_	_	_	_	_	CNPUA8	_	_	_	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
CNPDA	0E0C	_	_	_	_	_	_	_	CNPDA8	_	_	_	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
ANSELA	0E0E	_	—	_	—	_	—	_	—	_	—	—	ANSA4	—	—	ANSA1	ANSA0	0013

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-57: PORTB REGISTER MAP FOR PIC24EPXXXGP/MC203 AND dsPIC33EPXXXGP/MC203/503 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	0E16	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E	_	_	-	_	-	—	-	ANSB8	_	_	_	_	ANSB3	ANSB2	ANSB1	ANSB0	010F

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-58: PORTC REGISTER MAP FOR PIC24EPXXXGP/MC203 AND dsPIC33EPXXXGP/MC203/503 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	_	_	_	_	_	—	—	TRISC8	_	-		_		-	TRISC1	TRISC0	0103
PORTC	0E22			-	-	-	—	_	RC8	—	-		_			RC1	RC0	xxxx
LATC	0E24			_	_	_	_	_	LATC8	_	_	_	_	_	_	LATC1	LATC0	xxxx
ODCC	0E26			_	_	_	_	_	ODCC8	_	_	_	_	_	_	ODCC1	ODCC0	0000
CNENC	0E28	—	_	-	_		_	_	CNIEC8	—			_			CNIEC1	CNIEC0	0000
CNPUC	0E2A			_	_	_	_	_	CNPUC8	_	_	_	_	_	_	CNPUC1	CNPUC0	0000
CNPDC	0E2C			_	_	_	_	_	CNPDC8	_	_	_	_	_	_	CNPDC1	CNPDC0	0000
ANSELC	0E2E	-	_	_	_	_	—	—	—	—		_	_	_		ANSC1	ANSC0	0003

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_				_	—		—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	_	PPST3	PPST2	PPST1	PPST0
bit 7							bit 0

REGISTER 8-14: DMAPPS: DMA PING-PONG STATUS REGISTER

Legend:								
R = Readat	ole bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 15-4	Unimplo	mented: Read as '0'						
	•	DMA Channel 3 Ping-Pong I	Modo Status Elag bit					
1 = DMAS		ASTB3 register is selected ASTA3 register is selected	vioue Status Flag bit					
bit 2	1 = DMA	DMA Channel 2 Ping-Pong I ASTB2 register is selected ASTA2 register is selected	Mode Status Flag bit					
bit 1	PPST1:	DMA Channel 1 Ping-Pong I	Mode Status Flag bit					
		CTD1 register is calested						

- 1 = DMASTB1 register is selected0 = DMASTA1 register is selected
- bit 0 PPST0: DMA Channel 0 Ping-Pong Mode Status Flag bit
 - 1 = DMASTB0 register is selected
 - 0 = DMASTA0 register is selected

13.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter
- They also support these features:
- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (32-bit timer pairs, and Timer3 and Timer5 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, and T4CON, T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1. T3CON and T5CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (lsw); Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

A block diagram for an example 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 13-3.

Note: Only Timer2, 3, 4 and 5 can trigger a DMA data transfer.

REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER (CONTINUED)

bit 6-4	SYNCSRC<2:0>: Synchronous Source Selection bits ⁽¹⁾ 111 = Reserved 100 = Reserved
bit 3-0	100 = Reserved 011 = PTGO17 ⁽²⁾ 010 = PTGO16 ⁽²⁾ 001 = Reserved 000 = SYNCI1 input from PPS SEVTPS<3:0>: PWMx Special Event Trigger Output Postscaler Select bits ⁽¹⁾
	 1111 = 1:16 Postscaler generates Special Event Trigger on every sixteenth compare match event . <l< td=""></l<>
	0000 = 1:1 Postscaler generates Special Event Trigger on every second compare match event

- **Note 1:** These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the period register with a value that is slightly larger than the expected period of the external synchronization input signal.
 - 2: See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

REGISTE	R 16-7: PWMC	CONX: PWMX (CONTROL R	EGISTER					
HS/HC-	0 HS/HC-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
FLTSTAT	-(1) CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽²⁾	MDCS ⁽²⁾		
bit 15	·	•		÷			bit		
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
DTC1		DTCP ⁽³⁾	0-0	MTBS	CAM ^(2,4)	XPRES ⁽⁵⁾	IUE ⁽²⁾		
bit 7	DICO	DICE	_	INT DO	CAIM	AFRES'	bit		
							<u> </u>		
Legend:		HC = Hardware	Clearable bit	HS = Hardwa	are Settable bit				
R = Reada	able bit	W = Writable bi	t	U = Unimple	mented bit, rea	ıd as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown		
bit 15	ELTSTAT: ES	ult Interrupt Statu	is hit(1)						
DIL 15		rrupt is pending							
		interrupt is pendi	ng						
		ared by setting F							
bit 14		rent-Limit Interru	•						
		mit interrupt is pe							
		nt-limit interrupt is ared by setting C							
bit 13									
	TRGSTAT: Trigger Interrupt Status bit 1 = Trigger interrupt is pending								
		r interrupt is pen							
		ared by setting T							
bit 12		t Interrupt Enable	e bit						
		rrupt is enabled rrupt is disabled	and the FLTS	TAT bit is clear	ed				
bit 11		ent-Limit Interrup			cu .				
		mit interrupt is er							
		mit interrupt is di		e CLSTAT bit is	s cleared				
bit 10	TRGIEN: Trig	ger Interrupt En	able bit						
		event generates			T hit is cleared				
bit 9		vent interrupts ar dent Time Base I			i bit is cleared				
DIL 9				riad for this PM	VM generator				
		 1 = PHASEx register provides time base period for this PWM generator 0 = PTPER register provides timing for this PWM generator 							
bit 8	MDCS: Master Duty Cycle Register Select bit ⁽²⁾								
		ister provides du jister provides du				r			
Note 1:	Software must clea				-		t controller		
Note 1. 2:	These bits should	-		-	-	the interrup			
3:	DTC<1:0> = 11 fo	-		-	-				
4:	The Independent T CAM bit is ignored	Time Base (ITB =		•		igned mode. If	TTB = 0, the		
5:									

REGISTER 16-7: PWMCONx: PWMx CONTROL REGISTER

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

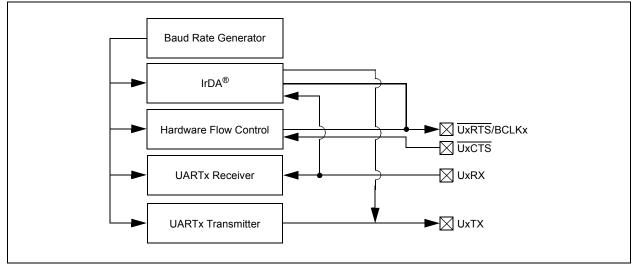
20.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "UART" (DS70582) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X family of devices contains two UART modules.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.

Note: <u>Hardware</u> flow control using UxRTS and UxCTS is not available on all pin count devices. See the "**Pin Diagrams**" section for availability.


The primary features of the UARTx module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 4.375 Mbps to 67 bps at 16x mode at 70 MIPS
- Baud Rates Ranging from 17.5 Mbps to 267 bps at 4x mode at 70 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- A Separate Interrupt for all UARTx Error Conditions
- · Loopback mode for Diagnostic Support
- · Support for Sync and Break Characters
- Support for Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UARTx module is shown in Figure 20-1. The UARTx module consists of these key hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 20-1: UARTx SIMPLIFIED BLOCK DIAGRAM

© 2011-2013 Microchip Technology Inc.

Legend: R = Readable	bit	C = Writable b W = Writable l			n to clear the bit mented bit, read		
bit 7							bit 0
IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
							2 0
bit 15							bit 8
_	—	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0

'0' = Bit is cleared

x = Bit is unknown

REGISTER 21-6: CxINTF: ECANx INTERRUPT FLAG REGISTER

'1' = Bit is set

bit 15-14	Unimplemented: Read as '0'
bit 13	TXBO: Transmitter in Error State Bus Off bit
	1 = Transmitter is in Bus Off state
	0 = Transmitter is not in Bus Off state
bit 12	TXBP: Transmitter in Error State Bus Passive bit
	1 = Transmitter is in Bus Passive state0 = Transmitter is not in Bus Passive state
bit 11	RXBP: Receiver in Error State Bus Passive bit
	1 = Receiver is in Bus Passive state 0 = Receiver is not in Bus Passive state
bit 10	TXWAR: Transmitter in Error State Warning bit
	1 = Transmitter is in Error Warning state 0 = Transmitter is not in Error Warning state
bit 9	RXWAR: Receiver in Error State Warning bit
	1 = Receiver is in Error Warning state 0 = Receiver is not in Error Warning state
bit 8	EWARN: Transmitter or Receiver in Error State Warning bit
	 1 = Transmitter or receiver is in Error Warning state 0 = Transmitter or receiver is not in Error Warning state
bit 7	IVRIF: Invalid Message Interrupt Flag bit
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 6	WAKIF: Bus Wake-up Activity Interrupt Flag bit
	1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 5	ERRIF: Error Interrupt Flag bit (multiple sources in CxINTF<13:8>)
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 4	Unimplemented: Read as '0'
bit 3	FIFOIF: FIFO Almost Full Interrupt Flag bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 2	RBOVIF: RX Buffer Overflow Interrupt Flag bit
	1 = Interrupt request has occurred

-n = Value at POR

	23-2: Al	DICONZ. ADCI	CONTROL REG	ISIER Z						
R/W-0	R/W-	0 R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
VCFG2	VCFO	G1 VCFG0	—	—	CSCNA	CHPS1	CHPS0			
bit 15							bit			
R-0	R/W-	0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
BUFS	SMP		SMPI2	SMPI1	SMPI0	BUFM	ALTS			
bit 7	OWIT					Borim	bit			
Legend:										
R = Readable	, hit	W = Writable	bit I	l – Llnimolo	monted hit rea	d oo 'O'				
					mented bit, read					
-n = Value at	POR	'1' = Bit is se	t 't)' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15-13	VCFG<2	2:0>: Converter Vol	tage Reference C	onfiguration	bits					
	Value	VREFH	VREFL							
	000	Avdd	Avss							
	001	External VREF+	Avss							
	010	Avdd	External VREF-							
	011	External VREF+	External VREF-							
	1xx	Avdd	Avss							
bit 12-11	Unimple	emented: Read as	ʻ0'							
bit 10	CSCNA	Input Scan Select	bit							
		ns inputs for CH0+		JXA						
	0 = Does	s not scan inputs	C .							
bit 9-8	CHPS<1:0>: Channel Select bits									
		mode (AD21B = 1)		bits are Uni	mplemented ar	id are Read as	<u>'0':</u>			
		nverts CH0, CH1, C								
		nverts CH0 and CH nverts CH0	11							
bit 7		Buffer Fill Status bit	(oply valid when F							
		C is currently filling t			ne user applicat	ion should acco	ee data in th			
		half of the buffer		ule bullet, u	ie usei applicat		555 Uala III li			
		C is currently filling	the first half of the	e buffer; the	e user applicatio	on should acce	ss data in th			
	seco	ond half of the buffe	er							
bit 6-2	SMPI<4	:0>: Increment Rate	e bits							
		DDMAEN = 0:								
		Generates interrup								
	x1110 =	Generates interrup	ot after completion	of every 18	oth sample/conv	ersion operation	on			
	•									
	•									
		Generates interrup					n			
		Generates interrup	ot after completion	of every sa	imple/conversion	on operation				
		$\frac{\text{DDMAEN} = 1}{\text{Increments the DN}}$	1A address after a	omplotion o	of overy 32nd s	mplo/convorsi	on operation			
		Increments the DN								
	•									
	•									
	•					., .				
	00001 -	Increments the DI	"A address offer a	omplation o	t avany 2nd aar					

. . ACOND. ADCA CONTROL DECISTED 2

REGISTER 23-5: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER (CONTINUED)

bit 0

CH123SA: Channel 1, 2, 3 Positive Input Select for Sample MUXA bit In 12-bit mode (AD21B = 1), CH123SA is Unimplemented and is Read as '0':

Value	ADC Channel						
value	CH1	CH2	CH3				
1 (2)	OA1/AN3	OA2/AN0	OA3/AN6				
0 (1,2)	OA2/AN0	AN1	AN2				

Note 1: AN0 through AN7 are repurposed when comparator and op amp functionality is enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.

2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CH0NB		_	CH0SB4 ⁽¹⁾	CH0SB3 ⁽¹⁾	CH0SB2 ⁽¹⁾	CH0SB1 ⁽¹⁾	CH0SB0 ⁽¹⁾				
bit 15		-					bit 8				
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CH0NA		_	CH0SA4 ⁽¹⁾	CH0SA3 ⁽¹⁾	CH0SA2 ⁽¹⁾	CH0SA1 ⁽¹⁾	CH0SA0 ⁽¹⁾				
bit 7							bit C				
Legend:											
R = Reada		W = Writable			nented bit, read						
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
hit 15		annal O Nagativa	Input Coloct for	r Comple MUX							
bit 15		nannel 0 Negative el 0 negative input									
		el 0 negative input									
bit 14-13	Unimpleme	ented: Read as '0)'								
bit 12-8	CH0SB<4:0	0>: Channel 0 Po:	sitive Input Sele	ect for Sample I	MUXB bits ⁽¹⁾						
		pen; use this sele				ement					
	11110 = Ch	nannel 0 positive in	put is connected	to the CTMU te	mperature meas	surement diode	(CTMU TEMP				
		11101 = Reserved									
		11100 = Reserved									
		11011 = Reserved 11010 = Channel 0 positive input is the output of OA3/AN6 ^(2,3)									
		nannel 0 positive i									
		nannel 0 positive i	input is the outp	out of OA1/AN3	(2)						
	10111 = Re	served									
	•										
	•										
	10000 = Re										
	01111 = Ch	nannel 0 positive i	input is AN15 ⁽³⁾								
	01110 = Channel 0 positive input is AN14 ⁽³⁾ 01101 = Channel 0 positive input is AN13 ⁽³⁾										
	•										
	•										
	•		(2)								
	00010 = Ch	00010 = Channel 0 positive input is $AN2^{(3)}$									
		00001 = Channel 0 positive input is AN1 ⁽³⁾ 00000 = Channel 0 positive input is AN0 ⁽³⁾									
bit 7		nannel 0 Negative	•	r Samnle MI IX	Δ hit						
	CINIA. OI	lanner o Negative	•		A DIL						
	1 = Channell	1 0 negative input	is AN1(1)								
		el 0 negative input el 0 negative input									
bit 6-5	0 = Channe	el 0 negative input el 0 negative input ented: Read as '0	is Vrefl								
	0 = Channe Unimpleme AN0 through A	el 0 negative input	is VREFL ,' ed when compa								

REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

3: See the "**Pin Diagrams**" section for the available analog channels for each device.

otherwise, the ANx input is used.

bit 3-0	Step Command	OPTION<3:0>	Option Description				
	PTGWHI(1)	0000	PWM Special Event Trigger. ⁽³⁾				
	or (1)	0001	PWM master time base synchronization output. ⁽³⁾				
	PTGWLO(1)	0010	PWM1 interrupt. ⁽³⁾				
		0011	PWM2 interrupt. ⁽³⁾				
		0100	PWM3 interrupt. ⁽³⁾				
		0101	Reserved.				
		0110	Reserved.				
		0111	OC1 Trigger event.				
		1000	OC2 Trigger event.				
		1001	IC1 Trigger event.				
		1010	CMP1 Trigger event.				
		1011	CMP2 Trigger event.				
	1100		CMP3 Trigger event.				
		1101	CMP4 Trigger event.				
		1110	ADC conversion done interrupt.				
		1111	INT2 external interrupt.				
	PTGIRQ(1)	0000	Generate PTG Interrupt 0.				
		0001	Generate PTG Interrupt 1.				
		0010	Generate PTG Interrupt 2.				
		0011	Generate PTG Interrupt 3.				
		0100	Reserved.				
		•	•				
		•	•				
		•	•				
	(2)	1111	Reserved.				
	PTGTRIG ⁽²⁾	00000	PTGO0.				
		00001	PTGO1.				
		•	•				
		•	•				
		•	•				
		11110	PTGO30.				
		11111	PTGO31.				

TABLE 24-1: PTG STEP COMMAND FORMAT (CONTINUED)

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 24-2 for the trigger output descriptions.

3: This feature is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2 OR 3) (CONTINUED)

bit 7-6	EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits
	 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): High-to-low transition of the comparator output.
	01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity-selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): High-to-low transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): Low-to-high transition of the comparator output
	00 = Trigger/event/interrupt generation is disabled
bit 5	Unimplemented: Read as '0'
bit 4	CREF: Comparator Reference Select bit (VIN+ input) ⁽¹⁾
	 1 = VIN+ input connects to internal CVREFIN voltage⁽²⁾ 0 = VIN+ input connects to CxIN1+ pin
bit 3-2	Unimplemented: Read as '0'
bit 1-0	CCH<1:0>: Op Amp/Comparator Channel Select bits ⁽¹⁾
	 11 = Unimplemented 10 = Unimplemented 01 = Inverting input of the comparator connects to the CxIN2- pin⁽²⁾ 00 = Inverting input of the op amp/comparator connects to the CxIN1- pin

- **Note 1:** Inputs that are selected and not available will be tied to Vss. See the "**Pin Diagrams**" section for available inputs for each package.
 - 2: This output is not available when OPMODE (CMxCON<10>) = 1.

Bit Field	Description
GCP	General Segment Code-Protect bit 1 = User program memory is not code-protected 0 = Code protection is enabled for the entire program memory space
GWRP	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	 Two-Speed Oscillator Start-up Enable bit 1 = Start up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start up device with user-selected oscillator source
PWMLOCK ⁽¹⁾	PWM Lock Enable bit 1 = Certain PWM registers may only be written after a key sequence 0 = PWM registers may be written without a key sequence
FNOSC<2:0>	Oscillator Selection bits 111 = Fast RC Oscillator with Divide-by-N (FRCDIVN) 110 = Fast RC Oscillator with Divide-by-16 (FRCDIV16) 101 = Low-Power RC Oscillator (LPRC) 100 = Reserved; do not use 011 = Primary Oscillator with PLL module (XT + PLL, HS + PLL, EC + PLL) 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator with Divide-by-N with PLL module (FRCPLL) 000 = Fast RC Oscillator (FRC)
FCKSM<1:0>	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	Peripheral Pin Select Configuration bit 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations
OSCIOFNC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is the clock output 0 = OSC2 is a general purpose digital I/O pin
POSCMD<1:0>	Primary Oscillator Mode Select bits 11 = Primary Oscillator is disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	 Watchdog Timer Enable bit 1 = Watchdog Timer is always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect.) 0 = Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
PLLKEN	PLL Lock Enable bit 1 = PLL lock is enabled 0 = PLL lock is disabled nly available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

TABLE 27-2: CONFIGURATION BITS DESCRIPTION

Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

2: When JTAGEN = 1, an internal pull-up resistor is enabled on the TMS pin. Erased devices default to JTAGEN = 1. Applications requiring I/O pins in a high-impedance state (tri-state) in Reset should use pins other than TMS for this purpose.

REGISTER 27-1: DEVID: DEVICE ID REGISTER

	R = Read-Only bit			U = Unimplem			
bit 7							bit 0
			DEVID	<7:0> ⁽¹⁾			
R	R	R	R	R	R	R	R
bit 15							bit 8
			DEVID<	15:8> ⁽¹⁾			
R	R	R	R	R	R	R	R
bit 23							bit 16
			DEVID<2	23:16>(1)			
R	R	R	R	R	R	R	R

bit 23-0 **DEVID<23:0>:** Device Identifier bits⁽¹⁾

Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration *Bits*" (DS70663) for the list of device ID values.

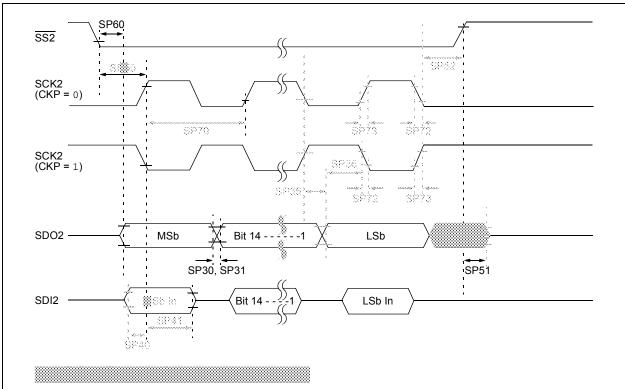
REGISTER 27-2: DEVREV: DEVICE REVISION REGISTER

R	R	R	R	R	R	R	R
			DEVREV	<23:16> ⁽¹⁾			
bit 23							bit 16
R	R	R	R	R	R	R	R
			DEVREV	<15:8>(1)			
bit 15							bit 8
R	R	R	R	R	R	R	R
			DEVRE\	/<7:0> ⁽¹⁾			
bit 7							bit 0
Legend: R =	Read-only bit			U = Unimplem	nented bit		

bit 23-0 **DEVREV<23:0>:** Device Revision bits⁽¹⁾

Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration *Bits*" (DS70663) for the list of device revision values.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$								
Param No.	Symbol	Characteristic	Min.	Min. Typ. Max. Units Conditions							
	VIL	Input Low Voltage									
DI10		Any I/O Pin and MCLR	Vss	—	0.2 VDD	V					
DI18		I/O Pins with SDAx, SCLx	Vss	—	0.3 VDD	V	SMBus disabled				
DI19		I/O Pins with SDAx, SCLx	Vss	—	0.8	V	SMBus enabled				
	VIH	Input High Voltage									
DI20		I/O Pins Not 5V Tolerant	0.8 VDD	—	Vdd	V	(Note 3)				
		I/O Pins 5V Tolerant and MCLR	0.8 VDD	—	5.5	V	(Note 3)				
		I/O Pins with SDAx, SCLx	0.8 VDD	—	5.5	V	SMBus disabled				
		I/O Pins with SDAx, SCLx	2.1	_	5.5	V	SMBus enabled				
	ICNPU	Change Notification Pull-up Current									
DI30			150	250	550	μA	VDD = 3.3V, VPIN = VSS				
	ICNPD	Change Notification Pull-Down Current ⁽⁴⁾									
DI31			20	50	100	μA	Vdd = 3.3V, Vpin = Vdd				


TABLE 30-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- 2: Negative current is defined as current sourced by the pin.
- 3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 4: VIL source < (VSS 0.3). Characterized but not tested.

5: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.

- 6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.
- 8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

FIGURE 30-19: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Tradema Architecture — Flash Memory Fam Program Memory S Product Group — Pin Count — Tape and Reel Flag Temperature Range Package Pattern	rk ily ize (Kb (if app	oyte)		Examples: dsPIC33EP64MC504-I/PT: dsPIC33, Enhanced Performance, 64-Kbyte Program Memory, Motor Control, 44-Pin, Industrial Temperature, TQFP package.
Architecture:	33 24	= =	16-bit Digital Signal Controller 16-bit Microcontroller	
Flash Memory Family:	EP	=	Enhanced Performance	
Product Group:	GP MC	= =	General Purpose family Motor Control family	
Pin Count:	02 03 04 06	=	36-pin 44-pin	
Temperature Range:	l E	= =	-40°C to+85°C (Industrial) -40°C to+125°C (Extended)	
Package:	ML MR MV PT SO SP SS TL TL		Skinny Plastic Dual In-Line - (28-pin) 300 mil body (SPDIP) Plastic Shrink Small Outline - (28-pin) 5.30 mm body (SSOP) Very Thin Leadless Array - (36-pin) 5x5 mm body (VTLA)	