Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Active | | Core Processor | PIC | | Core Size | 16-Bit | | Speed | 60 MIPs | | Connectivity | I ² C, IrDA, LINbus, SPI, UART/USART | | Peripherals | Brown-out Detect/Reset, DMA, POR, PWM, WDT | | Number of I/O | 21 | | Program Memory Size | 256KB (85.5K x 24) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 16K x 16 | | /oltage - Supply (Vcc/Vdd) | 3V ~ 3.6V | | Data Converters | A/D 6x10b/12b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 125°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 28-SSOP (0.209", 5.30mm Width) | | Supplier Device Package | 28-SSOP | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/pic24ep256gp202-e-ss | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## **Table of Contents** | 1.0 | Device Overview | 25 | |-------|--|-----| | 2.0 | Guidelines for Getting Started with 16-bit Digital Signal Controllers and Microcontrollers | 29 | | 3.0 | CPU | 35 | | 4.0 | Memory Organization | 45 | | 5.0 | Flash Program Memory | 119 | | 6.0 | Resets | 123 | | 7.0 | Interrupt Controller | 127 | | 8.0 | Direct Memory Access (DMA) | 139 | | 9.0 | Oscillator Configuration | 153 | | 10.0 | Power-Saving Features | 163 | | 11.0 | I/O Ports | 173 | | 12.0 | Timer1 | 203 | | 13.0 | Timer2/3 and Timer4/5 | 207 | | 14.0 | Input Capture | 213 | | | Output Compare | | | 16.0 | High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only) | 225 | | 17.0 | Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only) | 249 | | | Serial Peripheral Interface (SPI) | | | 19.0 | Inter-Integrated Circuit™ (I ² C™) | 273 | | 20.0 | Universal Asynchronous Receiver Transmitter (UART) | 281 | | 21.0 | Enhanced CAN (ECAN™) Module (dsPIC33EPXXXGP/MC50X Devices Only) | 287 | | 22.0 | Charge Time Measurement Unit (CTMU) | 315 | | 23.0 | 10-Bit/12-Bit Analog-to-Digital Converter (ADC) | 321 | | 24.0 | Peripheral Trigger Generator (PTG) Module | 337 | | | Op Amp/Comparator Module | | | 26.0 | Programmable Cyclic Redundancy Check (CRC) Generator | 373 | | 27.0 | Special Features | 379 | | 28.0 | Instruction Set Summary | 387 | | 29.0 | Development Support | 397 | | 30.0 | Electrical Characteristics | 401 | | 31.0 | High-Temperature Electrical Characteristics | 467 | | 32.0 | DC and AC Device Characteristics Graphs | 475 | | 33.0 | Packaging Information | 479 | | | endix A: Revision History | | | Index | X | 517 | | The I | Microchip Web Site | 525 | | Cust | omer Change Notification Service | 525 | | Cust | omer Support | 525 | | Prod | uct Identification System | 527 | FIGURE 4-2: PROGRAM MEMORY MAP FOR dsPIC33EP64GP50X, dsPIC33EP64MC20X/50X AND PIC24EP64GP/MC20X DEVICES FIGURE 4-15: DATA MEMORY MAP FOR PIC24EP256GP/MC20X/50X DEVICES **TABLE 4-20: ADC1 REGISTER MAP** | File Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All
Resets | |-----------|-------|--------|-----------------------------------|--------|---------|---|------------|-------|--------------|----------|----------|-------|-----------|--------|-------|---------|-------|---------------| | ADC1BUF0 | 0300 | | | | | | | | ADC1 Data B | uffer 0 | | | | | | | | xxxx | | ADC1BUF1 | 0302 | | | | | | | | ADC1 Data B | uffer 1 | | | | | | | | xxxx | | ADC1BUF2 | 0304 | | | | | | | | ADC1 Data B | uffer 2 | | | | | | | | xxxx | | ADC1BUF3 | 0306 | | | | | | | | ADC1 Data B | uffer 3 | | | | | | | | xxxx | | ADC1BUF4 | 0308 | | | | | | | | ADC1 Data B | uffer 4 | | | | | | | | xxxx | | ADC1BUF5 | 030A | | | | | | | | ADC1 Data B | uffer 5 | | | | | | | | xxxx | | ADC1BUF6 | 030C | | | | | | | | ADC1 Data B | uffer 6 | | | | | | | | xxxx | | ADC1BUF7 | 030E | | | | | | | | ADC1 Data B | uffer 7 | | | | | | | | xxxx | | ADC1BUF8 | 0310 | | | | | | | | ADC1 Data B | uffer 8 | | | | | | | | xxxx | | ADC1BUF9 | 0312 | | | | | | | | ADC1 Data B | uffer 9 | | | | | | | | xxxx | | ADC1BUFA | 0314 | | | | | | | | ADC1 Data Bu | ıffer 10 | | | | | | | | xxxx | | ADC1BUFB | 0316 | | | | | | | | ADC1 Data Bu | ıffer 11 | | | | | | | | xxxx | | ADC1BUFC | 0318 | | | | | | | | ADC1 Data Bu | ıffer 12 | | | | | | | | xxxx | | ADC1BUFD | 031A | | | | | | | | ADC1 Data Bu | ıffer 13 | | | | | | | | xxxx | | ADC1BUFE | 031C | | | | | | | | ADC1 Data Bu | ıffer 14 | | | | | | | | xxxx | | ADC1BUFF | 031E | | | | | | | | ADC1 Data Bu | ıffer 15 | | | | | | | | xxxx | | AD1CON1 | 0320 | ADON | _ | ADSIDL | ADDMABM | 1 | AD12B | FOR | M<1:0> | | SSRC<2:0 | > | SSRCG | SIMSAM | ASAM | SAMP | DONE | 0000 | | AD1CON2 | 0322 | ١ | /CFG<2:0> | > | _ | 1 | CSCNA | CHP | S<1:0> | BUFS | | | SMPI<4:0> | • | | BUFM | ALTS | 0000 | | AD1CON3 | 0324 | ADRC | NDRC — — SAMC<4:0> ADCS<7:0> 0.00 | | | | | | | | 0000 | | | | | | | | | AD1CHS123 | 0326 | - | _ | _ | _ | CH123NB<1:0> CH123SB CH123NA<1:0> CH123SA | | | | | | 0000 | | | | | | | | AD1CHS0 | 0328 | CH0NB | _ | _ | | | CH0SB<4:0> | | | | | 0000 | | | | | | | | AD1CSSH | 032E | CSS31 | CSS30 | _ | _ | _ | CSS26 | CSS25 | CSS24 | _ | _ | _ | _ | _ | _ | _ | _ | 0000 | | AD1CSSL | 0330 | CSS15 | CSS14 | CSS13 | CSS12 | CSS11 | CSS10 | CSS9 | CSS8 | CSS7 | CSS6 | CSS5 | CSS4 | CSS3 | CSS2 | CSS1 | CSS0 | 0000 | | AD1CON4 | 0332 | _ | _ | _ | _ | _ | _ | - | ADDMAEN | _ | _ | _ | _ | _ | D | MABL<2: | 0> | 0000 | dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X **Legend:** x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. TABLE 4-37: PMD REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY | File
Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All
Resets | |--------------|-------|--------|--------|--------|--------|--------|--------|-------|-------|--------|-------|-------|-----------------------------|--------|--------|--------|-------|---------------| | PMD1 | 0760 | T5MD | T4MD | T3MD | T2MD | T1MD | _ | _ | _ | I2C1MD | U2MD | U1MD | SPI2MD | SPI1MD | _ | _ | AD1MD | 0000 | | PMD2 | 0762 | _ | _ | _ | _ | IC4MD | IC3MD | IC2MD | IC1MD | _ | _ | _ | _ | OC4MD | OC3MD | OC2MD | OC1MD | 0000 | | PMD3 | 0764 | _ | _ | - | _ | - | CMPMD | _ | _ | CRCMD | - | _ | _ | _ | _ | I2C2MD | _ | 0000 | | PMD4 | 0766 | _ | _ | - | _ | - | - | _ | _ | _ | - | _ | _ | REFOMD | CTMUMD | _ | _ | 0000 | | PMD6 | 076A | _ | _ | - | _ | - | - | _ | _ | _ | - | _ | _ | _ | _ | _ | _ | 0000 | | PMD7 | 076C | ı | 1 | 1 | 1 | | 1 | | ı | ı | ı | _ | DMA0MD DMA1MD DMA2MD DMA3MD | PTGMD | _ | ı | - | 0000 | **Legend:** — = unimplemented, read as '0'. Reset values are shown in hexadecimal. ## TABLE 4-38: PMD REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY | File
Name | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All
Resets | |--------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|-------|--------|--------|--------|--------|-------|---------------| | PMD1 | 0760 | T5MD | T4MD | T3MD | T2MD | T1MD | QEI1MD | PWMMD | _ | I2C1MD | U2MD | U1MD | SPI2MD | SPI1MD | _ | _ | AD1MD | 0000 | | PMD2 | 0762 | _ | - | - | - | IC4MD | IC3MD | IC2MD | IC1MD | - | _ | _ | _ | OC4MD | OC3MD | OC2MD | OC1MD | 0000 | | PMD3 | 0764 | _ | - | - | - | - | CMPMD | _ | _ | CRCMD | _ | _ | _ | _ | - | I2C2MD | _ | 0000 | | PMD4 | 0766 | _ | - | - | - | - | _ | _ | _ | - | _ | _ | _ | REFOMD | CTMUMD | - | _ | 0000 | | PMD6 | 076A | _ | - | - | - | - | PWM3MD | PWM2MD | PWM1MD | - | _ | _ | _ | _ | - | - | _ | 0000 | | | | | | | | | | | | | | | DMA0MD | | | | | | | PMD7 | 076C | | | | | | | | | | | | DMA1MD | PTGMD | | | | 0000 | | FIVIDI | 0760 | _ | _ | _ | _ | | _ | _ | _ | _ | _ | | DMA2MD | FIGNID | _ | _ | - | 0000 | | | | | | | | | | | | | | | DMA3MD | | | | | | **Legend:** — = unimplemented, read as '0'. Reset values are shown in hexadecimal. **EXAMPLE 4-2: EXTENDED DATA SPACE (EDS) WRITE ADDRESS GENERATION** The paged memory scheme provides access to multiple 32-Kbyte windows in the EDS and PSV memory. The Data Space Page registers, DSxPAG, in combination with the upper half of the Data Space address, can provide up to 16 Mbytes of additional address space in the EDS and 8 Mbytes (DSRPAG only) of PSV address space. The paged data memory space is shown in Example 4-3. The Program Space (PS) can be accessed with a DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG. Writes to PS are not supported, so DSWPAG is dedicated to DS, including EDS only. The Data Space and EDS can be read from, and written to, using DSRPAG and DSWPAG, respectively. ## REGISTER 8-5: DMAXSTBH: DMA CHANNEL x START ADDRESS REGISTER B (HIGH) | U-0 |--------|-----|-----|-----|-----|-----|-----|-------| | _ | _ | _ | _ | _ | _ | _ | _ | | bit 15 | | | | | | | bit 8 | | R/W-0 | | | | | | |-------|------------|-------|-------|-------|-------|-------|-------|--|--|--|--|--|--| | | STB<23:16> | | | | | | | | | | | | | | bit 7 | | | | | | | | | | | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 **Unimplemented:** Read as '0' bit 7-0 **STB<23:16>:** Secondary Start Address bits (source or destination) ## REGISTER 8-6: DMAXSTBL: DMA CHANNEL x START ADDRESS REGISTER B (LOW) | R/W-0 | | | | | | |--------|-----------|-------|-------|-------|-------|-------|-------|--|--|--|--|--|--| | | STB<15:8> | | | | | | | | | | | | | | bit 15 | | | | | | | | | | | | | | | R/W-0 | | | | | | |-------|----------|-------|-------|-------|-------|-------|-------|--|--|--|--|--|--| | | STB<7:0> | | | | | | | | | | | | | | bit 7 | | | | | | | | | | | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-0 **STB<15:0>:** Secondary Start Address bits (source or destination) ## 9.1 CPU Clocking System The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family of devices provides six system clock options: - · Fast RC (FRC) Oscillator - FRC Oscillator with Phase Locked Loop (PLL) - · FRC Oscillator with Postscaler - · Primary (XT, HS or EC) Oscillator - · Primary Oscillator with PLL - · Low-Power RC (LPRC) Oscillator Instruction execution speed or device operating frequency, Fcy, is given by Equation 9-1. # EQUATION 9-1: DEVICE OPERATING FREQUENCY $$FCY = Fosc/2$$ Figure 9-2 is a block diagram of the PLL module. Equation 9-2 provides the relationship between input frequency (FIN) and output frequency (FPLLO). In clock modes S1 and S3, when the PLL output is selected, FOSC = FPLLO. Equation 9-3 provides the relationship between input frequency (FIN) and VCO frequency (FVCO). #### FIGURE 9-2: PLL BLOCK DIAGRAM ## **EQUATION 9-2:** FPLLO CALCULATION $$FPLLO = FIN \times \left(\frac{M}{N1 \times N2}\right) = FIN \times \left(\frac{(PLLDIV + 2)}{(PLLPRE + 2) \times 2(PLLPOST + 1)}\right)$$ Where: N1 = PLLPRE + 2 $N2 = 2 \times (PLLPOST + 1)$ M = PLLDIV + 2 #### **EQUATION 9-3:** Fvco CALCULATION $$Fvco = Fin \times \left(\frac{M}{N1}\right) = Fin \times \left(\frac{(PLLDIV + 2)}{(PLLPRE + 2)}\right)$$ ## 17.2 QEI Control Registers #### REGISTER 17-1: QEI1CON: QEI1 CONTROL REGISTER | R/W-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |--------|-----|---------|-----------------------|-----------------------|-----------------------|---------------------|---------------------| | QEIEN | _ | QEISIDL | PIMOD2 ⁽¹⁾ | PIMOD1 ⁽¹⁾ | PIMOD0 ⁽¹⁾ | IMV1 ⁽²⁾ | IMV0 ⁽²⁾ | | bit 15 | | | | | | | bit 8 | | U-0 | R/W-0 |-------|------------------------|------------------------|------------|--------|-------|-------|-------| | _ | INTDIV2 ⁽³⁾ | INTDIV1 ⁽³⁾ | INTDIV0(3) | CNTPOL | GATEN | CCM1 | CCM0 | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to bit 14 **Unimplemented:** Read as '0' bit 13 QEISIDL: QEI Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits⁽¹⁾ 111 = Reserved 110 = Modulo Count mode for position counter 101 = Resets the position counter when the position counter equals QEI1GEC register 100 = Second index event after home event initializes position counter with contents of QEI1IC register 011 = First index event after home event initializes position counter with contents of QEI1IC register 010 = Next index input event initializes the position counter with contents of QEI1IC register 001 = Every index input event resets the position counter 000 = Index input event does not affect position counter bit 9 IMV1: Index Match Value for Phase B bit⁽²⁾ 1 = Phase B match occurs when QEB = 1 0 = Phase B match occurs when QEB = 0 bit 8 IMV0: Index Match Value for Phase A bit⁽²⁾ 1 = Phase A match occurs when QEA = 1 0 = Phase A match occurs when QEA = 0 bit 7 **Unimplemented:** Read as '0' Note 1: When CCM<1:0> = 10 or 11, all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored. - 2: When CCM<1:0> = 00, and QEA and QEB values match the Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset. QEA/QEB signals used for the index match have swap and polarity values applied, as determined by the SWPAB and QEAPOL/QEBPOL bits. - 3: The selected clock rate should be at least twice the expected maximum quadrature count rate. ## REGISTER 17-1: QEI1CON: QEI1 CONTROL REGISTER (CONTINUED) - bit 6-4 **INTDIV<2:0>:** Timer Input Clock Prescale Select bits (interval timer, main timer (position counter), velocity counter and index counter internal clock divider select)⁽³⁾ - 111 = 1:128 prescale value - 110 = 1:64 prescale value - 101 = 1:32 prescale value - 100 = 1:16 prescale value - 011 = 1:8 prescale value - 010 = 1:4 prescale value - 001 = 1:2 prescale value - 000 = 1:1 prescale value - bit 3 CNTPOL: Position and Index Counter/Timer Direction Select bit - 1 = Counter direction is negative unless modified by external up/down signal - 0 = Counter direction is positive unless modified by external up/down signal - bit 2 GATEN: External Count Gate Enable bit - 1 = External gate signal controls position counter operation - 0 = External gate signal does not affect position counter/timer operation - bit 1-0 **CCM<1:0>:** Counter Control Mode Selection bits - 11 = Internal Timer mode with optional external count is selected - 10 = External clock count with optional external count is selected - 01 = External clock count with external up/down direction is selected - 00 = Quadrature Encoder Interface (x4 mode) Count mode is selected - Note 1: When CCM<1:0> = 10 or 11, all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored. - 2: When CCM<1:0> = 00, and QEA and QEB values match the Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset. QEA/QEB signals used for the index match have swap and polarity values applied, as determined by the SWPAB and QEAPOL/QEBPOL bits. - 3: The selected clock rate should be at least twice the expected maximum quadrature count rate. #### REGISTER 17-19: INT1HLDH: INTERVAL 1 TIMER HOLD HIGH WORD REGISTER | R/W-0 | | | | | | |--------|---------------|-------|-------|-------|-------|-------|-------|--|--|--|--|--|--| | | INTHLD<31:24> | | | | | | | | | | | | | | bit 15 | bit 15 bit | | | | | | | | | | | | | | R/W-0 | |---------------|-------|-------|-------|-------|-------|-------|-------|--| | INTHLD<23:16> | | | | | | | | | | bit 7 | | | | | | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-0 INTHLD<31:16>: Hold Register for Reading and Writing INT1TMRH bits #### REGISTER 17-20: INT1HLDL: INTERVAL 1 TIMER HOLD LOW WORD REGISTER | R/W-0 | |--------------|-------|-------|-------|-------|-------|-------|-------|--| | INTHLD<15:8> | | | | | | | | | | bit 15 | | | | | | | | | | R/W-0 | |-------------|-------|-------|-------|-------|-------|-------|-------|--| | INTHLD<7:0> | | | | | | | | | | bit 7 | | | | | | | | | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-0 **INTHLD<15:0>:** Hold Register for Reading and Writing INT1TMRL bits # 19.2 I²C Control Registers #### REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER | R/W-0 | U-0 | R/W-0 | R/W-1, HC | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |--------|-----|---------|-----------|-----------------------|-------|--------|-------| | I2CEN | _ | I2CSIDL | SCLREL | IPMIEN ⁽¹⁾ | A10M | DISSLW | SMEN | | bit 15 | | | | | | | bit 8 | | R/W-0 | R/W-0 | R/W-0 | R/W-0, HC | |-------|-------|-------|-----------|-----------|-----------|-----------|-----------| | GCEN | STREN | ACKDT | ACKEN | RCEN | PEN | RSEN | SEN | | bit 7 | | | | | | | bit 0 | | Legend: | HC = Hardware Clearable bit | | | |-------------------|-----------------------------|----------------------------|--------------------| | R = Readable bit | W = Writable bit | U = Unimplemented bit, rea | d as '0' | | -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown | bit 15 I2CEN: I2Cx Enable bit 1 = Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins 0 = Disables the I2Cx module; all I²CTM pins are controlled by port functions bit 14 Unimplemented: Read as '0' bit 13 I2CSIDL: I2Cx Stop in Idle Mode bit 1 = Discontinues module operation when device enters an Idle mode 0 = Continues module operation in Idle mode bit 12 **SCLREL:** SCLx Release Control bit (when operating as I²C slave) 1 = Releases SCLx clock 0 = Holds SCLx clock low (clock stretch) #### If STREN = 1: Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware is clear at the beginning of every slave data byte transmission. Hardware is clear at the end of every slave address byte reception. Hardware is clear at the end of every slave data byte reception. #### If STREN = 0: Bit is R/S (i.e., software can only write '1' to release clock). Hardware is clear at the beginning of every slave data byte transmission. Hardware is clear at the end of every slave address byte reception. bit 11 **IPMIEN:** Intelligent Peripheral Management Interface (IPMI) Enable bit⁽¹⁾ 1 = IPMI mode is enabled; all addresses are Acknowledged 0 = IPMI mode disabled bit 10 A10M: 10-Bit Slave Address bit 1 = I2CxADD is a 10-bit slave address 0 = I2CxADD is a 7-bit slave address bit 9 **DISSLW:** Disable Slew Rate Control bit 1 = Slew rate control is disabled 0 = Slew rate control is enabled bit 8 SMEN: SMBus Input Levels bit 1 = Enables I/O pin thresholds compliant with SMBus specification 0 = Disables SMBus input thresholds bit 7 **GCEN:** General Call Enable bit (when operating as I²C slave) 1 = Enables interrupt when a general call address is received in I2CxRSR (module is enabled for reception) 0 = General call address disabled Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'. #### REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER | R-0, HSC | R-0, HSC | U-0 | U-0 | U-0 | R/C-0, HS | R-0, HSC | R-0, HSC | |----------|----------|-----|-----|-----|-----------|----------|----------| | ACKSTAT | TRSTAT | _ | _ | _ | BCL | GCSTAT | ADD10 | | bit 15 | | | | | | | bit 8 | | R/C-0, HS | R/C-0, HS | R-0, HSC | R/C-0, HSC | R/C-0, HSC | R-0, HSC | R-0, HSC | R-0, HSC | |-----------|-----------|----------|------------|------------|----------|----------|----------| | IWCOL | I2COV | D_A | Р | S | R_W | RBF | TBF | | bit 7 | | | | | | | bit 0 | | Legend: | C = Clearable bit | HS = Hardware Settable bit | HSC = Hardware Settable/Clearable bit | |-------------------|-------------------|-----------------------------|---------------------------------------| | R = Readable bit | W = Writable bit | U = Unimplemented bit, read | as '0' | | -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown | - bit 15 **ACKSTAT:** Acknowledge Status bit (when operating as I²C[™] master, applicable to master transmit operation) - 1 = NACK received from slave - 0 = ACK received from slave Hardware is set or clear at the end of slave Acknowledge. - bit 14 TRSTAT: Transmit Status bit (when operating as I²C master, applicable to master transmit operation) - 1 = Master transmit is in progress (8 bits + ACK) - 0 = Master transmit is not in progress Hardware is set at the beginning of master transmission. Hardware is clear at the end of slave Acknowledge. - bit 13-11 Unimplemented: Read as '0' - bit 10 BCL: Master Bus Collision Detect bit - 1 = A bus collision has been detected during a master operation - 0 = No bus collision detected Hardware is set at detection of a bus collision. - bit 9 GCSTAT: General Call Status bit - 1 = General call address was received - 0 = General call address was not received Hardware is set when address matches general call address. Hardware is clear at Stop detection. - bit 8 ADD10: 10-Bit Address Status bit - 1 = 10-bit address was matched - 0 = 10-bit address was not matched Hardware is set at the match of the 2nd byte of the matched 10-bit address. Hardware is clear at Stop detection. - bit 7 IWCOL: I2Cx Write Collision Detect bit - 1 = An attempt to write to the I2CxTRN register failed because the I2C module is busy - 0 = No collision Hardware is set at the occurrence of a write to I2CxTRN while busy (cleared by software). - bit 6 I2COV: I2Cx Receive Overflow Flag bit - 1 = A byte was received while the I2CxRCV register was still holding the previous byte - 0 = No overflow Hardware is set at an attempt to transfer I2CxRSR to I2CxRCV (cleared by software). - bit 5 **D_A:** Data/Address bit (when operating as I²C slave) - 1 = Indicates that the last byte received was data - 0 = Indicates that the last byte received was a device address Hardware is clear at a device address match. Hardware is set by reception of a slave byte. - bit 4 **P:** Stop bit - 1 = Indicates that a Stop bit has been detected last - 0 = Stop bit was not detected last Hardware is set or clear when a Start, Repeated Start or Stop is detected. #### BUFFER 21-3: ECAN™ MESSAGE BUFFER WORD 2 | R/W-x |--------|-------|-------|-------|-------|-------|-------|-------| | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 | RTR | RB1 | | bit 15 | | | | | | | bit 8 | | U-x | U-x | U-x | R/W-x | R/W-x | R/W-x | R/W-x | R/W-x | |-------|-----|-----|-------|-------|-------|-------|-------| | _ | _ | _ | RB0 | DLC3 | DLC2 | DLC1 | DLC0 | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-10 **EID<5:0>:** Extended Identifier bits bit 9 RTR: Remote Transmission Request bit When IDE = 1: 1 = Message will request remote transmission 0 = Normal message When IDE = 0: The RTR bit is ignored. bit 8 RB1: Reserved Bit 1 User must set this bit to '0' per CAN protocol. bit 7-5 **Unimplemented:** Read as '0' bit 4 RB0: Reserved Bit 0 User must set this bit to '0' per CAN protocol. bit 3-0 **DLC<3:0>:** Data Length Code bits ## BUFFER 21-4: ECAN™ MESSAGE BUFFER WORD 3 | R/W-x |--------|-------|-------|-------|-------|-------|-------|-------| | Byte 1 | | | | | | | | | bit 15 | | | | | | | bit 8 | | R/W-x |--------|-------|-------|-------|-------|-------|-------|-------| | Byte 0 | | | | | | | | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 **Byte 1<15:8>:** ECAN Message Byte 1 bits bit 7-0 **Byte 0<7:0>:** ECAN Message Byte 0 bits FIGURE 22-1: CTMU BLOCK DIAGRAM - Note 1: When the CTMU is not actively used, set TGEN = 1, and ensure that EDG1STAT = EDG2STAT. All other settings allow current to flow into the ADC or the C1IN1- pin. If using the ADC for other purposes besides the CTMU, set IDISSEN = 0. If IDISSEN is set to '1', it will short the output of the ADC CH0 MUX to Vss. - 2: CTMUI connects to the output of the ADC CH0 MUX. When CTMU current is steered into this node, the current will flow out through the selected ADC channel determined by the CH0 MUX (see the CH0Sx bits in the AD1CHS0 register). - 3: CTMU TEMP connects to one of the ADC CH0 inputs; see CH0SA and CH0SB (AD1CHS0<12:8,4:0). - 4: If TGEN = 1 and EDG1STAT = EDG2STAT, CTMU current source is still enabled and may be shunted to Vss internally. This should be considered in low-power applications. - 5: The switch connected to ADC CH0 is closed when IDISSEN (CTMUCON1<9>) = 1, and opened when IDISSEN = 0. ## 22.1 CTMU Resources Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information. Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464 #### 22.1.1 KEY RESOURCES - "Charge Time Measurement Unit (CTMU)" (DS70661) in the "dsPIC33/PIC24 Family Reference Manual" - Code Samples - · Application Notes - · Software Libraries - Webinars - All Related "dsPIC33/PIC24 Family Reference Manual" Sections - · Development Tools | T TOUGET AAAOT | 30X, d3i 1030 | DEFAXAIVIC20 | X/50X AND | PIOZ4EPAAA | GF/IVICZUX | |----------------|---------------|--------------|-----------|------------|------------| | TES: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | #### 27.2 User ID Words dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices contain four User ID Words, located at addresses, 0x800FF8 through 0x800FFE. The User ID Words can be used for storing product information such as serial numbers, system manufacturing dates, manufacturing lot numbers and other application-specific information. The User ID Words register map is shown in Table 27-3. TABLE 27-3: USER ID WORDS REGISTER MAP | File Name | Address | Bits 23-16 | Bits 15-0 | |-----------|----------|------------|-----------| | FUID0 | 0x800FF8 | _ | UID0 | | FUID1 | 0x800FFA | _ | UID1 | | FUID2 | 0x800FFC | _ | UID2 | | FUID3 | 0x800FFE | _ | UID3 | **Legend:** — = unimplemented, read as '1'. ### 27.3 On-Chip Voltage Regulator All of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices power their core digital logic at a nominal 1.8V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family incorporate an onchip regulator that allows the device to run its core logic from VDD. The regulator provides power to the core from the other VDD pins. A low-ESR (less than 1 Ohm) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 27-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 30-5 located in **Section 30.0 "Electrical Characteristics"**. **Note:** It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin. FIGURE 27-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3) ## 27.4 Brown-out Reset (BOR) The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on). A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>). If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'. Concurrently, the PWRT Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to Parameter SY35 in Table 30-22 of **Section 30.0 "Electrical Characteristics"** for specific TFSCM values. The BOR status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage. #### TABLE 30-54: OP AMP/COMPARATOR VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS | AC CHARACTERISTICS | | Standard Operating Conditions (see Note 2): 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended | | | | | | |--------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|-------|------------| | Param. | Symbol | Characteristic | Min. | Тур. | Max. | Units | Conditions | | VR310 | TSET | Settling Time | _ | 1 | 10 | μS | (Note 1) | - Note 1: Settling time is measured while CVRR = 1 and CVR<3:0> bits transition from '0000' to '1111'. - 2: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values. #### TABLE 30-55: OP AMP/COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS | DC CHARACTERISTICS | | | Standard Operating Conditions (see Note 1): 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended | | | | | | |--------------------|--------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|------------|---------------|--| | Param
No. | Symbol | Characteristics | Min. Typ. Max. | | Units | Conditions | | | | VRD310 | CVRES | Resolution | CVRSRC/24 | _ | CVRSRC/32 | LSb | | | | VRD311 | CVRAA | Absolute Accuracy ⁽²⁾ | _ | ±25 | _ | mV | CVRSRC = 3.3V | | | VRD313 | CVRSRC | Input Reference Voltage | 0 | _ | AVDD + 0.3 | V | | | | VRD314 | CVRout | Buffer Output
Resistance ⁽²⁾ | _ | 1.5k | _ | Ω | | | - Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values. - 2: Parameter is characterized but not tested in manufacturing. ## 33.1 Package Marking Information (Continued) 48-Lead UQFN (6x6x0.5 mm) Example 64-Lead QFN (9x9x0.9 mm) Example 64-Lead TQFP (10x10x1 mm) Example # **INDEX** | A | Timer1 External Clock Requirements | | |--|--|------| | Absolute Maximum Ratings401 | Timer2/Timer4 External Clock Requirements | | | AC Characteristics413, 471 | Timer3/Timer5 External Clock Requirements | 419 | | 10-Bit ADC Conversion Requirements | UARTx I/O Requirements | 454 | | 12-Bit ADC Conversion Requirements | ADC | | | ADC Module459 | Control Registers | 325 | | ADC Module (10-Bit Mode) | Helpful Tips | 324 | | ADC Module (10-Bit Mode) | Key Features | 321 | | , | Resources | 324 | | Capacitive Loading Requirements on | Arithmetic Logic Unit (ALU) | 44 | | Output Pins | Assembler | | | DMA Module Requirements | MPASM Assembler | 398 | | ECANx I/O Requirements | | | | External Clock 414 | В | | | High-Speed PWMx Requirements422 | Bit-Reversed Addressing | 115 | | I/O Timing Requirements416 | Example | | | I2Cx Bus Data Requirements (Master Mode)451 | Implementation | | | I2Cx Bus Data Requirements (Slave Mode)453 | Sequence Table (16-Entry) | | | Input Capture x Requirements420 | Block Diagrams | | | Internal FRC Accuracy415 | Data Access from Program Space | | | Internal LPRC Accuracy415 | Address Generation | 117 | | Internal RC Accuracy472 | 16-Bit Timer1 Module | | | Load Conditions 413, 471 | | | | OCx/PWMx Mode Requirements421 | ADC Conversion Clock Period | 323 | | Op Amp/Comparator Voltage Reference | ADC with Connection Options for ANx Pins | 200 | | Settling Time Specifications457 | and Op Amps | | | Output Compare x Requirements421 | Arbiter Architecture | | | PLL Clock415, 471 | BEMF Voltage Measurement Using ADC | | | QEI External Clock Requirements | Boost Converter Implementation | | | QEI Index Pulse Requirements | CALL Stack Frame | | | Quadrature Decoder Requirements | Comparator (Module 4) | | | Reset, Watchdog Timer, Oscillator Start-up Timer, | Connections for On-Chip Voltage Regulator | | | Power-up Timer Requirements417 | CPU Core | | | SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, | CRC Module | | | SMP = 1) Requirements | CRC Shift Engine | | | SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, | CTMU Module | 316 | | SMP = 1) Requirements | Digital Filter Interconnect | | | SPI1 Master Mode (Half-Duplex, Transmit Only) | DMA Controller | 141 | | Requirements | DMA Controller Module | 139 | | SPI1 Maximum Data/Clock Rate Summary | dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ | /50X | | SPI1 Slave Mode (Full-Duplex, CKE = 0, | and PIC24EPXXXGP/MC20X | 25 | | CKP = 0, SMP = 0) Requirements449 | ECAN Module | 288 | | | EDS Read Address Generation | 105 | | SPI1 Slave Mode (Full-Duplex, CKE = 0, | EDS Write Address Generation | 106 | | CKP = 1, SMP = 0) Requirements | Example of MCLR Pin Connections | 30 | | SPI1 Slave Mode (Full-Duplex, CKE = 1, | High-Speed PWMx Architectural Overview | 227 | | CKP = 0, SMP = 0) Requirements443 | High-Speed PWMx Register Interconnection | | | SPI1 Slave Mode (Full-Duplex, CKE = 1, | I2Cx Module | | | CKP = 1, SMP = 0) Requirements445 | Input Capture x | | | SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP | Interleaved PFC | | | = 1) Requirements429 | Multiphase Synchronous Buck Converter | | | SPI2 Master Mode (Full-Duplex, CKE = 1, | Multiplexing Remappable Output for RPn | | | CKP = x, SMP = 1) Requirements428 | Op Amp Configuration A | | | SPI2 Master Mode (Half-Duplex, Transmit Only) | Op Amp Configuration B | | | Requirements427 | Op Amp/Comparator Voltage Reference Module | | | SPI2 Maximum Data/Clock Rate Summary 426 | Op Amp/Comparator x (Modules 1, 2, 3) | | | SPI2 Slave Mode (Full-Duplex, CKE = 0, | Oscillator System | | | CKP = 0, SMP = 0) Requirements437 | | | | SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP | Output Compare x Module
PLL | | | = 0) Requirements435 | | | | SPI2 Slave Mode (Full-Duplex, CKE = 1, | Programmer's Model | | | CKP = 0, SMP = 0) Requirements431 | PTG Module | | | SPI2 Slave Mode (Full-Duplex, CKE = 1, | Quadrature Encoder Interface | | | CKP = 1, SMP = 0) Requirements433 | Recommended Minimum Connection | 30 |