

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

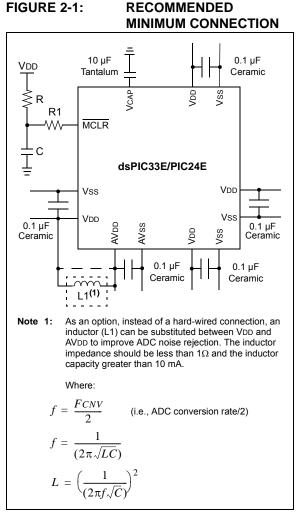
Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep256gp202-h-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name ⁽⁴⁾	Pin Type	Buffer Type	PPS	Description
AN0-AN15	I	Analog	No	Analog input channels.
CLKI	I	ST/ CMOS	No	External clock source input. Always associated with OSC1 pin function
CLKO	0	—	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	I	ST/	No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS
OSC2	I/O	CMOS —	No	otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
REFCLKO	0		Yes	Reference clock output.
IC1-IC4	Ι	ST	Yes	Capture Inputs 1 through 4.
OCFA OCFB OC1-OC4	 0	ST ST	Yes No Yes	Compare Fault A input (for Compare channels). Compare Fault B input (for Compare channels). Compare Outputs 1 through 4.
INT0	I	ST	No	External Interrupt 0.
INT1 INT2		ST ST	Yes Yes	External Interrupt 1. External Interrupt 2.
RA0-RA4, RA7-RA12	I/O	ST	No	PORTA is a bidirectional I/O port.
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port.
RC0-RC13, RC15	I/O	ST	No	PORTC is a bidirectional I/O port.
RD5, RD6, RD8	I/O	ST	No	PORTD is a bidirectional I/O port.
RE12-RE15	I/O	ST	No	PORTE is a bidirectional I/O port.
RF0, RF1	I/O	ST	No	PORTF is a bidirectional I/O port.
RG6-RG9	I/O	ST	No	PORTG is a bidirectional I/O port.
T1CK	Ι	ST	No	Timer1 external clock input.
T2CK T3CK		ST ST	Yes	Timer2 external clock input.
T4CK		ST	No No	Timer3 external clock input. Timer4 external clock input.
T5CK	i	ST	No	Timer5 external clock input.
CTPLS	0	ST	No	CTMU pulse output.
CTED1	Ι	ST	No	CTMU External Edge Input 1.
CTED2	Ι	ST	No	CTMU External Edge Input 2.
U1CTS	Ι	ST	No	UART1 Clear-To-Send.
U1RTS	0		No	UART1 Ready-To-Send.
U1RX		ST	Yes	UART1 receive. UART1 transmit.
U1TX BCLK1	0	ST	Yes No	UART1 Iransmit. UART1 IrDA [®] baud clock output.
Legend: CMOS = CM ST = Schmi PPS = Perip	MOS co itt Trigg	ompatible er input v	input with CN	or output Analog = Analog input P = Power

TABLE 1-1:PINOUT I/O DESCRIPTIONS


Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.

3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.

4: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

5: There is an internal pull-up resistor connected to the TMS pin when the JTAG interface is active. See the JTAGEN bit field in Table 27-2.

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

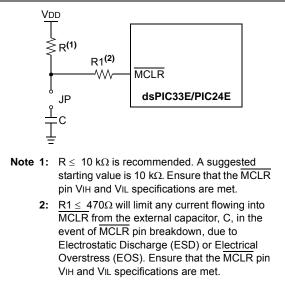
2.3 CPU Logic Filter Capacitor Connection (VCAP)

A low-ESR (< 1 Ohm) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must have a capacitor greater than 4.7 μ F (10 μ F is recommended), 16V connected to ground. The type can be ceramic or tantalum. See **Section 30.0** "**Electrical Characteristics**" for additional information.

The placement of this capacitor should be close to the VCAP pin. It is recommended that the trace length not exceeds one-quarter inch (6 mm). See **Section 27.3 "On-Chip Voltage Regulator"** for details.

2.4 Master Clear (MCLR) Pin


The MCLR pin provides two specific device functions:

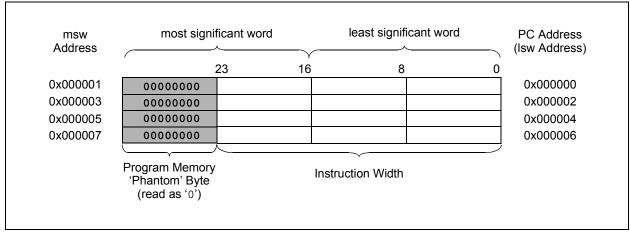

- Device Reset
- Device Programming and Debugging.

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor, C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-6).

Program memory addresses are always word-aligned on the lower word and addresses are incremented, or decremented by two, during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices reserve the addresses between 0x000000 and 0x000200 for hardcoded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address, 0x000000, of Flash memory, with the actual address for the start of code at address, 0x000002, of Flash memory.

A more detailed discussion of the Interrupt Vector Tables (IVTs) is provided in **Section 7.1** "Interrupt Vector Table".

FIGURE 4-6: PROGRAM MEMORY ORGANIZATION

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
NSTDIS	OVAERR ⁽¹⁾	OVBERR ⁽¹⁾	COVAERR ⁽¹⁾	COVBERR ⁽¹⁾	OVATE ⁽¹⁾	OVBTE ⁽¹⁾	COVTE ⁽¹⁾			
pit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
SFTACERR ⁽¹) DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—			
pit 7							bit 0			
_egend:										
R = Readable		W = Writable		U = Unimpleme						
n = Value at	POR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unk	nown			
bit 15	NSTDIS: Inte	errupt Nesting	Disable hit							
		nesting is disa								
	•	nesting is ena								
pit 14	-	-	Overflow Trap F	lag bit ⁽¹⁾						
			erflow of Accur							
	=		overflow of A							
pit 13		OVBERR: Accumulator B Overflow Trap Flag bit ⁽¹⁾ 1 = Trap was caused by overflow of Accumulator B								
			erflow of Accur v overflow of Accur							
pit 12	COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit ⁽¹⁾									
	1 = Trap was	caused by ca	tastrophic over	flow of Accumula	ator A					
pit 11		Trap was not caused by catastrophic overflow of Accumulator A VBERR: Accumulator B Catastrophic Overflow Trap Flag bit ⁽¹⁾								
			•	flow of Accumula	•					
	=		-	overflow of Accur	nulator B					
pit 10			erflow Trap Ena	able bit ⁽¹⁾						
	1 = Trap ove 0 = Trap is d	rflow of Accum	ulator A							
pit 9	OVBTE: Acc	umulator B Ov	erflow Trap En	able bit ⁽¹⁾						
	1 = Trap ove 0 = Trap is d	rflow of Accum isabled	ulator B							
oit 8	COVTE: Cat	astrophic Over	flow Trap Enat	ole bit ⁽¹⁾						
	1 = Trap on o 0 = Trap is d		erflow of Accu	mulator A or B is	enabled					
oit 7	SFTACERR:	Shift Accumul	ator Error Statu	us bit ⁽¹⁾						
		•	•	alid accumulator invalid accumula						
oit 6	DIV0ERR: D	ivide-by-Zero I	Error Status bit							
			used by a divide caused by a d							
	DMACERR:			-						
oit 5										

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

REGISTER 8-7: DMAXPAD: DMA CHANNEL X PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PAD	<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PAE)<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow					nown			

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-8: DMAXCNT: DMA CHANNEL X TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—			CNT<13:8> ⁽²⁾							
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			CNT<	<7:0> (2)						
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is				x = Bit is unkr	nown					

bit 15-14 Unimplemented: Read as '0'

bit 13-0 CNT<13:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: The number of DMA transfers = CNT<13:0> + 1.

REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER (CONTINUED)

bit 6-4	SYNCSRC<2:0>: Synchronous Source Selection bits ⁽¹⁾ 111 = Reserved 100 = Reserved
bit 3-0	100 = Reserved 011 = PTGO17 ⁽²⁾ 010 = PTGO16 ⁽²⁾ 001 = Reserved 000 = SYNCI1 input from PPS SEVTPS<3:0>: PWMx Special Event Trigger Output Postscaler Select bits ⁽¹⁾
	 1111 = 1:16 Postscaler generates Special Event Trigger on every sixteenth compare match event . <l< td=""></l<>
	0000 = 1:1 Postscaler generates Special Event Trigger on every second compare match event


- **Note 1:** These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the period register with a value that is slightly larger than the expected period of the external synchronization input signal.
 - 2: See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

U-0 R/W-0 R/W R/W R/W </th <th>R/W-0</th> <th>R/W-0</th> <th>R/W-0</th> <th>R/W-0</th> <th>R/W-0</th> <th>R/W-0</th> <th>U-0</th> <th>U-0</th>	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
U-0 U-0 RW-0 <	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	_
- BCH ⁽¹⁾ BCL ⁽¹⁾ BPH BPHL BPLH BPHH	bit 15							bit
bit 7 t Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' in = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PHR: PWMxH Rising Edge Trigger Enable bit 1 = Rising edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH bit 14 PHF: PWMxH Falling Edge Trigger Enable bit 1 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking is applied to selected Fault input 1 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected Current-limit input 0 = Leading-Edge Blanking is applied to sel	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' nn = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PHR: PWMxH Rising Edge Trigger Enable bit 1 = Rising edge of PWMxH will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH 1 = Falling edge of PWMxH will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH 1 = Falling edge of PWMxH will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH 1 = Rising edge of PWMxH will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL 1 = Rising edge of PWMxL will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL 1 = Falling edge of PWMxL will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL 1 = Falling edge of PWMxL will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL 1 = Falling edge of PWMxL will trigget Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL 1 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected Fault input 1 = Leading-Edge Blanking is applied to selected Current-limit input 1 = Leading-Edge Blanking is not applied to selected current-limit input 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is high 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when Selected blanking signal is low 0 = No blanking when PWMxH dupt is high 0 = No blanking when PWMxH dupt signals) when PWMxH output is high 0 = No blanking when PWMxH tow Enable bit 1 = State blanking (of current-limit and/	_	_	BCH ⁽¹⁾	BCL ⁽¹⁾	BPHH	BPHL	BPLH	BPLL
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' in = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PHR: PWMxH Rising Edge Trigger Enable bit 1 = Rising edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH bit 14 PHF: PWMxH Falling Edge Trigger Enable bit 1 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH bit 13 PLR: PWMxL Rising Edge Trigger Enable bit 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL bit 13 PLR: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking is not applied to selected Fault input bit 11 FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is not applied to selected current-limit input bit 5 BCH: Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input bit 9-6 Unimplemented: Read as '0' 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is high bit 4 BCL: Blanking in Selected Blanking signal is high 1 = State blanking	bit 7							bit
n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PHR: PWMxH Rising Edge Trigger Enable bit 1 = Rising edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH 11 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH 11 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores fising edge of PWMxL 0 = Leading-Edge Blanking ignores falling edge of PWMxL bit 12 PLF: PWMxL Falling Edge Trigger Enable bit 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL 0 = Leading-Edge Blanking ignores falling edge of PWMxL bit 11 FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking signal Figh Enable bit 1 = State blanking in Selected Blanking Singal High Enable bit 1 = State blanking (of current	Legend:							
 PHR: PWMxH Rising Edge Trigger Enable bit Rising edge of PWMxH will trigger Leading-Edge Blanking counter	R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
 1 = Rising edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxH PHF: PWMxH Falling Edge Trigger Enable bit 1 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH PLR: PVMxL Rising Edge Trigger Enable bit 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL PLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL Det Leading-Edge Blanking ignores ralling edge of PWMxL D = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking Signal High Enable bit 1 = Leading-Edge Blanking Signal Liph Enable bit⁽¹⁾ 1 = State blanking (or current-limit and/or Fault input signals) when selected blanking signal is high 0 = No blanking when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking when PWMxH output is high 0 = No blanking when PWMxH output is high 0 = No blanking when PWMxH output is high 0 = No b	-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	nown
 1 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH bit 13 PLR: PWMxL Rising Edge Trigger Enable bit 1 = Rising edge of PWMxL. will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL bit 12 PLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL. will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL bit 12 FLTLEBEN: Fault Input Leading-Edge Blanking Counter 0 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = No blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when PWMxH output is nigh 0 = No bla	bit 15	1 = Rising ed	ge of PWMxH	will trigger Le	ading-Edge Bla			
 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL pLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL bit 11 FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = No blanking when selected Blanking Signal Low Enable bit⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when PWMxH dutput is high 0 = No blanking when PWMxH Low Enable bit 1 = State blanking (of	bit 14	1 = Falling ed	lge of PWMxH	will trigger Le	eading-Edge Bla	0		
bit 12 PLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL bit 11 FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = Leading-Edge Blanking is ont applied to selected current-limit input 0 = No blanking when selected Blanking signal Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when P	bit 13	1 = Rising ed	ge of PWMxL	will trigger Le	ading-Edge Bla			
 1 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input 1 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input 0 = No blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low 0 = No blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low 0 = No blanking (of current-limit and/or Fault input signals) when PWMxL output is low 0 = No blanking when PWMxL output is low 0 = No blanking when PWMxL output is high 0 = No blanking when PWMxL output is high 0 = No blanking when PWMxL output is high 0 = No blanking when PWMxL output is high	bit 12	1 = Falling ed	lge of PWMxL	will trigger Le	ading-Edge Bla			
 1 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input bit 9-6 Unimplemented: Read as '0' bit 5 BCH: Blanking in Selected Blanking Signal High Enable bit⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is hig 0 = No blanking when selected blanking Signal Low Enable bit⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is hig bit 4 BCL: Blanking in Selected Blanking Signal Low Enable bit⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low 0 = No blanking when PWMxL output is low bit 1 BPLH: Blanking in PWMxL Ligh Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high 0 = No blanking when PWMxL output is high 0 = No blanking in PWMxL Low Enable bit 1 = State blanking in PWMxL Low Enable bit 1 = State blanking in PWMxL output is high 	bit 11	1 = Leading-E	Edge Blanking	is applied to	selected Fault in	nput		
bit 5 BCH: Blanking in Selected Blanking Signal High Enable bit ⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is high bit 4 BCL: Blanking in Selected Blanking Signal Low Enable bit ⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low bit 4 BCL: Blanking in Selected Blanking Signal Low Enable bit ⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low bit 3 BPHH: Blanking in PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking when PWMxH output is high bit 2 BPHL: Blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 State blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxL output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit	bit 10	1 = Leading-E	Edge Blanking	is applied to	selected current	t-limit input		
 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is hig 0 = No blanking when selected blanking signal Low Enable bit⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal is low 0 = No blanking in PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking when PWMxH output is high 0 = No blanking in PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low 0 = No blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is low 	bit 9-6	Unimplemen	ted: Read as '	0'				
 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal is low BPHH: Blanking in PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking when PWMxH output is high bit 2 BPHL: Blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 	bit 5	1 = State blar	nking (of currer	nt-limit and/or	Fault input sigr		cted blanking s	ignal is high
 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking when PWMxH output is high bit 2 BPHL: Blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high bit 1 BPLH: Blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 	bit 4	1 = State blar	nking (of currer	nt-limit and/or	Fault input sigr		cted blanking s	ignal is low
1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high 0 = No blanking when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low	bit 3	1 = State blar	nking (of currer	nt-limit and/or	Fault input sigr	nals) when PWN	/IxH output is h	igh
bit 1 BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low	bit 2	1 = State blar	nking (of currer	nt-limit and/or	Fault input sigr	nals) when PWN	/IxH output is lo)W
bit 0 BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low	bit 1	BPLH: Blanki 1 = State blar	ing in PWMxL hking (of currer	High Enable I nt-limit and/or	bit Fault input sigr	nals) when PWN	/IxL output is hi	gh
\sim i	bit 0	BPLL: Blanki 1 = State blar	ng in PWMxL I hking (of currer	Low Enable b nt-limit and/or	it Fault input sigr	nals) when PWN	/IxL output is lo	w

REGISTER 16-16: LEBCONX: PWMx LEADING-EDGE BLANKING CONTROL REGISTER

Note 1: The blanking signal is selected via the BLANKSELx bits in the AUXCONx register.

FIGURE 17-1: QEI BLOCK DIAGRAM

18.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on $\frac{1}{SSx}$.

Note:	This insures		that	the	first	fr	ame
	transr	nission	after	initializ	ation	is	not
	shifte	d or corru	pted.				

- 2. In Non-Framed 3-Wire mode, (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = 0, always place a pull-down resistor on SSx.
 - **Note:** This will insure that during power-up and initialization the master/slave will not lose Sync due to an errant SCKx transition that would cause the slave to accumulate data shift errors for both transmit and receive appearing as corrupted data.
- FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame Sync pulse is active on the SSx pin, which indicates the start of a data frame.
 - Note: Not all third-party devices support Frame mode timing. Refer to the SPIx specifications in Section 30.0 "Electrical Characteristics" for details.
- In Master mode only, set the SMP bit (SPIxCON1<9>) to a '1' for the fastest SPIx data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set.

To avoid invalid slave read data to the master, the user's master software must ensure enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF Transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPIx Shift register and is empty once the data transmission begins.

18.2 SPI Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

18.2.1 KEY RESOURCES

- "Serial Peripheral Interface (SPI)" (DS70569) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

18.3 SPIx Control Registers

R/W-0 U-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 U-0 SPIEN SPISIDL SPIBEC<2:0> _____ bit 15 R/W-0 R/W-0 R/W-0 R/C-0, HS R/W-0 R/W-0 R-0, HS, HC R-0, HS, HC SRMPT SPIROV SRXMPT SISEL2 SISEL1 SISEL0 SPITBF SPIRBF bit 7 Legend: C = Clearable bit HS = Hardware Settable bit HC = Hardware Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 SPIEN: SPIx Enable bit 1 = Enables the module and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins 0 = Disables the module bit 14 Unimplemented: Read as '0' bit 13 SPISIDL: SPIx Stop in Idle Mode bit 1 = Discontinues the module operation when device enters Idle mode 0 = Continues the module operation in Idle mode bit 12-11 Unimplemented: Read as '0' bit 10-8 SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode) Master mode: Number of SPIx transfers that are pending. Slave mode: Number of SPIx transfers that are unread. SRMPT: SPIx Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode) bit 7 1 = SPIx Shift register is empty and Ready-To-Send or receive the data 0 = SPIx Shift register is not empty bit 6 SPIROV: SPIx Receive Overflow Flag bit

REGISTER 18-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

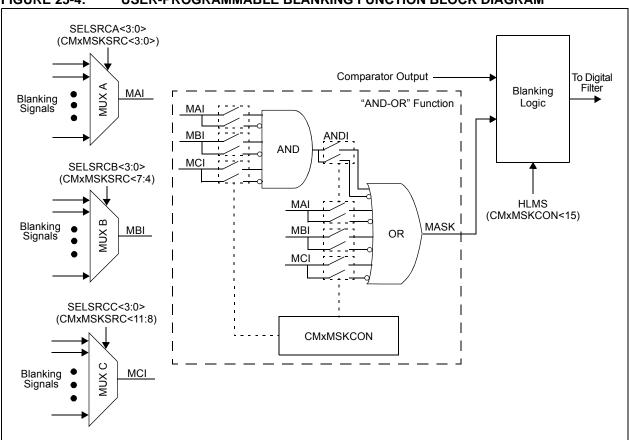
1 = A new byte/word is completely received and discarded; the user application has not read the previous data in the SPIxBUF register 0 = No overflow has occurred SRXMPT: SPIx Receive FIFO Empty bit (valid in Enhanced Buffer mode)

- 1 = RX FIFO is empty
- 0 = RX FIFO is not empty

bit 4-2 SISEL<2:0>: SPIx Buffer Interrupt Mode bits (valid in Enhanced Buffer mode)

- 111 = Interrupt when the SPIx transmit buffer is full (SPITBF bit is set)
 - 110 = Interrupt when last bit is shifted into SPIxSR and as a result, the TX FIFO is empty
 - 101 = Interrupt when the last bit is shifted out of SPIxSR and the transmit is complete
 - 100 = Interrupt when one data is shifted into the SPIxSR and as a result, the TX FIFO has one open memory location
 - 011 = Interrupt when the SPIx receive buffer is full (SPIRBF bit is set)
 - 010 = Interrupt when the SPIx receive buffer is 3/4 or more full
 - 001 = Interrupt when data is available in the receive buffer (SRMPT bit is set)
 - 000 = Interrupt when the last data in the receive buffer is read and as a result, the buffer is empty (SRXMPT bit is set)

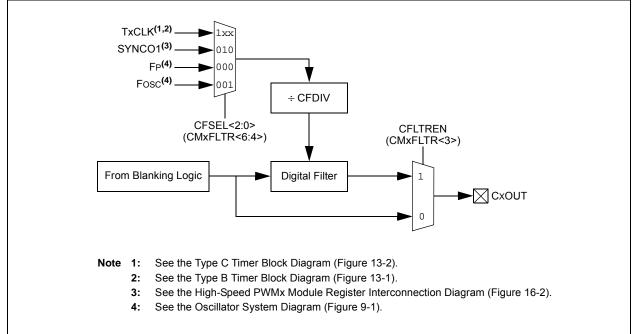
bit 5


bit 8

bit 0

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x					
—	WAKFIL		—		SEG2PH2	SEG2PH1	SEG2PH0					
bit 15							bit					
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x					
SEG2PHTS	S SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0					
bit 7							bit					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'						
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown					
bit 15	Unimplemen	nted: Read as '	0'									
bit 14	WAKFIL: Sel	lect CAN Bus L	ine Filter for V	Vake-up bit								
		N bus line filter										
		line filter is not		e-up								
bit 13-11	-	nted: Read as '										
bit 10-8	SEG2PH<2:0>: Phase Segment 2 bits											
	111 = Length is 8 x TQ											
	•											
	•											
	000 = Lenath	n is 1 x To										
bit 7	000 = Length is 1 x To SEG2PHTS: Phase Segment 2 Time Select bit											
	1 = Freely programmable											
	0 = Maximum of SEG1PHx bits or Information Processing Time (IPT), whichever is greater											
bit 6	SAM: Sample	SAM: Sample of the CAN Bus Line bit										
		s sampled threes sampled once										
bit 5-3	SEG1PH<2:0	0>: Phase Segr	nent 1 bits									
	111 = Length is 8 x TQ											
	•											
	•	•										
	•											
	000 = Length											
bit 2-0		>: Propagation	Time Segmen	t bits								
	111 = Length	IIS8XIQ										
	•											
	•											


REGISTER 21-10: CxCFG2: ECANx BAUD RATE CONFIGURATION REGISTER 2

DIGITAL FILTER INTERCONNECT BLOCK DIAGRAM

26.3 Programmable CRC Registers

REGISTER 26-1: CRCCON1: CRC CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0			
CRCEN	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0			
bit 15	·						bit 8			
R-0	R-1	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0			
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	_	_	_			
bit 7	•						bit (
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	0 = CRC mo	dule is enabled		chines, pointer	s and CRCWD	AT/CRCDAT a	re reset, othe			
bit 14	Unimplemen	ted: Read as '	0'							
bit 13	CSIDL: CRC	CSIDL: CRC Stop in Idle Mode bit								
		nues module op es module opera			Idle mode					
	VWORD<4:0>: Pointer Value bits									
bit 12-8	VWORD<4:0	>: Pointer Value		oue						
bit 12-8	Indicates the		e bits		naximum value	of 8 when PLE	N<4:0> > 7			
	Indicates the or 16 when P	number of valio	e bits d words in the		naximum value	of 8 when PLE	N<4:0> > 7			
	Indicates the or 16 when P	number of valic LEN<4:0> \leq 7. C FIFO Full bit ull	e bits d words in the		naximum value	of 8 when PLE	N<4:0> > 7			
bit 7	Indicates the or 16 when P CRCFUL : CR 1 = FIFO is fi 0 = FIFO is r	number of valic LEN<4:0> \leq 7. C FIFO Full bit ull	e bits d words in the		naximum value	of 8 when PLE	N<4:0> > 7			
bit 7	Indicates the or 16 when P CRCFUL : CR 1 = FIFO is fi 0 = FIFO is r CRCMPT : CF 1 = FIFO is e	number of valic LEN<4:0> \leq 7. C FIFO Full bit ull not full RC FIFO Empty empty	e bits d words in the		naximum value	of 8 when PLE	N<4:0> > 7			
bit 7 bit 6	Indicates the or 16 when P CRCFUL : CR 1 = FIFO is fi 0 = FIFO is r CRCMPT : CF 1 = FIFO is e 0 = FIFO is r	number of valic LEN<4:0> \leq 7. RC FIFO Full bit ull not full RC FIFO Empty empty not empty	e bits d words in the : Bit		naximum value	of 8 when PLE	N<4:0> > 7			
bit 7 bit 6	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is f 0 = FIFO is r CRCMPT: CF 1 = FIFO is r 0 = FIFO is r CRCISEL: CF	number of valic LEN<4:0> \leq 7. RC FIFO Full bit ull not full RC FIFO Empty empty not empty RC Interrupt Se	e bits d words in the Bit election bit	FIFO. Has a m			N<4:0> > 7			
bit 7 bit 6	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is f 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CI 1 = Interrupt	number of valic LEN<4: $0> \leq 7$. CC FIFO Full bit ull not full RC FIFO Empty empty not empty RC Interrupt Se on FIFO is empty	e bits d words in the Bit election bit oty; final word	FIFO. Has a model of data is still s	shifting through		N<4:0> > 7			
bit 7 bit 6 bit 5	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is f 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CI 1 = Interrupt	number of valic LEN<4:0> \leq 7. C FIFO Full bit ull act full C FIFO Empty mot empty act empty RC Interrupt Se on FIFO is emp on shift is comp	e bits d words in the Bit election bit oty; final word	FIFO. Has a model of data is still s	shifting through		N<4:0> > 7			
bit 7 bit 6 bit 5	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is fi 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Star	number of valic LEN<4:0> \leq 7. C FIFO Full bit ull act full C FIFO Empty mot empty act empty RC Interrupt Se on FIFO is emp on shift is comp	e bits d words in the Bit election bit pty; final word plete and CR0	FIFO. Has a model of data is still s	shifting through		N<4:0> > 7			
bit 7 bit 6 bit 5 bit 4	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is f 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Star 1 = Starts CF	number of valic LEN<4:0> \leq 7. C FIFO Full bit ull not full RC FIFO Empty empty not empty RC Interrupt Se on FIFO is emp on shift is comp t CRC bit	e bits d words in the Bit election bit oty; final word plete and CRC	FIFO. Has a model of data is still s	shifting through		N<4:0> > 7			
bit 7 bit 6 bit 5 bit 4	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is f 0 = FIFO is f 1 = FIFO is f 0 = FIFO is f 0 = FIFO is f CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Star 1 = Starts CF 0 = CRC seri LENDIAN: Da	number of valic LEN<4:0> \leq 7. RC FIFO Full bit ull not full RC FIFO Empty mot empty RC Interrupt Se on FIFO is emp on shift is comp on shift is comp rt CRC bit RC serial shifter ial shifter is turr ata Word Little-	e bits d words in the d bit Bit election bit oty; final word plete and CRC ned off Endian Config	FIFO. Has a m of data is still s CWDAT results	shifting through are ready	CRC	N<4:0> > 7			
bit 7 bit 6 bit 5	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is f 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Star 1 = Starts CF 0 = CRC ser LENDIAN: Da 1 = Data wor	number of valic LEN<4:0> \leq 7. C FIFO Full bit ull not full RC FIFO Empty mot empty RC Interrupt Se on FIFO is emp on shift is comp rt CRC bit RC serial shifter ial shifter is turr ata Word Little- rd is shifted into	e bits d words in the d bit Bit election bit oty; final word plete and CRC ned off Endian Config the CRC star	FIFO. Has a m of data is still s CWDAT results guration bit ting with the LS	shifting through are ready Sb (little endiar	ı CRC	N<4:0> > 7			
bit 7 bit 6 bit 5 bit 4	Indicates the or 16 when P CRCFUL: CR 1 = FIFO is fi 0 = FIFO is r CRCMPT: CF 1 = FIFO is r CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Star 1 = Starts CF 0 = CRC seri LENDIAN: Da 1 = Data wor 0 = Data wor	number of valic LEN<4:0> \leq 7. RC FIFO Full bit ull not full RC FIFO Empty mot empty RC Interrupt Se on FIFO is emp on shift is comp on shift is comp rt CRC bit RC serial shifter ial shifter is turr ata Word Little-	e bits d words in the d bit Bit election bit oty; final word plete and CRC plete and CRC c hed off Endian Config the CRC star o the CRC star	FIFO. Has a m of data is still s CWDAT results guration bit ting with the LS	shifting through are ready Sb (little endiar	ı CRC	N<4:0> > 7			

File Name	Address	Device Memory Size (Kbytes)	Bits 23-8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	0057EC	32									
	00AFEC	64									
	0157EC	128	_	_	_	_	_	_	_	—	_
	02AFEC	256									
	0557EC	512									
Reserved	0057EE	32									
	00AFEE	64									
	0157EE	128	_	_	_	_	_	_	_	_	_
	02AFEE	256									
	0557EE	512									
FICD	0057F0	32									
	00AFF0	64	-								
	0157F0	128		Reserved ⁽³⁾	_	JTAGEN	Reserved ⁽²⁾	Reserved ⁽³⁾	_	ICS<	:1.0>
	02AFF0	256				01110211					
	0557F0	512									
FPOR	0057F2	32									
	003712 00AFF2	64									
	0157F2	128		WDTV	VIN<1:0>	ALTI2C2	ALTI2C1	Reserved ⁽³⁾	_		
	013712 02AFF2	256		VUDIV		ALTIZOZ	ALIIZOI	Tteserveu.			_
	02AFF2 0557F2	512									
FWDT	0057F2	32									
	00AFF4	64					WOTODE		WDTDOO	T -0.05	
	0157F4	128	—	FWDTEN	WINDIS	PLLKEN	WDTPRE		WDTPOS	1<3:0>	
	02AFF4	256									
5000	0557F4	512							r		
FOSC	0057F6	32									
	00AFF6	64	-								
	0157F6	128	—	FCKS	SM<1:0>	IOL1WAY	-	-	OSCIOFNC	POSCN	ID<1:0>
	02AFF6	256									
	0557F6	512									
FOSCSEL	0057F8	32									
	00AFF8	64			(4)						
	0157F8	128	—	IESO	PWMLOCK ⁽¹⁾	—	-	-	F	NOSC<2:0>	
	02AFF8	256									
	0557F8	512									
FGS	0057FA	32									
	00AFFA	64									
	0157FA	128	—	—	—	—	—	—	—	GCP	GWRP
	02AFFA	256									
	0557FA	512									
Reserved	0057FC	32									
	00AFFC	64									
	0157FC	128	—	-	—	—	—	—	—	—	—
	02AFFC	256									
	0557FC	512									
Reserved	057FFE	32									
	00AFFE	64									
	0157FE	128	_	-	_	_	—	-	—	—	—
	02AFFE	256									
	0557FE	512									

TABLE 27-1: CONFIGURATION BYTE REGISTER MAP

Legend: — = unimplemented, read as '1'.

Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

2: This bit is reserved and must be programmed as '0'.

3: These bits are reserved and must be programmed as '1'.

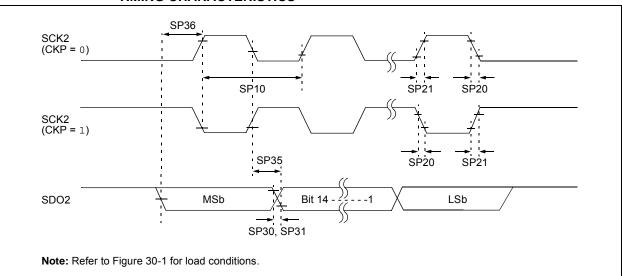

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions		
SY00	Τρυ	Power-up Period	_	400	600	μS			
SY10	Tost	Oscillator Start-up Time		1024 Tosc			Tosc = OSC1 period		
SY12	Twdt	Watchdog Timer Time-out Period	0.81	0.98	1.22	ms	WDTPRE = 0, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 30-20) at +85°C		
			3.26	3.91	4.88	ms	WDTPRE = 1, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 30-20) at +85°C		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS			
SY20	TMCLR	MCLR Pulse Width (low)	2	_		μS			
SY30	TBOR	BOR Pulse Width (low)	1	_		μS			
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	500	900	μS	-40°C to +85°C		
SY36	TVREG	Voltage Regulator Standby-to-Active mode Transition Time	_	—	30	μS			
SY37	Toscdfrc	FRC Oscillator Start-up Delay	46	48	54	μS			
SY38	Toscdlprc	LPRC Oscillator Start-up Delay		—	70	μS			

TABLE 30-22:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

TABLE 30-34: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCK2 Frequency	—	_	15	MHz	(Note 3)	
SP20	TscF	SCK2 Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCK2 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO2 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO2 Data Output Rise Time	-	_		ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns		
SP36	TdiV2scH, TdiV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

TABLE 30-38:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK2 Input Frequency	-	—	Lesser of FP or 11	MHz	(Note 3)	
SP72	TscF	SCK2 Input Fall Time		_	—	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCK2 Input Rise Time	_	_	—	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO2 Data Output Fall Time	_	—	—	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO2 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	_	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	_	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{SS2}$ ↓ to SCK2 ↑ or SCK2 ↓ Input	120	—	—	ns		
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	_	50	ns	(Note 4)	
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 TCY + 40	—	—	ns	(Note 4)	
SP60	TssL2doV	SDO2 Data Output Valid after SS2 Edge	—	_	50	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

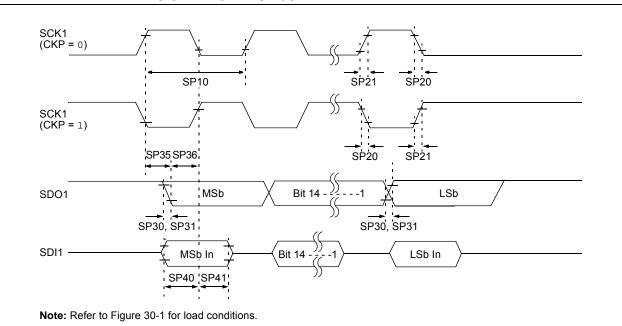
2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 91 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

TABLE 30-40:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK2 Input Frequency	—	—	11	MHz	(Note 3)	
SP72	TscF	SCK2 Input Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCK2 Input Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO2 Data Output Fall Time	—	_	_	ns	See Parameter DO31 (Note 4)	
SP31	TdoR	SDO2 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns		
SP50	TssL2scH, TssL2scL	SS2 ↓ to SCK2 ↑ or SCK2 ↓ Input	120	—	_	ns		
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	(Note 4)	
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 TCY + 40	—		ns	(Note 4)	


Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 91 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

TABLE 30-44:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCK1 Frequency		—	10	MHz	-40°C to +125°C (Note 3)	
SP20	TscF	SCK1 Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCK1 Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time	_	—	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	_	—	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	_	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—	—	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK1 is 100 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPI1 pins.

TABLE 30-48:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK1 Input Frequency	—		11	MHz	(Note 3)	
SP72	TscF	SCK1 Input Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCK1 Input Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns		
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	—	_	ns		
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	(Note 4)	
SP52	TscH2ssH, TscL2ssH	SS1	1.5 Tcy + 40	—		ns	(Note 4)	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 91 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.