

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep256gp202t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2: dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X MOTOR CONTROL FAMILIES

F <i>P</i>	MIL	ES											_	_	_	_			_	_	
	()	es)				Rei	mappa	ble P	eriphe	erals					-						
Device	Page Erase Size (Instructions)	Program Flash Memory (Kbytes)	RAM (Kbytes)	16-Bit/32-Bit Timers	Input Capture	Output Compare	Motor Control PWM ⁽⁴⁾ (Channels)	Quadrature Encoder Interface	UART	SPI ⁽²⁾	ECAN™ Technology	External Interrupts ⁽³⁾	I²C™	CRC Generator	10-Bit/12-Bit ADC (Channels)	Op Amps/Comparators	CTMU	PTG	I/O Pins	Pins	Packages
PIC24EP32MC202	512	32	4																		
PIC24EP64MC202	1024	64	8																		SPDIP,
PIC24EP128MC202	1024	128	16	5	4	4	6	1	2	2	_	3	2	1	6	2/3(1)	Yes	Yes	21	28	SOIC, SSOP ⁽⁵⁾ ,
PIC24EP256MC202	1024	256	32																		QFN-S
PIC24EP512MC202	1024	512	48																		
PIC24EP32MC203	512	32	4	-			<u> </u>	,	6	6		<u> </u>	6		_		v	~	0-) (T) A
PIC24EP64MC203	1024	64	8	5	4	4	6	1	2	2	_	3	2	1	8	3/4	Yes	Yes	25	36	VTLA
PIC24EP32MC204	512	32	4															1			
PIC24EP64MC204	1024	64	8																		VTLA ⁽⁵⁾ ,
PIC24EP128MC204	1024	128	16	5	4	4	6	1	2	2	_	3	2	1	9	3/4	Yes	Yes	35	44/ 48	TQFP, QFN,
PIC24EP256MC204	1024	256	32																	40	UQFN
PIC24EP512MC204	1024	512	48																		
PIC24EP64MC206	1024	64	8																		
PIC24EP128MC206	1024	128	16	F	4	4	6	4	2	2		2	2	1	10	2/4	Vaa	Vaa	50	64	TQFP,
PIC24EP256MC206	1024	256	32	5	4	4	6	1	2	2	_	3	2	1	16	3/4	Yes	Yes	53	64	QFN
PIC24EP512MC206	1024	512	48																		
dsPIC33EP32MC202	512	32	4																		
dsPIC33EP64MC202	1024	64	8																		SPDIP,
dsPIC33EP128MC202	1024	128	16	5	4	4	6	1	2	2	_	3	2	1	6	2/3 (1)	Yes	Yes	21	28	SOIC, SSOP ⁽⁵⁾ ,
dsPIC33EP256MC202	1024	256	32																		QFN-S
dsPIC33EP512MC202	1024	512	48																		
dsPIC33EP32MC203	512	32	4	5	4	4	6	1	2	2		3	2	1	8	3/4	Yes	Yes	25	36	VTLA
dsPIC33EP64MC203	1024	64	8	э	4	4	0	-	2	2		ა	2	I	0	3/4	res	tes	25	30	VILA
dsPIC33EP32MC204	512	32	4																		
dsPIC33EP64MC204	1024	64	8																		VTLA ⁽⁵⁾ ,
dsPIC33EP128MC204	1024	128	16	5	4	4	6	1	2	2	—	3	2	1	9	3/4	Yes	Yes	35	44/ 48	TQFP, QFN,
dsPIC33EP256MC204	1024	256	32																		UQFN
dsPIC33EP512MC204	1024	512	48																		
dsPIC33EP64MC206	1024	64	8																		
dsPIC33EP128MC206	1024	128	16	5	4	4	6	1	2	2	_	3	2	1	16	3/4	Yes	Yes	53	64	TQFP,
dsPIC33EP256MC206	1024	256	32	5	+	1	0	1	2	2		5	2	· ·	10	5/4	165	163	55	04	QFN
dsPIC33EP512MC206	1024	512	48																		
dsPIC33EP32MC502	512	32	4																		
dsPIC33EP64MC502	1024	64	8																		SPDIP, SOIC,
dsPIC33EP128MC502	1024	128	16	5	4	4	6	1	2	2	1	3	2	1	6	2/3(1)	Yes	Yes	21	28	SOIC, SSOP ⁽⁵⁾ ,
dsPIC33EP256MC502	1024	256	32																		QFN-S
dsPIC33EP512MC502	1024	512	48																		
dsPIC33EP32MC503	512	32	4	5	4	4	6	1	2	2	1	3	2	1	8	3/4	Yes	Yes	25	36	VTLA
dsPIC33EP64MC503	1024	64	8	~					_	_			_		Ĵ	<i></i>					

Note 1: On 28-pin devices, Comparator 4 does not have external connections. Refer to Section 25.0 "Op Amp/Comparator Module" for details. 2: Only SPI2 is remappable.

3: INTO is not remappable.

4: Only the PWM Faults are remappable.

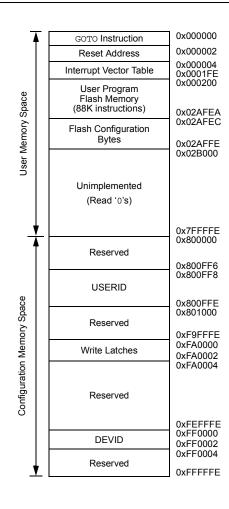
5: The SSOP and VTLA packages are not available for devices with 512 Kbytes of memory.

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33/PIC24 Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

Note 1: To access the documents listed below, browse to the documentation section of the dsPIC33EP64MC506 product page of the Microchip web site (www.microchip.com) or select a family reference manual section from the following list.

> In addition to parameters, features and other documentation, the resulting page provides links to the related family reference manual sections.

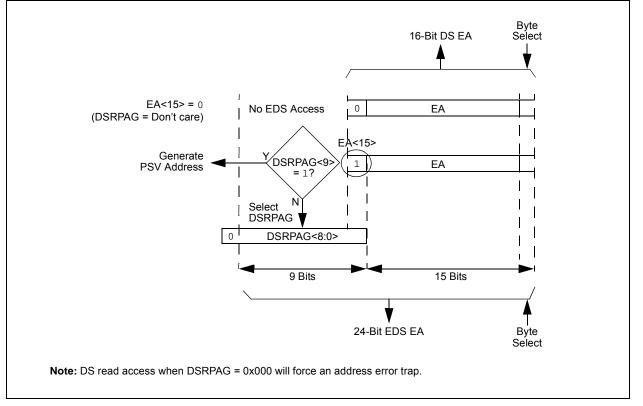

- "Introduction" (DS70573)
- "CPU" (DS70359)
- "Data Memory" (DS70595)
- "Program Memory" (DS70613)
- "Flash Programming" (DS70609)
- "Interrupts" (DS70600)
- "Oscillator" (DS70580)
- "Reset" (DS70602)
- "Watchdog Timer and Power-Saving Modes" (DS70615)
- "I/O Ports" (DS70598)
- "Timers" (DS70362)
- "Input Capture" (DS70352)
- "Output Compare" (DS70358)
- "High-Speed PWM" (DS70645)
- "Quadrature Encoder Interface (QEI)" (DS70601)
- "Analog-to-Digital Converter (ADC)" (DS70621)
- "UART" (DS70582)
- "Serial Peripheral Interface (SPI)" (DS70569)
- "Inter-Integrated Circuit (I²C[™])" (DS70330)
- "Enhanced Controller Area Network (ECAN™)" (DS70353)
- "Direct Memory Access (DMA)" (DS70348)
- "CodeGuard™ Security" (DS70634)
- "Programming and Diagnostics" (DS70608)
- "Op Amp/Comparator" (DS70357)
- "Programmable Cyclic Redundancy Check (CRC)" (DS70346)
- "Device Configuration" (DS70618)
- "Peripheral Trigger Generator (PTG)" (DS70669)
- "Charge Time Measurement Unit (CTMU)" (DS70661)

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1 ⁽¹⁾	US0 ⁽¹⁾	EDT ^(1,2)	DL2 ⁽¹⁾	DL1 ⁽¹⁾	DL0 ⁽¹⁾
bit 15							bit
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA ⁽¹⁾	SATB ⁽¹⁾	SATDW ⁽¹⁾	ACCSAT ⁽¹⁾	IPL3(3)	SFA	RND ⁽¹⁾	IF(1)
bit 7	I				1	1	bit
Legend:		C = Clearable	e bit				
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	1 = Variable	le Exception Pro exception proce	essing latency	is enabled			
bit 14		nted: Read as '					
bit 13-12	-	SP Multiply Uns		Control bits ⁽¹⁾			
	01 = DSP er 00 = DSP er	ngine multiplies ngine multiplies ngine multiplies	are unsigned are signed				
bit 11	•	O Loop Terminatives executing Dot t			iteration		
bit 10-8		Loop Nesting oops are active		(1)			
	•						
	•						
	001 = 1 DO k 000 = 0 DO k	oop is active oops are active					
bit 7	SATA: ACCA	A Saturation En	able bit ⁽¹⁾				
		ator A saturatio ator A saturatio					
bit 6	SATB: ACCE	B Saturation En	able bit ⁽¹⁾				
		ator B saturatio ator B saturatio					
bit 5	SATDW: Dat	ta Space Write	from DSP Engi	ne Saturation	Enable bit ⁽¹⁾		
		ace write satura ace write satura		I			
bit 4		cumulator Satu		elect bit ⁽¹⁾			
		uration (super s uration (normal	,				
bit 3		nterrupt Priority					
		errupt Priority Le errupt Priority Le					
	nis bit is availabl		PXXXMC20X/	50X and dsPl	C33EPXXXGP	50X devices on	ly.
2: Th	nis bit is always	reau as 0.					

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

FIGURE 4-4: PROGRAM MEMORY MAP FOR dsPIC33EP256GP50X, dsPIC33EP256MC20X/50X AND PIC24EP256GP/MC20X DEVICES


Note: Memory areas are not shown to scale.

4.4.1 PAGED MEMORY SCHEME

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X architecture extends the available Data Space through a paging scheme, which allows the available Data Space to be accessed using MOV instructions in a linear fashion for pre-modified and post-modified Effective Addresses (EA). The upper half of the base Data Space address is used in conjunction with the Data Space Page registers, the 10-bit Read Page register (DSRPAG) or the 9-bit Write Page register (DSWPAG), to form an Extended Data Space (EDS) address or Program Space Visibility (PSV) address. The Data Space Page registers are located in the SFR space.

Construction of the EDS address is shown in Example 4-1. When DSRPAG<9> = 0 and the base address bit, EA<15> = 1, the DSRPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS read address. Similarly, when base address bit, EA<15> = 1, DSWPAG<8:0> are concatenated onto EA<14:0> to form the 24-bit EDS write address.

4.8 Interfacing Program and Data Memory Spaces

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X architecture uses a 24-bit-wide Program Space (PS) and a 16-bit-wide Data Space (DS). The architecture is also a modified Harvard scheme, meaning that data can also be present in the Program Space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the architecture of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices provides two methods by which Program Space can be accessed during operation:

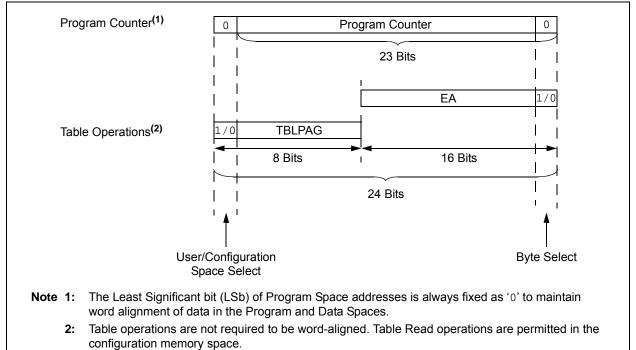

- Using table instructions to access individual bytes or words anywhere in the Program Space
- Remapping a portion of the Program Space into the Data Space (Program Space Visibility)

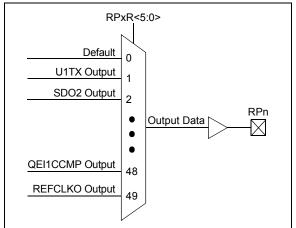
Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

TABLE 4-65: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address							
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>			
Instruction Access	User	0 PC<22:1> 0xx xxxx xxxx xxxx xxx0				0			
(Code Execution)									
TBLRD/TBLWT	User	TB	LPAG<7:0>	Data EA<15:0>					
(Byte/Word Read/Write)		0	0xxx xxxx xx		xxxx xxxx xxxx xxxx				
	Configuration	TBLPAG<7:0>			Data EA<15:0>				
		1	xxx xxxx	XXXX XX	***				

FIGURE 4-22: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER (CONTINUED)


- **Note 1:** The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - $\label{eq:constraint} \textbf{2:} \quad \text{This bit is cleared when the ROI bit is set and an interrupt occurs.}$
 - **3:** The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

11.4.4.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 11-18 through Register 11-27). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-3 and Figure 11-3).

A null output is associated with the output register Reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 11-3: MULTIPLEXING REMAPPABLE OUTPUT FOR RPn

11.4.4.3 Mapping Limitations

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings across any or all of the RPn pins is possible. This includes both many-toone and one-to-many mappings of peripheral inputs and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

TABLE 11-3: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)

Function	RPxR<5:0>	Output Name
Default PORT	000000	RPn tied to Default Pin
U1TX	000001	RPn tied to UART1 Transmit
U2TX	000011	RPn tied to UART2 Transmit
SDO2	001000	RPn tied to SPI2 Data Output
SCK2	001001	RPn tied to SPI2 Clock Output
SS2	001010	RPn tied to SPI2 Slave Select
C1TX ⁽²⁾	001110	RPn tied to CAN1 Transmit
OC1	010000	RPn tied to Output Compare 1 Output
OC2	010001	RPn tied to Output Compare 2 Output
OC3	010010	RPn tied to Output Compare 3 Output
OC4	010011	RPn tied to Output Compare 4 Output
C1OUT	011000	RPn tied to Comparator Output 1
C2OUT	011001	RPn tied to Comparator Output 2
C3OUT	011010	RPn tied to Comparator Output 3
SYNCO1 ⁽¹⁾	101101	RPn tied to PWM Primary Time Base Sync Output
QEI1CCMP ⁽¹⁾	101111	RPn tied to QEI 1 Counter Comparator Output
REFCLKO	110001	RPn tied to Reference Clock Output
C4OUT	110010	RPn tied to Comparator Output 4

Note 1: This function is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This function is available in dsPIC33EPXXXGP/MC50X devices only.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0
bit 7							bit 0
Legend:							

REGISTER 21-11: CxFEN1: ECANx ACCEPTANCE FILTER ENABLE REGISTER 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

FLTEN<15:0>: Enable Filter n to Accept Messages bits

1 = Enables Filter n

0 = Disables Filter n

REGISTER 21-12: CxBUFPNT1: ECANx FILTER 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	F3BF	><3:0>		F2BP<3:0>						
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	F1BF	><3:0>			F0BF	P<3:0>				
bit 7							bit C			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						
bit 15-12	F3BP<3:0>	: RX Buffer Mas	k for Filter 3 b	oits						
	1110 = Filte •	r hits received in r hits received in r hits received in	n RX Buffer 14							
	0001	er hits received in er hits received in								
bit 11-8	F2BP<3:0>	RX Buffer Mas	k for Filter 2 b	oits (same value	s as bits<15:1	2>)				
bit 7-4	F1BP<3:0>	RX Buffer Mas	k for Filter 1 b	oits (same value	s as bits<15:12	2>)				

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 21-19: CxFMSKSEL2: ECANx FILTER 15-8 MASK SELECTION REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F15M	ISK<1:0>	F14MS	K<1:0>	F13MS	SK<1:0>	F12MS	K<1:0>	
bit 15							bit 8	
		54446	5444			5444.0		
R/W-0			R/W-0	R/W-0	R/W-0	R/W-0 R/W-0		
F11M	ISK<1:0>	F10MS	K<1:0>	F9MS	K<1:0>	F8MSI	<<1:0>	
bit 7							bit C	
Legend:								
R = Readable bit W = Writable bit		bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 15 14	ELEMOK A	n. Maak Saura	o for Filtor 15	hita				
	11 = Reserv 10 = Accepta 01 = Accepta 00 = Accepta	ance Mask 2 reg ance Mask 1 reg ance Mask 0 reg	gisters contair gisters contair gisters contair	n mask n mask n mask				
	11 = Reserv 10 = Accepta 01 = Accepta 00 = Accepta	ed ance Mask 2 reg ance Mask 1 reg	gisters contair gisters contair gisters contair	n mask n mask n mask	ies as bits<15:	14>)		
bit 13-12	11 = Reserv 10 = Accepta 01 = Accepta 00 = Accepta F14MSK<1:0	ed ance Mask 2 reg ance Mask 1 reg ance Mask 0 reg	gisters contair gisters contair gisters contair gisters contair e for Filter 14	n mask n mask n mask n mask bits (same valu				
bit 15-14 bit 13-12 bit 11-10 bit 9-8	11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta F14MSK<1:0 F13MSK<1:0	ed ance Mask 2 reg ance Mask 1 reg ance Mask 0 reg 0>: Mask Source	gisters contair gisters contair gisters contair gisters contair e for Filter 14 e for Filter 13	n mask n mask n mask n mask bits (same valu bits (same valu	ies as bits<15:	14>)		
bit 13-12 bit 11-10	11 = Reserv 10 = Accepta 01 = Accepta 00 = Accepta F14MSK<1:0 F13MSK<1:0 F12MSK<1:0	ed ance Mask 2 reg ance Mask 1 reg ance Mask 0 reg 0>: Mask Source 0>: Mask Source	gisters contair gisters contair gisters contair e for Filter 14 e for Filter 13 e for Filter 12	n mask n mask n mask bits (same valu bits (same valu bits (same valu	ies as bits<15: ies as bits<15:	14>) 14>)		
bit 13-12 bit 11-10 bit 9-8	11 = Reserv 10 = Accepta 01 = Accepta 00 = Accepta F14MSK<1:0 F13MSK<1:0 F12MSK<1:0 F11MSK<1:0	ed ance Mask 2 reg ance Mask 1 reg ance Mask 0 reg 0>: Mask Source 0>: Mask Source 0>: Mask Source	gisters contair gisters contair gisters contair e for Filter 14 e for Filter 13 e for Filter 12 e for Filter 11	n mask n mask n mask bits (same valu bits (same valu bits (same valu bits (same valu	ies as bits<15: ies as bits<15: es as bits<15:′	14>) 14>) 14>)		
bit 13-12 bit 11-10 bit 9-8 bit 7-6	11 = Reserve 10 = Accepta 01 = Accepta 00 = Accepta F14MSK<1:0 F13MSK<1:0 F11MSK<1:0 F11MSK<1:0	ed ance Mask 2 reg ance Mask 1 reg ance Mask 0 reg 0>: Mask Source 0>: Mask Source 0>: Mask Source	gisters contair gisters contair gisters contair e for Filter 14 e for Filter 13 e for Filter 12 e for Filter 11 e for Filter 10	n mask n mask n mask bits (same valu bits (same valu bits (same valu bits (same valu bits (same valu	ies as bits<15: ies as bits<15: es as bits<15: ies as bits<15:	14>) 14>) 14>) 14>)		

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 21-22: CxRXFUL1: ECANx RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXFUL7 | RXFUL6 | RXFUL5 | RXFUL4 | RXFUL3 | RXFUL2 | RXFUL1 | RXFUL0 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writable bit, but on	C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

REGISTER 21-23: CxRXFUL2: ECANx RECEIVE BUFFER FULL REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writable bit, but only '	C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-0 **RXFUL<31:16>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

21.5 ECAN Message Buffers

ECAN Message Buffers are part of RAM memory. They are not ECAN Special Function Registers. The user application must directly write into the RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 21-1: ECAN™ MESSAGE BUFFER WORD 0

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
	—	_	SID10	SID9	SID8	SID7	SID6	
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
SID5	SID4	SID3	SID2	SID1	SID0	SRR	IDE	
bit 7					•		bit 0	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-13	Unimplemen	ted: Read as '	כי					
bit 12-2	SID<10:0>: S	Standard Identifi	ier bits					
bit 1	SRR: Substitu	ute Remote Re	quest bit					
	When IDE =	0:						
	1 = Message	will request rer	note transmis	ssion				
	0 = Normal m	nessage						
	When IDE = 1:							
	The SRR bit must be set to '1'.							
bit 0	IDE: Extended Identifier bit							
	1 = Message will transmit Extended Identifier							
	0 = Message will transmit Standard Identifier							

BUFFER 21-2: ECAN™ MESSAGE BUFFER WORD 1

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—		EID17	EID16	EID15	EID14
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID13	EID12	EID11	EID10	EID9	EID8	EID7	EID6
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, rea		ad as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
L							

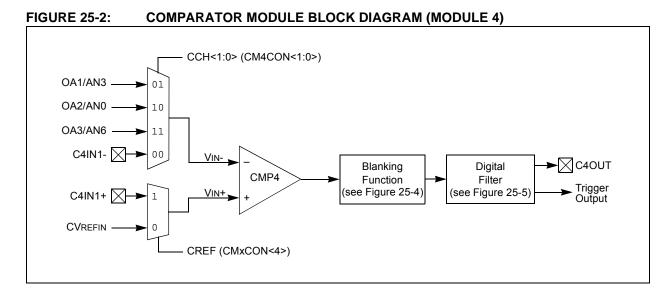
bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

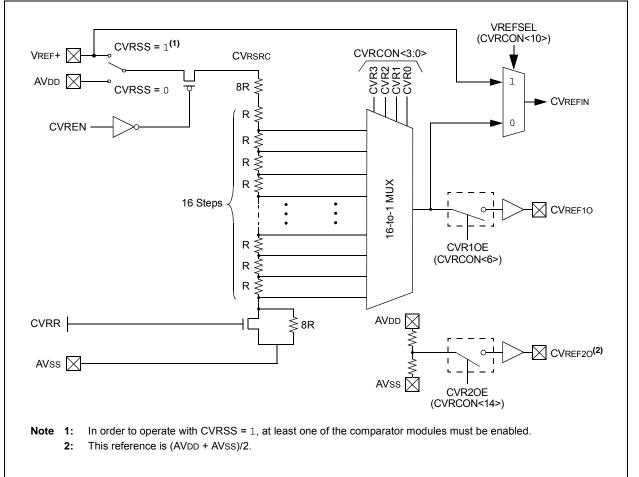
22.2 CTMU Control Registers

REGISTER 2	22-1: CTM	UCON1: CTMU	J CONTROL	REGISTER	1				
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN ⁽¹⁾	CTTRIG		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
		—	_		<u> </u>		_		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable b	t U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		own		
bit 15	bit 15 CTMUEN: CTMU Enable bit 1 = Module is enabled 0 = Module is disabled								
bit 14	bit 14 Unimplemented: Read as '0'								
bit 13	bit 13 CTMUSIDL: CTMU Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode								
bit 12	TGEN: Time Generation Enable bit								

REGISTER 22-1: CTMUCON1: CTMU CONTROL REGISTER 1


	 1 = Hardware modules are used to trigger edges (TMRx, CTEDx, etc.) 0 = Software is used to trigger edges (manual set of EDGxSTAT)
bit 10	EDGSEQEN: Edge Sequence Enable bit
	 1 = Edge 1 event must occur before Edge 2 event can occur 0 = No edge sequence is needed
bit 9	IDISSEN: Analog Current Source Control bit ⁽¹⁾
	 1 = Analog current source output is grounded 0 = Analog current source output is not grounded
bit 8	CTTRIG: ADC Trigger Control bit
	1 = CTMU triggers ADC start of conversion
	0 = CTMU does not trigger ADC start of conversion
bit 7-0	Unimplemented: Read as '0'

1 = Enables edge delay generation0 = Disables edge delay generation


EDGEN: Edge Enable bit

bit 11

Note 1: The ADC module Sample-and-Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitance measurement must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.

27.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a То comprehensive reference source. complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Familv Reference Manual', which is available from the Microchip web site (www.microchip.com).

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

27.1 Configuration Bits

In dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices, the Configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in at the top of the on-chip program memory space, known as the Flash Configuration bytes. Their specific locations are shown in Table 27-1. The configuration data is automatically loaded from the Flash Configuration bytes to the proper Configuration Shadow registers during device Resets.

Note:	Configuration data is reloaded on all types
	of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration bytes for configuration data in their code for the compiler. This is to make certain that program code is not stored in this address when the code is compiled.

The upper 2 bytes of all Flash Configuration Words in program memory should always be '1111 1111 1111 1111 1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration bytes, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.

The Configuration Flash bytes map is shown in Table 27-1.

27.6 JTAG Interface

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface is provided in future revisions of the document.

Note:	Refer to "Programming and Diagnostics"
	(DS70608) in the "dsPIC33/PIC24 Family
	Reference Manual" for further information
	on usage, configuration and operation of the
	JTAG interface.

27.7 In-Circuit Serial Programming

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration Bits" (DS70663) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

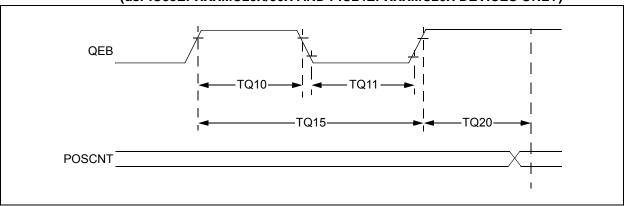
- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

27.8 In-Circuit Debugger

When MPLAB[®] ICD 3 or REAL ICE[™] is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3


To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, Vss and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGECx and PGEDx).

27.9 Code Protection and CodeGuard™ Security

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices offer basic implementation of CodeGuard Security that supports only General Segment (GS) security. This feature helps protect individual Intellectual Property.

Note: Refer to "CodeGuard[™] Security" (DS70634) in the "dsPIC33/PIC24 Family Reference Manual" for further information on usage, configuration and operation of CodeGuard Security.

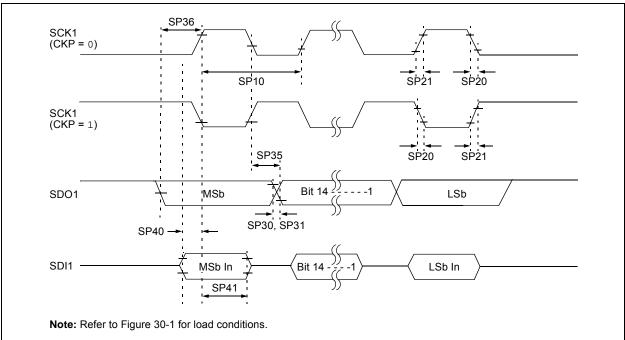

FIGURE 30-11: TIMERQ (QEI MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-30: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾		Min.	Тур.	Max.	Units	Conditions
TQ10	TtQH	TQCK High Time	Synchronous, with prescaler	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25			ns	Must also meet Parameter TQ15
TQ11	TtQL	TQCK Low Time	Synchronous, with prescaler	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25	—	_	ns	Must also meet Parameter TQ15
TQ15	TtQP	TQCP Input Period	Synchronous, with prescaler	Greater of 25 + 50 or (1 Tcy/N) + 50	—	_	ns	
TQ20	TCKEXTMRL	Delay from External TQCK Clock Edge to Timer Increment		_	1	Тсү	—	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 30-24: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-43:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHA	RACTERIST	ICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency	_	—	10	MHz	(Note 3)
SP20	TscF	SCK1 Output Fall Time	—	—		ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2sc, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30			ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK1 is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPI1 pins.

APPENDIX A: REVISION HISTORY

Revision A (April 2011)

This is the initial released version of the document.

Revision B (July 2011)

This revision includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table A-1.

TABLE A-1: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Digital Signal Controllers and Microcontrollers"	Changed all pin diagrams references of VLAP to TLA.
Section 4.0 "Memory Organization"	Updated the All Resets values for CLKDIV and PLLFBD in the System Control Register Map (see Table 4-35).
Section 5.0 "Flash Program Memory"	Updated "one word" to "two words" in the first paragraph of Section 5.2 "RTSP Operation" .
Section 9.0 "Oscillator Configuration"	Updated the PLL Block Diagram (see Figure 9-2). Updated the Oscillator Mode, Fast RC Oscillator (FRC) with divide-by-N and PLL (FRCPLL), by changing (FRCDIVN + PLL) to (FRCPLL).
	Changed (FRCDIVN + PLL) to (FRCPLL) for COSC<2:0> = 001 and NOSC<2:0> = 001 in the Oscillator Control Register (see Register 9-1).
	Changed the POR value from 0 to 1 for the DOZE<1:0> bits, from 1 to 0 for the FRCDIV<0> bit, and from 0 to 1 for the PLLPOST<0> bit; Updated the default definitions for the DOZE<2:0> and FRCDIV<2:0> bits and updated all bit definitions for the PLLPOST<1:0> bits in the Clock Divisor Register (see Register 9-2).
	Changed the POR value from 0 to 1 for the PLLDIV<5:4> bits and updated the default definitions for all PLLDIV<8:0> bits in the PLL Feedback Division Register (see Register 9-2).
Section 22.0 "Charge Time Measurement Unit (CTMU)"	Updated the bit definitions for the IRNG<1:0> bits in the CTMU Current Control Register (see Register 22-3).
Section 25.0 "Op amp/ Comparator Module"	Updated the voltage reference block diagrams (see Figure 25-1 and Figure 25-2).

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV == ISO/TS 16949 ==

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620773949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.