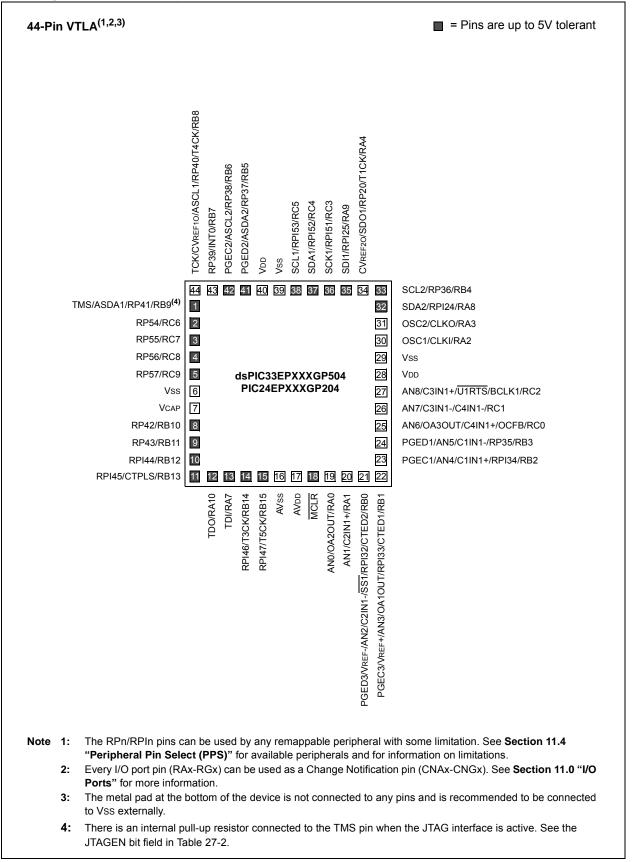


Welcome to E-XFL.COM

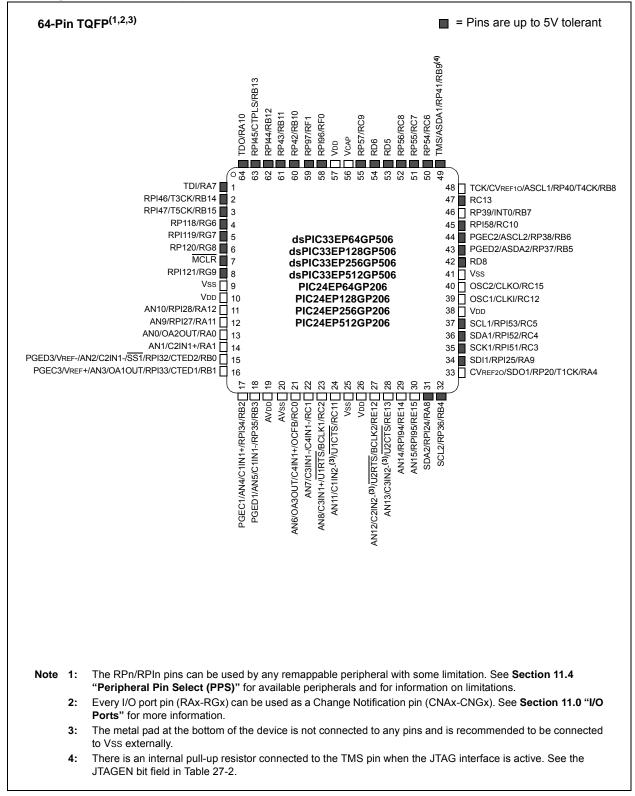
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Detuils	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep256gp204-e-tl


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)

3.5 **Programmer's Model**

The programmer's model for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X is shown in Figure 3-2. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.

In addition to the registers contained in the programmer's model, the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/

MC20X devices contain control registers for Modulo Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only), Bit-Reversed Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only) and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory mapped, as shown in Table 4-1.

Register(s) Name	Description
W0 through W15	Working Register Array
ACCA, ACCB	40-Bit DSP Accumulators
PC	23-Bit Program Counter
SR	ALU and DSP Engine STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
DSRPAG	Extended Data Space (EDS) Read Page Register
DSWPAG	Extended Data Space (EDS) Write Page Register
RCOUNT	REPEAT Loop Count Register
DCOUNT ⁽¹⁾	DO Loop Count Register
DOSTARTH ^(1,2) , DOSTARTL ^(1,2)	DO Loop Start Address Register (High and Low)
DOENDH ⁽¹⁾ , DOENDL ⁽¹⁾	DO Loop End Address Register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

TABLE 3-1: PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Note 1: This register is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only.

2: The DOSTARTH and DOSTARTL registers are read-only.

IABLE 4-2	23: E	CAN1 I	REGIST	ER MA	P WHE	N WIN	(CICIE	<l1<0></l1<0>	•) = 1 FC	OR dsPIC	33EPX	XXMC/G	P50X D	EVICES	ONLY (NUED)	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11EID	046E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF12SID	0470			SID<10:3> SID<2:0> — EXIDE — EID<17:16> x						SID<2:0> — EXIDE — EID<17:16>						xxxx		
C1RXF12EID	0472		EID<15:8>										EID<	7:0>				xxxx
C1RXF13SID	0474				SID<	:10:3>					SID<2:0>		_	EXIDE	—	EID<1	7:16>	xxxx
C1RXF13EID	0476			EID<15:8> EID<7:0>				xxxx										
C1RXF14SID	0478				SID<	:10:3>					SID<2:0>		_	EXIDE	—	EID<1	7:16>	xxxx
C1RXF14EID	047A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF15SID	047C				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C1RXF15EID	047E				EID<	:15:8>							EID<	7:0>				xxxx

ECANI DECISTED MAD WHEN WIN (CICTDI 1 -0.) 1 EOD doDIC22EDXXXMC/CDE0X DEVICES ONLY (CONTINUED) TARIE 1 22.

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4	4-31:	PER	IPHERA	L PIN S	ELECT	INPUT F	REGISTI	ER MAP	FOR de	sPIC33E	EPXXXG	P50X D	EVICES	SONLY	

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—				INT1R<6:0>				_	_	—	—	—	—	—	_	0000
RPINR1	06A2		_	_	_	_	_	_	_	_				INT2R<6:0>	•			0000
RPINR3	06A6		_	_	_	_	_	_	_	_			٦	[2CKR<6:0	>			0000
RPINR7	06AE					IC2R<6:0>				_				IC1R<6:0>				0000
RPINR8	06B0					IC4R<6:0>				_				IC3R<6:0>				0000
RPINR11	06B6		_	_	_	_	_	_	_	_			(DCFAR<6:0	>			0000
RPINR18	06C4		_	_	_	_	_	_	_	_			ι	J1RXR<6:0	>			0000
RPINR19	06C6		_	_	_	_	_	_	_	_			ι	J2RXR<6:0	>			0000
RPINR22	06CC				S	CK2INR<6:0)>			_			:	SDI2R<6:0>	•			0000
RPINR23	06CE	_	_	_	—	—	_	_	—	—				SS2R<6:0>				0000
RPINR26	06D4	—	_	_	-	_	_	—		—			(C1RXR<6:0	>			0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
RPINR0	06A0	_				INT1R<6:0>				—	—	—	—	—	—	—	_	0000	
RPINR1	06A2		_	_	_	_	_	_	_	_				INT2R<6:0>				0000	
RPINR3	06A6		_	_	_	_	_	_	_	_			-	F2CKR<6:0	>			0000	
RPINR7	06AE					IC2R<6:0>				_	- IC1R<6:0>					0000			
RPINR8	06B0					IC4R<6:0>				_	- IC3R<6:0>					IC3R<6:0> 00			0000
RPINR11	06B6		_	_	_	_	_	_	_	_			(DCFAR<6:0	>			0000	
RPINR12	06B8			FLT2R<6:0> — FLT1R<6:0>					FLT1R<6:0>					0000					
RPINR14	06BC				(QEB1R<6:0	>			_			(QEA1R<6:0	>			0000	
RPINR15	06BE				Н	OME1R<6:0)>			_	INDX1R<6:0>							0000	
RPINR18	06C4		_	_	_	_	_	_	_	_	U1RXR<6:0>						0000		
RPINR19	06C6		_	_	_	_	_	_	_	_	U2RXR<6:0>						0000		
RPINR22	06CC	_			S	CK2INR<6:()>			—				SDI2R<6:0>	•			0000	
RPINR23	06CE	_	—	—		—	—		—	—				SS2R<6:0>				0000	
RPINR26	06D4	_	—	—		—	—		—	—			(C1RXR<6:0	>			0000	
RPINR37	06EA	_			S	YNCI1R<6:0)>			—						_	0000		
RPINR38	06EC	_	DTCMP1R<6:0>						—	—	—	—	_				0000		
RPINR39	06EE	_			D	FCMP3R<6:	0>			_			D	CMP2R<6:	0>			0000	

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

4.5 Instruction Addressing Modes

The addressing modes shown in Table 4-63 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.5.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.5.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can either be a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- · Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal
- Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

TABLE 4-63: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknow				
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'		
Legend:								
bit 7							bit C	
			NVMAD)R<23:16>				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
bit 15							bit 8	
_	—	—	—	—	_	—	—	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMADR<23:16>:** Nonvolatile Memory Write Address High bits Selects the upper 8 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

REGISTER 5-3: NVMADRL: NONVOLATILE MEMORY ADDRESS REGISTER LOW

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 NVMADR<15:0>: Nonvolatile Memory Write Address Low bits

Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMK	EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register (write-only) bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0					
CHEN	SIZE	DIR	HALF	NULLW								
bit 15							bit					
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0					
	0-0	AMODE1	AMODE0	0-0	0-0	MODE1	MODE0					
bit 7		AWODET	7 WIODE0			MODET	bit					
Lovende												
Legend: R = Readab	lo hit	M - Mritabla	hit.		monted bit rec	ud aa '0'						
		W = Writable		-	mented bit, rea							
-n = Value a	IT POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15	CHEN: DMA	Channel Enabl	e bit									
	1 = Channel 0 = Channel											
bit 14		ata Transfer S	ze hit									
	1 = Byte											
	0 = Word											
bit 13	DIR: DMA Tra	ansfer Directior	n bit (source/d	estination bus	select)							
		om RAM addre om peripheral a		•								
bit 12		Block Transfer										
	1 = Initiates i	nterrupt when	half of the data	a has been mo								
bit 11		Data Periphera										
		write to periph			e (DIR bit must	also be clear)						
bit 10-6	Unimplemen	ted: Read as '	0'									
bit 5-4	AMODE<1:0	-: DMA Chann	el Addressing	Mode Select b	oits							
	11 = Reserve 10 = Periphe 01 = Register		ressing mode ut Post-Increm	nent mode								
bit 3-2	Unimplemen	ted: Read as '	0'									
bit 1-0	-	MODE<1:0>: DMA Channel Operating Mode Select bits										
	11 = One-Sho 10 = Continue	ot, Ping-Pong r ous, Ping-Pong ot, Ping-Pong r	nodes are ena modes are e nodes are dis	abled (one bloc nabled abled	ck transfer fror	n/to each DMA t	ouffer)					

REGISTER 8-1: DMAXCON: DMA CHANNEL X CONTROL REGISTER

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER (CONTINUED)

- **Note 1:** The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - $\label{eq:constraint} \textbf{2:} \quad \text{This bit is cleared when the ROI bit is set and an interrupt occurs.}$
 - **3:** The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

17.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Quadrature Encoder Interface (QEI)" (DS70601) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data.

The operational features of the QEI module include:

- 32-Bit Position Counter
- 32-Bit Index Pulse Counter
- 32-Bit Interval Timer
- 16-Bit Velocity Counter
- 32-Bit Position Initialization/Capture/Compare High register
- 32-Bit Position Compare Low register
- x4 Quadrature Count mode
- External Up/Down Count mode
- External Gated Count mode
- External Gated Timer mode
- Internal Timer mode

Figure 17-1 illustrates the QEI block diagram.

REGISTER 18-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

- bit 1 SPITBF: SPIx Transmit Buffer Full Status bit
 - 1 = Transmit not yet started, SPIxTXB is full
 - 0 = Transmit started, SPIxTXB is empty

Standard Buffer mode:

Automatically set in hardware when core writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR.

Enhanced Buffer mode:

Automatically set in hardware when the CPU writes to the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write operation.

bit 0 SPIRBF: SPIx Receive Buffer Full Status bit

1 = Receive is complete, SPIxRXB is full

0 = Receive is incomplete, SPIxRXB is empty

Standard Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.

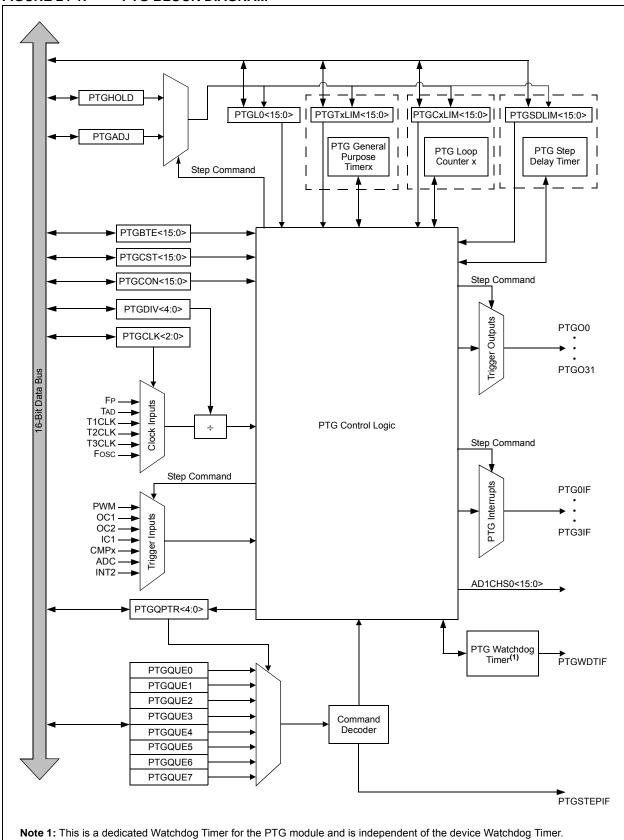
Enhanced Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

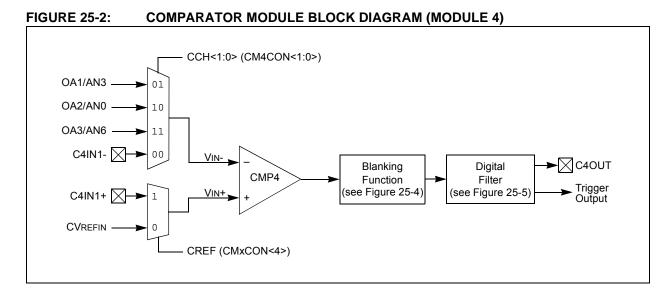
REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	1 = Indicates that a Start (or Repeated Start) bit has been detected last
	0 = Start bit was not detected last
	Hardware is set or clear when a Start, Repeated Start or Stop is detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	1 = Read – Indicates data transfer is output from the slave
	0 = Write – Indicates data transfer is input to the slave
	Hardware is set or clear after reception of an I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive is complete, I2CxRCV is full
	0 = Receive is not complete, I2CxRCV is empty
	Hardware is set when I2CxRCV is written with a received byte. Hardware is clear when software reads
	I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit in progress, I2CxTRN is full
	0 = Transmit is complete, I2CxTRN is empty
	Hardware is set when software writes to I2CxTRN. Hardware is clear at completion of a data transmission.

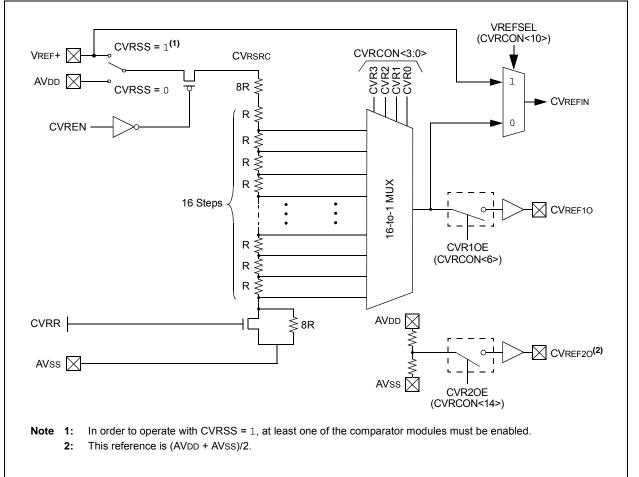
dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X


U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
		—	_	—	—	—	—			
bit 15							bit 8			
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0			
—	—	—	DNCNT4	DNCNT3	DNCNT2	DNCNT1	DNCNT0			
bit 7							bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown			
bit 15-5	Unimplemen	ted: Read as '	0'							
bit 4-0	DNCNT<4:0>	: DeviceNet™	Filter Bit Num	iber bits						
	10010-11111 = Invalid selection 10001 = Compares up to Data Byte 3, bit 6 with EID<17>									
	•									
	•									
	•									
	00001 = Compares up to Data Byte 1, bit 7 with EID<0> 00000 = Does not compare data bytes									

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X


	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
CSS31	CSS30	—	—	—	CSS26 ⁽²⁾	CSS25 ⁽²⁾	CSS24 ⁽²⁾				
bit 15	•					1	bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_		_	_	_		_					
bit 7							bit (
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimple	emented bit, read	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unki	nown				
bit 15		1 Input Scan S									
		1 = Selects CTMU capacitive and time measurement for input scan (Open)									
	•	•		surement for ir	nput scan (Open)					
bit 14		CSS30: ADC1 Input Scan Selection bit									
					r input scan (CT input scan (CTN						
bit 13-11	Unimplemen	ted: Read as '	0'								
bit 10	CSS26: ADC	1 Input Scan S	election bit ⁽²⁾								
	1 = Selects OA3/AN6 for input scan										
	0 = Skips OA	3/AN6 for input	scan								
bit 9	CSS25: ADC	1 Input Scan S	election bit ⁽²⁾								
	1 = Selects OA2/AN0 for input scan										
	0 = Skips OA	2/AN0 for input	scan								
bit 8	CSS24: ADC	1 Input Scan S	election bit ⁽²⁾								
		A1/AN3 for inp									
	0 = Skips OA	1/AN3 for input	scan								
	° 01p0 07.		ooun								

REGISTER 23-7: AD1CSSH: ADC1 INPUT SCAN SELECT REGISTER HIGH⁽¹⁾


2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
CON	COE ⁽²⁾	CPOL	_	—	OPMODE	CEVT	COUT			
bit 15							bit 8			
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0			
EVPOL1	EVPOL0	—	CREF ⁽¹⁾	—	—	CCH1 ⁽¹⁾	CCH0 ⁽¹⁾			
bit 7							bit (
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15		p/Comparator								
		comparator is e								
		comparator is d								
bit 14	COE: Comparator Output Enable bit ⁽²⁾									
	 1 = Comparator output is present on the CxOUT pin 0 = Comparator output is internal only 									
bit 13	CPOL: Comparator Output Polarity Select bit									
	1 = Comparator output is inverted									
	0 = Compara	tor output is no	t inverted							
bit 12-11	Unimplemen	ted: Read as '	0'							
bit 10	OPMODE: Op Amp/Comparator Operation Mode Select bit									
		erates as an o erates as a co								
bit 9	CEVT: Comp	arator Event bi	t							
	 1 = Comparator event according to the EVPOL<1:0> settings occurred; disables future triggers and interrupts until the bit is cleared 									
	•	ator event did n								
bit 8	COUT: Comparator Output bit									
	When CPOL = 0 (non-inverted polarity):									
	1 = VIN + > VIN - 0 = VIN + < VIN - 0									
	When $CPOL = 1$ (inverted polarity):									
	1 = VIN+ < VI	N-	<u> </u>							
	0 = VIN + > VI									

REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2 OR 3)

- Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.
 - 2: This output is not available when OPMODE (CMxCON<10>) = 1.

REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2 OR 3) (CONTINUED)

bit 7-6	EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits
	 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): High-to-low transition of the comparator output.
	01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity-selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): High-to-low transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): Low-to-high transition of the comparator output
	00 = Trigger/event/interrupt generation is disabled
bit 5	Unimplemented: Read as '0'
bit 4	CREF: Comparator Reference Select bit (VIN+ input) ⁽¹⁾
	 1 = VIN+ input connects to internal CVREFIN voltage⁽²⁾ 0 = VIN+ input connects to CxIN1+ pin
bit 3-2	Unimplemented: Read as '0'
bit 1-0	CCH<1:0>: Op Amp/Comparator Channel Select bits ⁽¹⁾
	 11 = Unimplemented 10 = Unimplemented 01 = Inverting input of the comparator connects to the CxIN2- pin⁽²⁾ 00 = Inverting input of the op amp/comparator connects to the CxIN1- pin

- **Note 1:** Inputs that are selected and not available will be tied to Vss. See the "**Pin Diagrams**" section for available inputs for each package.
 - 2: This output is not available when OPMODE (CMxCON<10>) = 1.

30.1 DC Characteristics

			Maximum MIPS
Characteristic	VDD Range (in Volts)	Temp Range (in °C)	dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X
	3.0V to 3.6V ⁽¹⁾	-40°C to +85°C	70
—	3.0V to 3.6V ⁽¹⁾	-40°C to +125°C	60

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

TABLE 30-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Тур.	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD	PINT + PI/O			W
I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(ΓJ — TA)/θJ	IA	W

TABLE 30-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур.	Max.	Unit	Notes
Package Thermal Resistance, 64-Pin QFN	θJA	28.0		°C/W	1
Package Thermal Resistance, 64-Pin TQFP 10x10 mm	θJA	48.3	_	°C/W	1
Package Thermal Resistance, 48-Pin UQFN 6x6 mm	θJA	41	—	°C/W	1
Package Thermal Resistance, 44-Pin QFN	θJA	29.0	_	°C/W	1
Package Thermal Resistance, 44-Pin TQFP 10x10 mm	θJA	49.8	_	°C/W	1
Package Thermal Resistance, 44-Pin VTLA 6x6 mm	θJA	25.2	_	°C/W	1
Package Thermal Resistance, 36-Pin VTLA 5x5 mm	θJA	28.5		°C/W	1
Package Thermal Resistance, 28-Pin QFN-S	θJA	30.0	_	°C/W	1
Package Thermal Resistance, 28-Pin SSOP	θJA	71.0	_	°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	69.7	_	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θJA	60.0	—	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CH	ARACTE	RISTICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
	VIL	Input Low Voltage					
DI10		Any I/O Pin and MCLR	Vss	—	0.2 VDD	V	
DI18		I/O Pins with SDAx, SCLx	Vss	—	0.3 VDD	V	SMBus disabled
DI19		I/O Pins with SDAx, SCLx	Vss	—	0.8	V	SMBus enabled
	VIH	Input High Voltage					
DI20		I/O Pins Not 5V Tolerant	0.8 VDD	—	Vdd	V	(Note 3)
		I/O Pins 5V Tolerant and MCLR	0.8 VDD	—	5.5	V	(Note 3)
		I/O Pins with SDAx, SCLx	0.8 VDD	—	5.5	V	SMBus disabled
		I/O Pins with SDAx, SCLx	2.1	_	5.5	V	SMBus enabled
	ICNPU	Change Notification Pull-up Current					
DI30			150	250	550	μA	VDD = 3.3V, VPIN = VSS
	ICNPD	Change Notification Pull-Down Current ⁽⁴⁾					
DI31			20	50	100	μA	Vdd = 3.3V, Vpin = Vdd

TABLE 30-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- 2: Negative current is defined as current sourced by the pin.
- 3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
- 4: VIL source < (VSS 0.3). Characterized but not tested.

5: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.

- 6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.
- 8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.