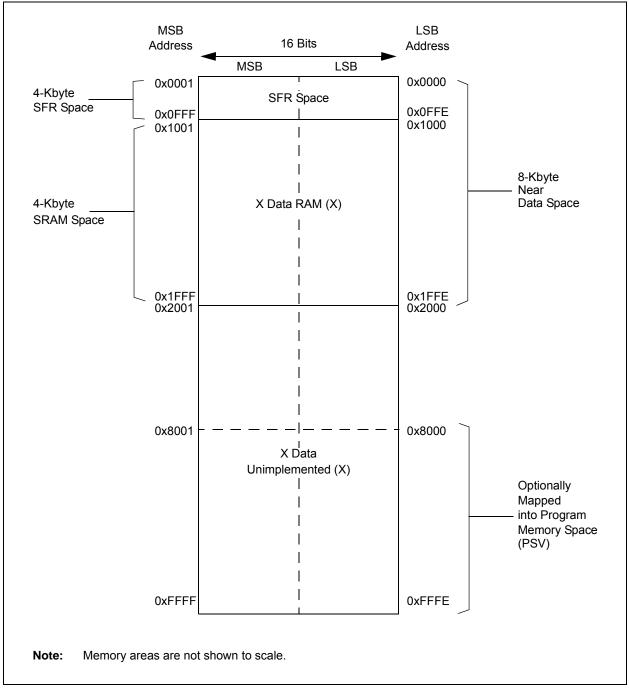


Welcome to E-XFL.COM

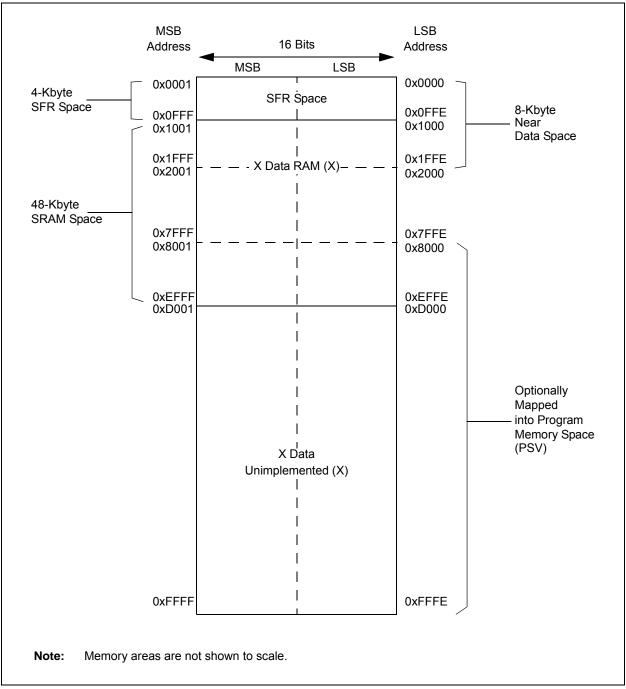
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI


Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep256gp204-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY

TADLL	τу.																	
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800		DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	—	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804		_	_	-		_	—	_	_	IC4IF	IC3IF	DMA3IF	_	—	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	_	_	_	_	_	_	_	_	_	_	_	MI2C2IF	SI2C2IF	_	0000
IFS4	0808	_	_	CTMUIF	_	_	_	_	_	_	_	_	_	CRCIF	U2EIF	U1EIF	_	0000
IFS8	0810	JTAGIF	ICDIF		_	_	_	—	—	_	_	_	_	_	—	—	_	0000
IFS9	0812	_	_	_	_	_	_	—	—	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF	—	0000
IEC0	0820	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	_	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	_	_	_	_	_	_	_	_	IC4IE	IC3IE	DMA3IE	_	_	SPI2IE	SPI2EIE	0000
IEC3	0826	_	_	_	_	_	_	—	—	_	_	_	_	_	MI2C2IE	SI2C2IE	—	0000
IEC4	0828	_	_	CTMUIE	_	_	_	_	_	_	_	_	_	CRCIE	U2EIE	U1EIE	_	0000
IEC8	0830	JTAGIE	ICDIE	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
IEC9	0832	_	_	_	_	_	_	—	—	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	—	0000
IPC0	0840	_		T1IP<2:0>		_	(OC1IP<2:0	>	— IC1IP<2:0>		—		INT0IP<2:0>		4444		
IPC1	0842	_		T2IP<2:0>		_	(OC2IP<2:0	>	_	IC2IP<2:0>		_	C	0MA0IP<2:0>		4444	
IPC2	0844	_	U	J1RXIP<2:0	>	_	;	SPI1IP<2:0	>	_	SPI1EIP<2:0>		_		T3IP<2:0>		4444	
IPC3	0846	_	_	_	_	_	D)MA1IP<2:	0>	_		AD1IP<2:0>		_	ι	J1TXIP<2:0>		0444
IPC4	0848			CNIP<2:0>				CMIP<2:0	>	_		MI2C1IP<2:0	>	_	S	SI2C1IP<2:0>		4444
IPC5	084A	_	_	_	_	_	_	_	_	_	_	—	_	_	I	INT1IP<2:0>		0004
IPC6	084C	_		T4IP<2:0>		_	(OC4IP<2:0	>	_		OC3IP<2:0>		_	C)ma2IP<2:0>		4444
IPC7	084E		I	U2TXIP<2:0	>		L	J2RXIP<2:)>	_		INT2IP<2:0>		_		T5IP<2:0>		4444
IPC8	0850		_	_	_		_	—	—	_		SPI2IP<2:0>		_	S	SPI2EIP<2:0>		0044
IPC9	0852		_	_	_			IC4IP<2:0	>	_		IC3IP<2:0>		_	C	0MA3IP<2:0>		0444
IPC12	0858		_	_	_		N	112C2IP<2:	0>	_		SI2C2IP<2:0	>	_	_	_	_	0440
IPC16	0860			CRCIP<2:0>	>			U2EIP<2:0	>	_		U1EIP<2:0>		_	_	_	_	4440
IPC19	0866		_	_	_	_	_	_	_	_		CTMUIP<2:0	>	_	_	_	_	0040
IPC35	0886			JTAGIP<2:0	>	_		ICDIP<2:0	>	_	_	_	_	_	_	_	_	4400
IPC36	0888	_		PTG0IP<2:0	>	_	PT	GWDTIP<	2:0>	_	P	TGSTEPIP<2	:0>	_	_	—	_	4440
IPC37	088A	_	_	_	_	_	F	PTG3IP<2:)>	_		PTG2IP<2:0	>	_	F	PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	_				—	_	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	_				_	_		—	—	_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	_		_			_	_	_	_	DAE	DOOVR	_	_	—		0000
INTCON4	08C6		_	_	_	_	_	—	_	_	_	_	_	_	_		SGHT	0000
INTTREG	08C8	_			_		ILR<	3:0>					VECN	UM<7:0>				0000

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

TABLE 4-24: CRC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	12 Bit 11 Bit 2 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1								Bit 0	All Resets		
CRCCON1	0640	CRCEN	—	CSIDL		VWORD<4:0> CRCFUL CRCMPT CRCISEL CRCGO LENDIAN								—	0000		
CRCCON2	0642		DWIDTH<4:0> PLEN<4:0> (0000			
CRCXORL	0644		X<15:1> — (0000			
CRCXORH	0646								X·	<31:16>							0000
CRCDATL	0648								CRC Data	Input Low V	Vord						0000
CRCDATH	064A								CRC Data	Input High \	Vord						0000
CRCWDATL	064C		CRC Result Low Word 00										0000				
CRCWDATH	064E		CRC Result High Word 00										0000				

Legend: — = unimplemented, read as '0'. Shaded bits are not used in the operation of the programmable CRC module.

TABLE 4-25: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC202/502 AND PIC24EPXXXGP/MC202 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	—	—		RP35R<5:0>						_	RP20R<5:0>						
RPOR1	0682	_	_		RP37R<5:0>					_	Ι	RP36R<5:0>						
RPOR2	0684	_	_			RP39F	<5:0>			_	Ι	RP38R<5:0>						0000
RPOR3	0686	_	_		RP41R<5:0>					_	Ι	RP40R<5:0>					0000	
RPOR4	0688	_	_		RP43R<5:0>						_			RP42F	R<5:0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGP/MC203/503 AND PIC24EPXXXGP/MC203 DEVICES ONLY DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
RPOR0	0680		—		RP35R<5:0>					_	_		RP20R<5:0>						
RPOR1	0682	_	_		RP37R<5:0>					_	_		RP36R<5:0>						
RPOR2	0684	_	_			RP39F	२<5:0>			_	—		RP38R<5:0>					0000	
RPOR3	0686	_	_			RP41F	२<5:0>			_	—		RP40R<5:0>					0000	
RPOR4	0688	_	_			RP43F	۲<5:0>			_	_			RP42F	२<5:0>			0000	
RPOR5	068A	_	_	_						_	_					_	0000		
RPOR6	068C	_	—								0000								

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> ⁽²⁾		RA	Ν	OV	Z	С
bit 7							bit 0

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
	110 = CPU Interrupt Priority Level is 6 (14)
	101 = CPU Interrupt Priority Level is 5 (13)
	100 = CPU Interrupt Priority Level is 4 (12)
	011 = CPU Interrupt Priority Level is 3 (11)
	010 = CPU Interrupt Priority Level is 2 (10)
	001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)

- **Note 1:** For complete register details, see Register 3-1.
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - **3:** The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment	Peripheral Pir Select Input Register Value		Pin Assignment
000 0000	I	Vss	010 1101		RPI45
000 0001	I	C1OUT ⁽¹⁾	010 1110	I	RPI46
000 0010	I	C2OUT ⁽¹⁾	010 1111	I	RPI47
000 0011	I	C3OUT ⁽¹⁾	011 0000	_	_
000 0100	I	C4OUT ⁽¹⁾	011 0001		_
000 0101	—	_	011 0010	_	_
000 0110	I	PTGO30 ⁽¹⁾	011 0011	I	RPI51
000 0111	I	PTGO31 ⁽¹⁾	011 0100	I	RPI52
000 1000	I	FINDX1 ^(1,2)	011 0101	I	RPI53
000 1001	I	FHOME1 ^(1,2)	011 0110	I/O	RP54
000 1010	_	_	011 0111	I/O	RP55
000 1011	—	_	011 1000	I/O	RP56
000 1100	—	—	011 1001	I/O	RP57
000 1101	_		011 1010	I	RPI58
000 1110	—	—	011 1011	_	—
000 1111	—	—	011 1100	_	—
001 0000	—	—	011 1101	—	_
001 0001	—	—	011 1110	_	—
001 0010	—	—	011 1111	—	—
001 0011	—	—	100 0000	—	_
001 0100	I/O	RP20	100 0001		—
001 0101	—	—	100 0010	—	—
001 0110	—	—	100 0011	_	—
001 0111	—	—	100 0100		—
001 1000	I	RPI24	100 0101	_	—
001 1001	I	RPI25	100 0110	_	—
001 1010	—	—	100 0111		—
001 1011	I	RPI27	100 1000	_	_
001 1100	I	RPI28	100 1001	_	
001 1101	—	_	100 1010	_	_
001 1110	—		100 1011	_	
001 1111	—		100 1100	—	_
010 0000	I	RPI32	100 1101	—	_
010 0001	I	RPI33	100 1110	_	_
010 0010	I	RPI34	100 1111	_	
010 0011	I/O	RP35	101 0000	_	<u> </u>
010 0100	I/O	RP36	101 0001	—	_
010 0101	I/O	RP37	101 0010	—	_
010 0110	I/O	RP38	101 0011	—	_
010 0111	I/O	RP39	101 0100	_	_

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES

Legend: Shaded rows indicate PPS Input register values that are unimplemented.

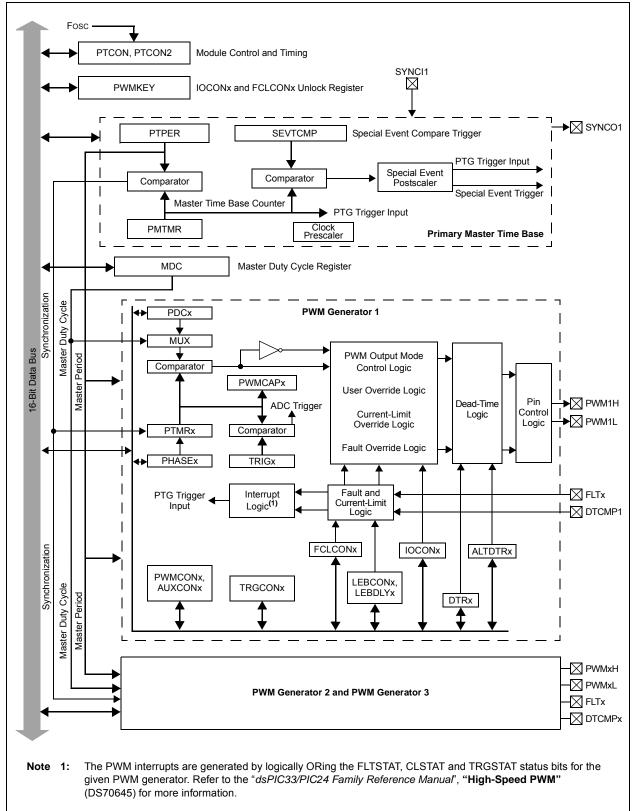
Note 1: See Section 11.4.4.1 "Virtual Connections" for more information on selecting this pin assignment.

2: These inputs are available on dsPIC33EPXXXGP/MC50X devices only.

11.5 I/O Helpful Tips

- 1. In some cases, certain pins, as defined in Table 30-11, under "Injection Current", have internal protection diodes to VDD and Vss. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins, with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes, that the resulting current being injected into the device, that is clamped internally by the VDD and Vss power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins by default after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Pin Configuration registers in the I/O ports module (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a '0'.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.
- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD - 0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.

5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH, and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of this data sheet. For example:


VOH = 2.4V @ IOH = -8 mA and VDD = 3.3VThe maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted. Refer to the VOH/IOH graphs in Section 30.0 "Electrical Characteristics" for additional information.

- 6. The Peripheral Pin Select (PPS) pin mapping rules are as follows:
 - a) Only one "output" function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
 - b) It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
 - c) If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
 - d) If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
 - e) If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADC to convert the digital output logic level, or to toggle a digital output on a comparator or ADC input provided there is no external analog input, such as for a built-in self-test.
 - f) Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable "output".

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
—				SCK2INR<6:0	>							
bit 15							bit 8					
					5444.6	D 444 A	5444.6					
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
				SDI2R<6:0>								
bit 7							bit 0					
Legend:												
R = Readab		W = Writable		U = Unimplen								
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
	1111001 = Input tied to RPI121											
bit 7	Unimpleme	nted: Read as 'o	כי									
bit 6-0	(see Table 1 [^] 1111001 = I	: Assign SPI2 D 1-2 for input pin nput tied to RPI nput tied to CMI	selection num	,	esponding RPi	ר Pin bits						

REGISTER 11-12: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

FIGURE 16-2: HIGH-SPEED PWMx MODULE REGISTER INTERCONNECTION DIAGRAM

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
—	—	—	_	—	—	—	—					
bit 15							bit 8					
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0					
—	—	—	DNCNT4	DNCNT3	DNCNT2	DNCNT1	DNCNT0					
bit 7							bit 0					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown					
bit 15-5	Unimplemen	ted: Read as '	0'									
bit 4-0	DNCNT<4:0>	: DeviceNet™	Filter Bit Num	iber bits								
		1 = Invalid sele npares up to Da		6 with EID<17	>							
	•											
	•											
	•											
	00001 = Compares up to Data Byte 1, bit 7 with EID<0> 00000 = Does not compare data bytes											

21.5 ECAN Message Buffers

ECAN Message Buffers are part of RAM memory. They are not ECAN Special Function Registers. The user application must directly write into the RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 21-1: ECAN™ MESSAGE BUFFER WORD 0

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
	—		SID10	SID9	SID8	SID7	SID6		
bit 15							bit 8		
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
SID5	SID4	SID3	SID2	SID1	SID0	SRR	IDE		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		
bit 15-13	Unimplemen	ted: Read as '	כי						
bit 12-2	SID<10:0>: S	tandard Identifi	ier bits						
bit 1	SRR: Substitu	ute Remote Re	quest bit						
	When IDE =								
	1 = Message will request remote transmission								
	0 = Normal m	= Normal message							
	When IDE = 1	L:							
	The SRR bit r	ne SRR bit must be set to '1'.							
bit 0	IDE: Extende	d Identifier bit							
	1 = Message	will transmit Ex	tended Ident	ifier					
		will transmit St							

BUFFER 21-2: ECAN™ MESSAGE BUFFER WORD 1

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	_	EID17	EID16	EID15	EID14
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID13	EID12	EID11	EID10	EID9	EID8	EID7	EID6
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

23.2 ADC Helpful Tips

- 1. The SMPIx control bits in the AD1CON2 register:
 - a) Determine when the ADC interrupt flag is set and an interrupt is generated, if enabled.
 - b) When the CSCNA bit in the AD1CON2 registers is set to '1', this determines when the ADC analog scan channel list, defined in the AD1CSSL/AD1CSSH registers, starts over from the beginning.
 - c) When the DMA peripheral is not used (ADDMAEN = 0), this determines when the ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0.
 - d) When the DMA peripheral is used (ADDMAEN = 1), this determines when the DMA Address Pointer is incremented after a sample/conversion operation. ADC1BUF0 is the only ADC buffer used in this mode. The ADC Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0. The DMA address is incremented after completion of every 32nd sample/conversion operation. Conversion results are stored in the ADC1BUF0 register for transfer to RAM using DMA.
- 2. When the DMA module is disabled (ADDMAEN = 0), the ADC has 16 result buffers. ADC conversion results are stored sequentially in ADC1BUF0-ADC1BUFF, regardless of which analog inputs are being used subject to the SMPIx bits and the condition described in 1c) above. There is no relationship between the ANx input being measured and which ADC buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.
- 3. When the DMA module is enabled (ADDMAEN = 1), the ADC module has only 1 ADC result buffer (i.e., ADC1BUF0) per ADC peripheral and the ADC conversion result must be read, either by the CPU or DMA Controller, before the next ADC conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (AD1CON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely, even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADC. As a result, in Manual Sample mode, particularly where the user's code is setting the SAMP bit (AD1CON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.

5. Enabling op amps, comparator inputs and external voltage references can limit the availability of analog inputs (ANx pins). For example, when Op Amp 2 is enabled, the pins for ANO, AN1 and AN2 are used by the op amp's inputs and output. This negates the usefulness of Alternate Input mode since the MUXA selections use AN0-AN2. Carefully study the ADC block diagram to determine the configuration that will best suit your application. Configuration examples are available in the "Analog-to-Digital Converter (ADC)" (DS70621) section in the "dsPIC33/ PIC24 Family Reference Manual".

23.3 ADC Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

23.3.1 KEY RESOURCES

- "Analog-to-Digital Converter (ADC)" (DS70621) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
—	—	—	—	—	—	—	ADDMAEN			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
—		—	—	—	DMABL2	DMABL1	DMABL0			
bit 7							bit 0			
Levend										
Legend:	le hit		.:.		mented bit meet					
R = Readable bit W = Writable bit			DIT	U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown						
bit 15-9	Unimplemen	ted: Read as '0	,							
bit 8	-									
DILO		ADDMAEN: ADC1 DMA Enable bit L = Conversion results are stored in the ADC1BUF0 register for transfer to RAM using DMA								
	 Conversion results are stored in the ADC1BUF0 register for transfer to RAM using DMA Conversion results are stored in ADC1BUF0 through ADC1BUFF registers; DMA will not be used 									
bit 7-3	Unimplemen	ted: Read as '0)'							
bit 2-0	DMABL<2:0>	Selects Numb	per of DMA Bu	uffer Locations	per Analog Inp	ut bits				
	111 = Allocates 128 words of buffer to each analog input									
	110 = Allocates 64 words of buffer to each analog input									
	101 = Allocates 32 words of buffer to each analog input									
		es 16 words of		U 1						
		es 8 words of b es 4 words of b								
		es 2 words of b								
		es 1 word of bu		U I						
				U						

REGISTER 23-4: AD1CON4: ADC1 CONTROL REGISTER 4

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CH0NB		_	CH0SB4 ⁽¹⁾	CH0SB3 ⁽¹⁾	CH0SB2 ⁽¹⁾	CH0SB1 ⁽¹⁾	CH0SB0 ⁽¹⁾			
bit 15		-					bit 8			
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CH0NA		_	CH0SA4 ⁽¹⁾	CH0SA3 ⁽¹⁾	CH0SA2 ⁽¹⁾	CH0SA1 ⁽¹⁾	CH0SA0 ⁽¹⁾			
bit 7							bit C			
Legend:										
R = Reada		W = Writable			nented bit, read					
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
hit 15		annal O Nagativa	Input Coloct for	r Comple MUX						
bit 15		nannel 0 Negative								
		1 = Channel 0 negative input is AN1 ⁽¹⁾ 0 = Channel 0 negative input is VREFL								
bit 14-13	Unimpleme	ented: Read as '0)'							
bit 12-8	CH0SB<4:0	0>: Channel 0 Por	sitive Input Sele	ect for Sample I	MUXB bits ⁽¹⁾					
	CH0SB<4:0>: Channel 0 Positive Input Select for Sample MUXB bits ⁽¹⁾ 11111 = Open; use this selection with CTMU capacitive and time measurement									
	11110 = Channel 0 positive input is connected to the CTMU temperature measurement diode (CTMU TEMP)									
		11101 = Reserved								
	11100 = Reserved 11011 = Reserved									
	11011 = Reserved 11010 = Channel 0 positive input is the output of OA3/AN6 ^(2,3)									
	11001 = Channel 0 positive input is the output of OA2/AN0 ⁽²⁾									
	11000 = Channel 0 positive input is the output of OA1/AN3 ⁽²⁾									
	10111 = Reserved									
	•									
	•									
	10000 = Reserved									
	01111 = Channel 0 positive input is $AN15^{(3)}$									
	01110 = Channel 0 positive input is AN14 ⁽³⁾ 01101 = Channel 0 positive input is AN13 ⁽³⁾									
	•									
	•									
	•									
	00010 = Ch	00010 = Channel 0 positive input is $AN2^{(3)}$								
		00001 = Channel 0 positive input is AN1 ⁽³⁾ 00000 = Channel 0 positive input is AN0 ⁽³⁾								
bit 7										
	CHONA: Channel 0 Negative Input Select for Sample MUXA bit 1 = Channel 0 negative input is AN1 ⁽¹⁾									
	1 = Channell	1 0 negative input	is AN1(1)							
		v .								
bit 6-5	0 = Channe	el 0 negative input el 0 negative input ented: Read as '0	is Vrefl							
	0 = Channe Unimpleme AN0 through A	el 0 negative input	is VREFL ,' ed when compa							

REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

3: See the "**Pin Diagrams**" section for the available analog channels for each device.

otherwise, the ANx input is used.

REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER (CONTINUED)

bit 4-0	CH0SA<4:0>: Channel 0 Positive Input Select for Sample MUXA bits ⁽¹⁾
	11111 = Open; use this selection with CTMU capacitive and time measurement
	11110 = Channel 0 positive input is connected to the CTMU temperature measurement diode (CTMU TEMP)
	11101 = Reserved
	11100 = Reserved
	11011 = Reserved 11010 = Channel 0 positive input is the output of OA3/AN6 ^(2,3)
	11010 = Channel 0 positive input is the output of OA3/AN0 ⁽²⁾
	11000 = Channel 0 positive input is the output of OA1/AN3 ⁽²⁾
	10110 = Reserved
	•
	•
	•
	10000 = Reserved
	01111 = Channel 0 positive input is AN15 ^(1,3)
	01110 = Channel 0 positive input is AN14 ^(1,3)
	01101 = Channel 0 positive input is AN13 ^(1,3)
	•
	•
	•
	00010 = Channel 0 positive input is $AN2^{(1,3)}$
	00001 = Channel 0 positive input is $AN1^{(1,3)}$
	00000 = Channel 0 positive input is AN0 ^(1,3)

- **Note 1:** AN0 through AN7 are repurposed when comparator and op amp functionality is enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.
 - 3: See the "Pin Diagrams" section for the available analog channels for each device.

24.3 PTG Control Registers

REGISTER 24-1: PTGCST: PTG CONTROL/STATUS REGISTER

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
PTGEN	—	PTGSIDL	PTGTOGL	—	PTGSWT ⁽²⁾	PTGSSEN ⁽³⁾	PTGIVIS	
bit 15							bit 8	
R/W-0	HS-0	U-0	U-0	U-0	U-0	R/W-0		
PTGSTRT	PTGWDTO	_	_	_	_	PTGITM1 ⁽¹⁾	PTGITM0 ⁽¹⁾	

bit 7

Legend:	HS = Hardware Settable bi	t	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15		PTGEN: Module Enable bit
		1 = PTG module is enabled
		0 = PTG module is disabled
bit 14		Unimplemented: Read as '0'
bit 13		PTGSIDL: PTG Stop in Idle Mode bit
		 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode
bit 12		PTGTOGL: PTG TRIG Output Toggle Mode bit
		 1 = Toggle state of the PTGOx for each execution of the PTGTRIG command 0 = Each execution of the PTGTRIG command will generate a single PTGOx pulse determined by the value in the PTGPWDx bits
bit 11		Unimplemented: Read as '0'
bit 10		PTGSWT: PTG Software Trigger bit ⁽²⁾
		1 = Triggers the PTG module
		0 = No action (clearing this bit will have no effect)
bit 9		PTGSSEN: PTG Enable Single-Step bit ⁽³⁾
		1 = Enables Single-Step mode
		0 = Disables Single-Step mode
bit 8		PTGIVIS: PTG Counter/Timer Visibility Control bit
		1 = Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the current values of their corresponding counter/timer registers (PTGSD, PTGCx, PTGTx)
		 Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the value previously written to those limit registers
bit 7		PTGSTRT: PTG Start Sequencer bit
		1 = Starts to sequentially execute commands (Continuous mode)0 = Stops executing commands
bit 6		PTGWDTO: PTG Watchdog Timer Time-out Status bit
		1 = PTG Watchdog Timer has timed out
		0 = PTG Watchdog Timer has not timed out.
bit 5-2		Unimplemented: Read as '0'
Note	1:	These bits apply to the PTGWHI and PTGWLO commands only.
	2:	This bit is only used with the PTGCTRL step command software trigger option.

3: Use of the PTG Single-Step mode is reserved for debugging tools only.

bit 0

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
53	NEG	NEG	_{Acc} (1)	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
54	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
55	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
56	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
57	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
58	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
59	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
60	RESET	RESET		Software device Reset	1	1	None
61	RETFIE	RETFIE		Return from interrupt	1	6 (5)	SFA
62	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	6 (5)	SFA
63	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA
64	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
65	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
66	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
67	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
~~		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
68	SAC	SAC	Acc,#Slit4,Wdo ⁽¹⁾	Store Accumulator	1	1	None
~~~		SAC.R	Acc,#Slit4,Wdo ⁽¹⁾	Store Rounded Accumulator	1	1	None
69	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
70	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
71	SFTAC	SETM	Ws Acc, Wn ⁽¹⁾	Ws = 0xFFFF           Arithmetic Shift Accumulator by (Wn)	1	1 1	None OA,OB,OAB,
		SFTAC	Acc,#Slit6 ⁽¹⁾	Arithmetic Shift Accumulator by Slit6	1	1	SA,SB,SAB OA,OB,OAB SA,SB,SAB

## TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

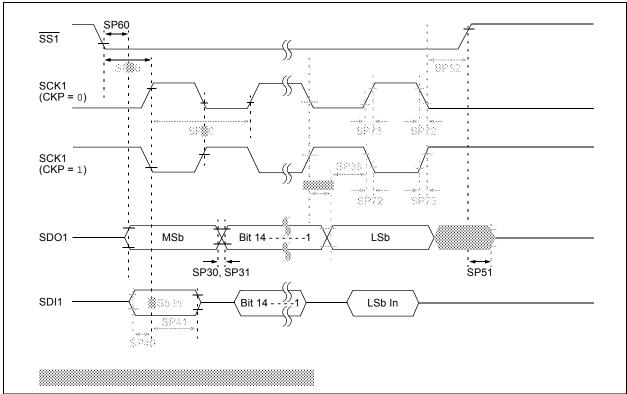
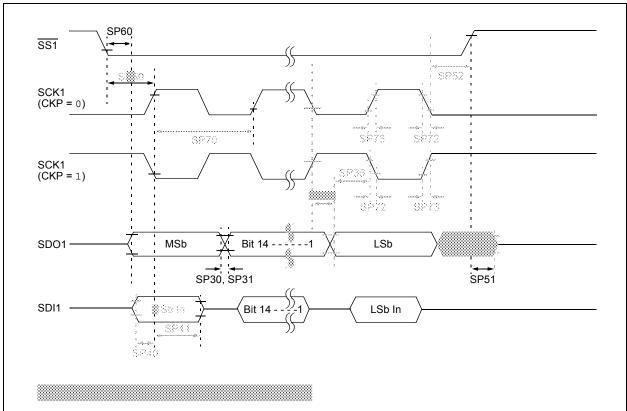
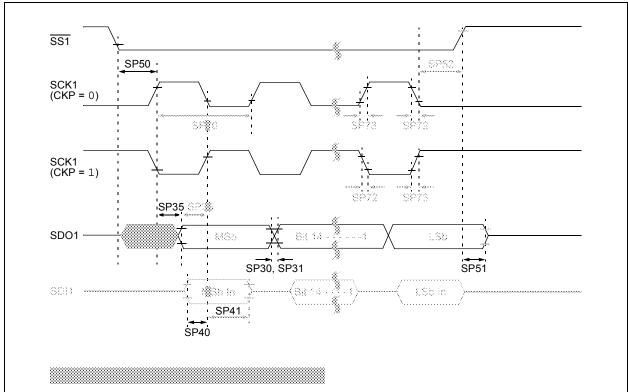





FIGURE 30-26: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS



#### FIGURE 30-27: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS



#### FIGURE 30-28: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS