

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep256gp204t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X PRODUCT FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1 (General Purpose Families) and Table 2 (Motor Control Families). Their pinout diagrams appear on the following pages.

	s)	es)			Rei	mappa	ble Pe	eriphe	rals				~							
Device	Page Erase Size (Instruction:	Program Flash Memory (Kbyt	RAM (Kbyte)	16-Bit/32-Bit Timers	Input Capture	Output Compare	UART	SPI ⁽²⁾	ECAN™ Technology	External Interrupts ⁽³⁾	I²C™	CRC Generator	10-Bit/12-Bit ADC (Channels	Op Amps/Comparators	CTMU	РТС	I/O Pins	Pins	Packages	
PIC24EP32GP202	512	32	4																	
PIC24EP64GP202	1024	64	8																SPDIP,	
PIC24EP128GP202	1024	128	16	5	4	4	2	2		3	2	1	6	2/3(1)	Yes	Yes	21	28	SOIC,	
PIC24EP256GP202	1024	256	32											2.0					OFN-S	
PIC24EP512GP202	1024	512	48																Q. 11 0	
PIC24EP32GP203	512	32	4																	
PIC24EP64GP203	1024	64	8	5	4	4	2	2	—	3	2	1	8	3/4	Yes	Yes	25	36	VTLA	
PIC24EP32GP204	512	32	4																	
PIC24EP64GP204	1024	64	8																VTLA ⁽⁴⁾ ,	
PIC24EP128GP204	1024	128	16	5	4	4	2	2	_	3	2	1	9	3/4	Yes	Yes	35	44/	TQFP,	
PIC24EP256GP204	1024	256	32	Ŭ									-	-				48	QEN, UOEN	
PIC24EP512GP204	1024	512	48																OQIN	
PIC24EP64GP206	1024	64	8																	
PIC24EP128GP206	1024	128	16																TOFP	
PIC24EP256GP206	1024	256	32	5	4	4	2	2	—	3	2	1	16	3/4	Yes	Yes	53	64	QFN	
PIC24EP512GP206	1024	512	48																	
dsPIC33EP32GP502	512	32	4																	
dsPIC33EP64GP502	1024	64	8																SPDIP,	
dsPIC33EP128GP502	1024	128	16	5	5	4	4	2	2	1	3	2	1	6	2/3(1)	Yes	Yes	21	28	SOIC,
dsPIC33EP256GP502	1024	256	32										-						OFN-S	
dsPIC33EP512GP502	1024	512	48																Q. 11 0	
dsPIC33EP32GP503	512	32	4				_	_			_		_							
dsPIC33EP64GP503	1024	64	8	5	4	4	2	2	1	3	2	1	8	3/4	Yes	Yes	25	36	VTLA	
dsPIC33EP32GP504	512	32	4																	
dsPIC33EP64GP504	1024	64	8																VTLA ⁽⁴⁾ ,	
dsPIC33EP128GP504	1024	128	16	5	4	4	2	2	1	3	2	1	9	3/4	Yes	Yes	35	44/	TQFP,	
dsPIC33EP256GP504	1024	256	32	1														48	UQFN,	
dsPIC33EP512GP504	1024	512	48	1																
dsPIC33EP64GP506	1024	64	8			Ì						Ì		1				Ì		
dsPIC33EP128GP506	1024	128	16			Ι.													TQFP.	
dsPIC33EP256GP506	1024	256	32	5	4	4	2	2	1 3	3	2	1	16	3/4	Yes	Yes	53	64	QFN	
dsPIC33EP512GP506	1024	512	48	1																

TABLE 1: dsPIC33EPXXXGP50X and PIC24EPXXXGP20X GENERAL PURPOSE FAMILIES

Note 1: On 28-pin devices, Comparator 4 does not have external connections. Refer to Section 25.0 "Op Amp/Comparator Module" for details.

Only SPI2 is remappable.
 INT0 is not remappable.

4: The SSOP and VTLA packages are not available for devices with 512 Kbytes of memory.

3.6 CPU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

3.6.1 KEY RESOURCES

- "CPU" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

FIGURE 4-7: DATA MEMORY MAP FOR dsPIC33EP32MC20X/50X AND dsPIC33EP32GP50X DEVICES

EXAMPLE 4-2: EXTENDED DATA SPACE (EDS) WRITE ADDRESS GENERATION

The paged memory scheme provides access to multiple 32-Kbyte windows in the EDS and PSV memory. The Data Space Page registers, DSxPAG, in combination with the upper half of the Data Space address, can provide up to 16 Mbytes of additional address space in the EDS and 8 Mbytes (DSRPAG only) of PSV address space. The paged data memory space is shown in Example 4-3.

The Program Space (PS) can be accessed with a DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG. Writes to PS are not supported, so DSWPAG is dedicated to DS, including EDS only. The Data Space and EDS can be read from, and written to, using DSRPAG and DSWPAG, respectively.

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	ILR3	ILR2	ILR1	ILR0
bit 15	·					•	bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	Unimplemen	ted: Read as '	0'				
bit 11-8	ILR<3:0>: Ne	w CPU Interru	pt Priority Lev	el bits			
	1111 = CPU	Interrupt Priori	y Level is 15				
	•						
	•						
	0001 = CPU 0000 = CPU	Interrupt Priorif Interrupt Priorif	y Level is 1 y Level is 0				
bit 7-0	VECNUM<7:0	D>: Vector Nun	- nber of Pendin	g Interrupt bits			
	11111111 = 2	255, Reserved	; do not use	0 1			
	•						
	•						
	•						
	00001001 =	9, IC1 – Input (Capture 1				
	00001000 =	8, INT0 – Exter	rnal Interrupt ()			
	00000111 = 00000110 = 00000110 = 00000110 = 00000110 = 00000100000000	7, Reserved; d	o not use				
	00000101 = 00000101 = 000000101 = 00000000	5. DMAC error	trap				
	00000100 =	4, Math error tr	ap				
	00000011 =	3, Stack error t	rap				
	00000010 = 2	2, Generic har	d trap				
	00000001 =	1, Address erro	or trap				
	0000000000	o, Oscillator la	nuap				

REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

NOTES:

11.7 **Peripheral Pin Select Registers**

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INT1R<6:0>			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	-	—	—	_	—	—
bit 7	•		•	•			bit 0

Legend:

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 14-8 INT1R<6:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 0000001 = Input tied to CMP1 0000000 = Input tied to Vss bit 7-0 Unimplemented: Read as '0'

REGISTER 17-4: POSICNTH: POSITION COUNTER 1 HIGH WORD REGISTER

-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown
R = Readable bit W = Writable bit				U = Unimpler	mented bit, rea	d as '0'	
Legend:							
bit 7							bit 0
			POSCN	IT<23:16>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
			POSCN	IT<31:24>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-0 **POSCNT<31:16>:** High Word Used to Form 32-Bit Position Counter Register (POS1CNT) bits

REGISTER 17-5: POS1CNTL: POSITION COUNTER 1 LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSCN	T<15:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSCN	NT<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 POSCNT<15:0>: Low Word Used to Form 32-Bit Position Counter Register (POS1CNT) bits

REGISTER 17-6: POS1HLD: POSITION COUNTER 1 HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSH	LD<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSH	ILD<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimple			U = Unimpler	Jnimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow					nown		

bit 15-0 **POSHLD<15:0>:** Hold Register for Reading and Writing POS1CNTH bits

FIGURE 18-1: SPIX MODULE BLOCK DIAGRAM

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
ACKSTAT	TRSTAT	_	—	—	BCL	GCSTAT	ADD10
bit 15					•		bit 8
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF
bit 7							bit 0
Legend: C = Clearable bit		HS = Hardwa	re Settable bit	HSC = Hardware S	HSC = Hardware Settable/Clearable bit		
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			0' = Bit is cleared x = Bit is unknown				

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER

bit 15	ACKSTAT: Acknowledge Status bit (when operating as I^2C^{TM} master, applicable to master transmit operation)
	1 = NACK received from slave 0 = ACK received from slave
	Hardware is set or clear at the end of slave Acknowledge.
bit 14	TRSTAT: Transmit Status bit (when operating as I^2C master, applicable to master transmit operation) 1 = Master transmit is in progress (8 bits + ACK)
	0 = Master transmit is not in progress Hardware is set at the beginning of master transmission. Hardware is clear at the end of slave Acknowledge.
bit 13-11	Unimplemented: Read as '0'
bit 10	BCL: Master Bus Collision Detect bit
	1 = A bus collision has been detected during a master operation0 = No bus collision detected
	Hardware is set at detection of a bus collision.
bit 9	GCSTAT: General Call Status bit
	1 = General call address was received
	0 = General call address was not received
1.11.0	Hardware is set when address matches general call address. Hardware is clear at Stop detection.
DIT 8	ADD10: 10-Bit Address Status bit
	I = 10-bit address was matched 0 = 10-bit address was not matched
	Hardware is set at the match of the 2nd byte of the matched 10-bit address. Hardware is clear at Stop detection.
bit 7	IWCOL: I2Cx Write Collision Detect bit
	1 = An attempt to write to the I2CxTRN register failed because the I^2 C module is busy 0 = No collision
	Hardware is set at the occurrence of a write to I2CxTRN while busy (cleared by software).
bit 6	I2COV: I2Cx Receive Overflow Flag bit
	 1 = A byte was received while the I2CxRCV register was still holding the previous byte 0 = No overflow
	Hardware is set at an attempt to transfer I2CxRSR to I2CxRCV (cleared by software).
bit 5	D_A: Data/Address bit (when operating as I ² C slave)
	1 = Indicates that the last byte received was data
	 Indicates that the last byte received was a device address Hardware is clear at a device address match. Hardware is set by reception of a slave byte.
bit 4	P: Stop bit
	1 = Indicates that a Stop bit has been detected last
	0 = Stop bit was not detected last
	Hardware is set or clear when a Start, Repeated Start or Stop is detected.

20.3 UARTx Control Registers

REGISTER 20-1: UXMODE: UARTX MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	
UARTEN	יין <u>-</u>	USIDL	IREN ⁽²⁾	RTSMD	—	UEN1	UEN0	
bit 15							bit 8	
R/W-0, H	C R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	
bit 7							bit 0	
Legend:		HC = Hardwa	re Clearable bi	t				
R = Reada	able bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown	
bit 15	UARTEN: UA 1 = UARTx is 0 = UARTx is minimal	NRTx Enable bit s enabled; all U s disabled; all U	(1) ARTx pins are IARTx pins are	controlled by U controlled by F	IARTx as define PORT latches; L	ed by UEN<1:0 JARTx power c	> onsumption is	
bit 14	Unimplemen	ted: Read as '	כ'					
bit 13	USIDL: UART	Tx Stop in Idle I	Mode bit					
	1 = Discontin 0 = Continue	ues module op s module opera	eration when c ation in Idle mo	device enters Id	le mode			
bit 12	IREN: IrDA [®] I	Encoder and D	ecoder Enable	bit ⁽²⁾				
	1 = IrDA ence	oder and decor	der are enabled	ł				
	0 = IrDA enco	oder and decod	der are disable	d				
bit 11	RTSMD: Mod	le Selection for	UxRTS Pin bit					
	1 = UXRISp 0 = UXRISp	in is in Simplex	mode					
bit 10		ted: Read as '	n'					
hit 9-8			ole hits					
	11 = UxTX. U	JxRX and BCL	(x pins are ena	bled and used:	UxCTS pin is c	ontrolled by PC)RT latches ⁽³⁾	
	10 = UxTX , U	IxRX, UxCTS a	ind UxRTS pin	s are enabled a	nd used ⁽⁴⁾	, ,		
	01 = UxTX, U	JxRX and UxRT	S pins are ena	bled and used;	UxCTS pin is c	ontrolled by PC	ORT latches ⁽⁴⁾	
	00 = UXIX ai PORT la	nd UXRX pins a	are enabled ar	id used; UXCTS	S and UXRIS/E	CLKx pins are	controlled by	
hit 7	WAKE: Wake	-un on Start hit	Detect During	Sleen Mode Fr	hable bit			
	1 = UARTx c	ontinues to sar	nple the UxRX	pin: interrupt is	generated on t	he falling edge	: bit is cleared	
	in hardwa	are on the follow	wing rising edg	e	g		,	
	0 = No wake	-up is enabled						
bit 6	LPBACK: UA	RTx Loopback	Mode Select b	bit				
	1 = Enables	Loopback mod	e					
	0 = Loopbacl	k mode is disab	Died					
Note 1:	Refer to the "UAF enabling the UAR	RT " (DS70582) Tx module for r	section in the " eceive or transi	dsPIC33/PIC24 mit operation.	Family Referen	<i>ce Manual"</i> for i	nformation on	
2:	This feature is on	ly available for	the 16x BRG r	mode (BRGH =	0).			
3:	This feature is on	s feature is only available on 44-pin and 64-pin devices.						

4: This feature is only available on 64-pin devices.

21.0 ENHANCED CAN (ECAN™) MODULE (dsPIC33EPXXXGP/ MC50X DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Enhanced Controller Area Network (ECAN™)" (DS70353) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

21.1 Overview

The Enhanced Controller Area Network (ECAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33EPXXXGP/MC50X devices contain one ECAN module.

The ECAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details. The ECAN module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- · Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to eight transmit buffers with application specified prioritization and abort capability (each buffer can contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 full (Standard/Extended Identifier)
 acceptance filters
- · Three full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- · Programmable clock source
- Programmable link to Input Capture (IC2) module for time-stamping and network synchronization
- · Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x			
	WAKFIL		—		SEG2PH2	SEG2PH1	SEG2PH0			
bit 15			•	•			bit 8			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown			
bit 15	Unimplemen	nted: Read as '	0'							
bit 14	WAKFIL: Sel	lect CAN Bus L	ine Filter for V	Vake-up bit						
	1 = Uses CAI	N bus line filter	for wake-up	a-un						
bit 13-11		ted. Pead as '		e-up						
bit 10-8	SEC2DH-2:0- Phase Segment 2 hits									
511 10-0	111 = 1 enoth	is 8 x To								
	•									
	•									
	•									
	000 = Length	n is 1 x Tq								
bit 7	SEG2PHTS:	Phase Segmer	nt 2 Time Sele	ect bit						
	1 = Freely programmable									
hit C		1 OF SEGIPHX	Dits or informa	ation Processin	g Time (IPT), w	nicnever is gre	eater			
DIL 6	J = Rus lino i	e of the CAN B	us Line bit a timos at tha	complo point						
	 In the sampled three times at the sample point Bus line is sampled once at the sample point 									
bit 5-3	SEG1PH<2:0)>: Phase Segr	nent 1 bits	•						
	111 = Length	n is 8 x Tq								
	•									
	•									
	•									
	000 = Length	n is 1 x Tq								
bit 2-0	PRSEG<2:0>	>: Propagation	Time Segmen	t bits						
	111 = Length	n is 8 x TQ								
	•									
	•									
	-									

REGISTER 21-10: CxCFG2: ECANx BAUD RATE CONFIGURATION REGISTER 2

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 21-22: CxRXFUL1: ECANx RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXFUL7 | RXFUL6 | RXFUL5 | RXFUL4 | RXFUL3 | RXFUL2 | RXFUL1 | RXFUL0 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

REGISTER 21-23: CxRXFUL2: ECANx RECEIVE BUFFER FULL REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 **RXFUL<31:16>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

NOTES:

DC CHA	DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic	tic Min. Typ. ⁽¹⁾ Max. Units Condi				Conditions	
		Program Flash Memory						
D130	Eр	Cell Endurance	10,000		_	E/W	-40°C to +125°C	
D131	Vpr	VDD for Read	3.0		3.6	V		
D132b	VPEW	VDD for Self-Timed Write	3.0		3.6	V		
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated, -40°C to +125°C	
D135	IDDP	Supply Current during Programming ⁽²⁾	—	10	—	mA		
D136	IPEAK	Instantaneous Peak Current During Start-up	_	_	150	mA		
D137a	TPE	Page Erase Time	17.7	—	22.9	ms	TPE = 146893 FRC cycles, Ta = +85°C (See Note 3)	
D137b	Тре	Page Erase Time	17.5	_	23.1	ms	TPE = 146893 FRC cycles, TA = +125°C (See Note 3)	
D138a	Tww	Word Write Cycle Time	41.7	_	53.8	μs	Tww = 346 FRC cycles, TA = +85°C (See Note 3)	
D138b	Tww	Word Write Cycle Time	41.2	—	54.4	μs	Tww = 346 FRC cycles, Ta = +125°C (See Note 3)	

TABLE 30-14: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: Parameter characterized but not tested in manufacturing.

3: Other conditions: FRC = 7.37 MHz, TUN<5:0> = 011111 (for Minimum), TUN<5:0> = 100000 (for Maximum). This parameter depends on the FRC accuracy (see Table 30-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time, see Section 5.3 "Programming Operations".

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP		
15 MHz	Table 30-42			0,1	0,1	0,1		
10 MHz	—	Table 30-43	—	1	0,1	1		
10 MHz	—	Table 30-44	—	0	0,1	1		
15 MHz	—	—	Table 30-45	1	0	0		
11 MHz	—	—	Table 30-46	1	1	0		
15 MHz	_	_	Table 30-47	0	1	0		
11 MHz	_	_	Table 30-48	0	0	0		

TABLE 30-41: SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY

FIGURE 30-22: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

TABLE 30-47:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK1 Input Frequency	—	—	15	MHz	(Note 3)	
SP72	TscF	SCK1 Input Fall Time	—	-	_	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCK1 Input Rise Time	_	—	—	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time			_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	—	-	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{SS1}$ ↓ to SCK1 ↑ or SCK1 ↓ Input	120		—	ns		
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	(Note 4)	
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	—	_	ns	(Note 4)	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

33.1 Package Marking Information (Continued)

48-Lead UQFN (6x6x0.5 mm)

Example 33EP64GP 504-I/MV (3) 1310017

64-Lead QFN (9x9x0.9 mm)

Example dsPIC33EP 64GP506 -I/MR® 1310017

64-Lead TQFP (10x10x1 mm)

Example

© 2011-2013 Microchip Technology Inc.