

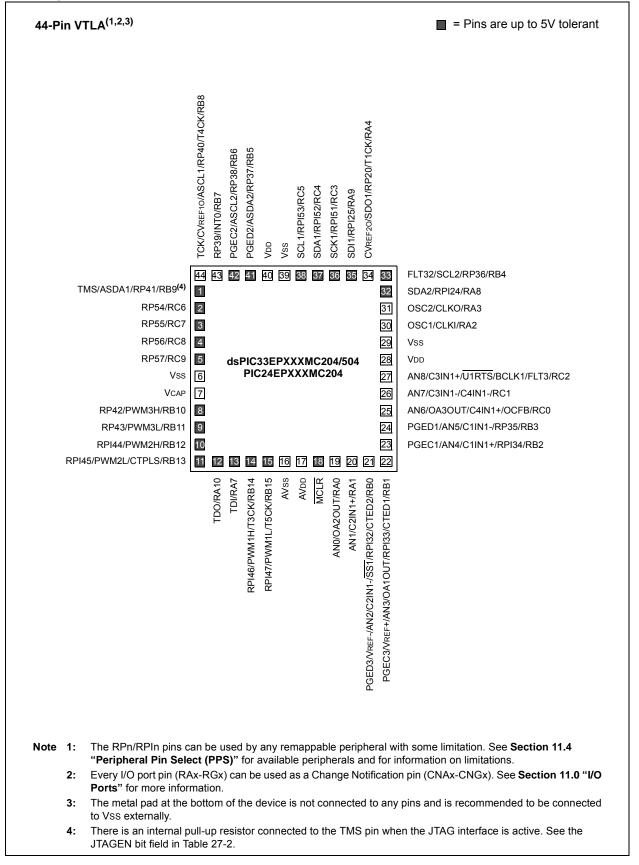
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Decans	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep256gp206-e-pt

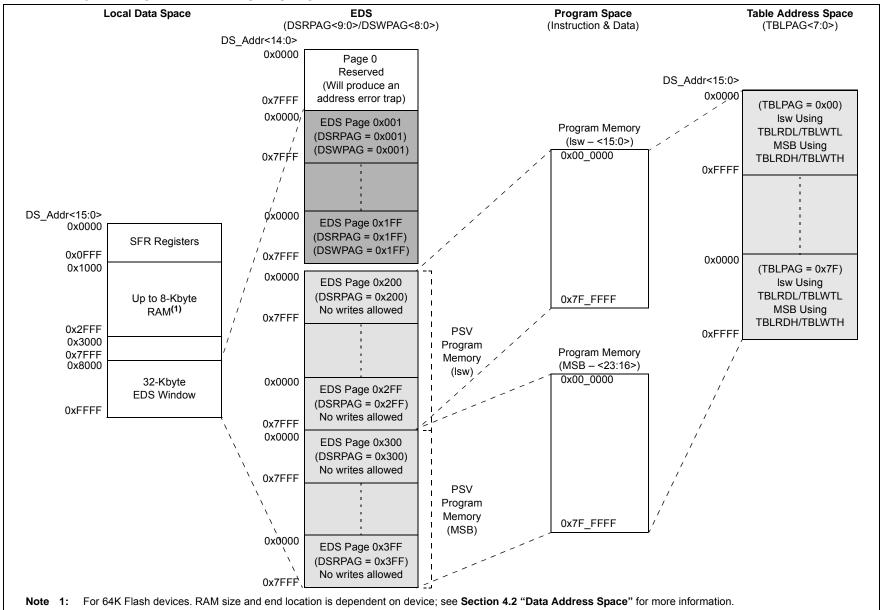
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 4	-12:	PWM RI	EGISTE	R MAP	FOR de	sPIC33E	PXXXN	AC20X/50	DX AND F	PIC24EP	PXXXM	C20X [DEVICE	S ONI	_Y			
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0C00	PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SY	NCSRC<	2:0>		SEV	/TPS<3:0>		0000
PTCON2	0C02	_	PCLKDIV<2:0> 000									0000						
PTPER	0C04		PTPER<15:0> 00F8									00F8						
SEVTCMP	0C06								SEVTCMP<	5:0>								0000
MDC	0C0A								MDC<15:)>								0000
CHOP	0C1A	CHPCLKEN	HPCLKEN CHOPCLK<9:0> 0000															
PWMKEY	0C1E		PWMKEY<15:0> 0000															
Legend: -	– = unir	mplemented, re	ead as '0'.	Reset valu	es are show	vn in hexade	ecimal.											

TABLE 4-13: PWM GENERATOR 1 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY


	10.						I OIT U					1102-						
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON1	0C20	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	:1:0>	DTCP	_	MTBS	CAM	XPRES	IUE	0000
IOCON1	0C22	PENH	PENL	POLH	DLH POLL PMOD<1:0> OVRENH OVRENL OVRDAT<1:0> FLTDAT<1:0> CLDAT<1:0> SWAP OS						OSYNC	C000						
FCLCON1	0C24	_		(CLSRC<4:	0>		CLPOL	CLMOD		FL	TSRC<4:)>		FLTPOL	FLTMO	D<1:0>	0000
PDC1	0C26				PDC1<15:0>							FFF8						
PHASE1	0C28				PHASE1<15:0>							0000						
DTR1	0C2A	_	_							DTR1<13:	0>							0000
ALTDTR1	0C2C	_	_						А	LTDTR1<1	3:0>							0000
TRIG1	0C32								TRGCMP<18	5:0>								0000
TRGCON1	0C34		TRGDI	V<3:0>		_	_	_	_	_	_			TRG	STRT<5:0	>		0000
LEBCON1	0C3A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY1	0C3C	_	_	—	LEB<11:0>								0000					
AUXCON1	0C3E	—	—	_	BLANKSEL<3:0> CHOPSEL<3:0> CHOPHEN CHOPLEN							0000						

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-41: PMD REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	_	AD1MD	0000
PMD2	0762	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	—	—	_	CMPMD	_	_	CRCMD	_	—	_	—	—	I2C2MD	_	0000
PMD4	0766	_		_	_	_	_	_	_	_	_	_	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	_		_	_	_	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_	_	_	_	0000
													DMA0MD					
PMD7	076C												DMA1MD	PTGMD				0000
PIVID7	0760	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	FIGMD	_	_	_	0000
													DMA3MD					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

EXAMPLE 4-3: PAGED DATA MEMORY SPACE

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
	—			ILR3	ILR2	ILR1	ILR0
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
VECNUM7	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	Unimplemen	ted: Read as '	0'				
bit 11-8	-	w CPU Interru		el bits			
		Interrupt Priorit	-				
	•						
	•						
		Interrupt Priorif Interrupt Priorif					
bit 7-0	VECNUM<7:0	>: Vector Nun	nber of Pendin	g Interrupt bits			
	11111111 = 2	255, Reserved	; do not use				
	•						
	•						
	00001000 = 8 00000111 = 7 00000110 = 8 00000101 = 8 00000100 = 7 00000011 = 3	9, IC1 – Input (8, INT0 – Exter 7, Reserved; d 6, Generic soft 5, DMAC error 4, Math error tr 3, Stack error t 2, Generic hard 1, Address erro	rnal Interrupt C o not use error trap trap rap d trap or trap)			

REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

10.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the internal regulator and the Flash regulator can be configured to go into Standby when Sleep mode is entered by clearing the VREGS (RCON<8>) and VREGSF (RCON<11>) bits (default configuration).

If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS (RCON<8>) and VREGSF (RCON<11>) bits can be set to keep the internal regulator and the Flash regulator active during Sleep mode.

10.2.2 IDLE MODE

The following occurs in Idle mode:

- The CPU stops executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- · A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the Interrupt Service Routine (ISR).

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral; for example, the TSIDL bit in the Timer1 Control register (T1CON<13>).

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

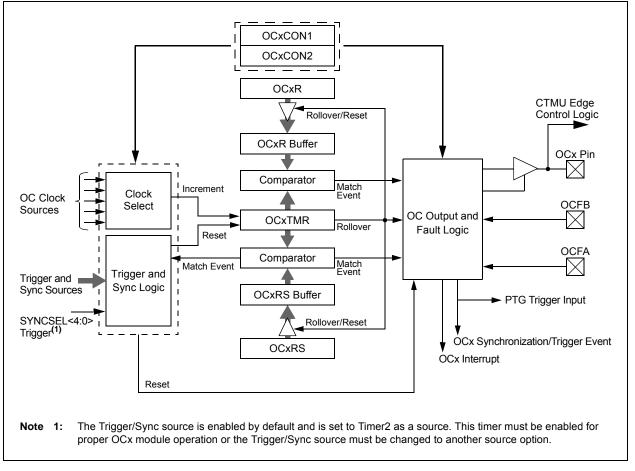
Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INT2R<6:0>			
bit 7							bit 0
Legend:							
R = Readal	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-7	Unimplemen	ted: Read as 'd)'				
bit 6-0		Assign Externa -2 for input pin			orresponding RI	Pn Pin bits	
	1111001 = lr	put tied to RPI	121				
	0000001 – Ir	put tied to CMI	⊃1				
		put tied to Civil					

REGISTER 11-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

REGISTER 11-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — T2CKR<6:0>								
U-0 R/W-0 R	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
U-0 R/W-0 R	_	-	—	_	—	—	—	—
— T2CKR<6:0> bit 7 t Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-7 Unimplemented: Read as '0' bit 6-0 T2CKR<6:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 . .	bit 15							bit 8
bit 7 Image: Constraint of the system of	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-7 Unimplemented: Read as '0' bit 6-0 T2CKR<6:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 . <td< td=""><td>—</td><td></td><td></td><td></td><td>T2CKR<6:0></td><td>></td><td></td><td></td></td<>	—				T2CKR<6:0>	>		
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-7 Unimplemented: Read as '0' bit 6-0 T2CKR<6:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 . <	bit 7							bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-7 Unimplemented: Read as '0' bit 6-0 T2CKR<6:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 . <								
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-7 Unimplemented: Read as '0' bit 6-0 T2CKR<6:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 .	Legend:							
bit 15-7 Unimplemented: Read as '0' bit 6-0 T2CKR<6:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 0000001 = Input tied to CMP1	R = Readab	ole bit	W = Writable I	bit	U = Unimpler	mented bit, read	as '0'	
bit 6-0 T2CKR<6:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121	-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 6-0 T2CKR<6:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits (see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121								
(see Table 11-2 for input pin selection numbers) 1111001 = Input tied to RPI121 0000001 = Input tied to CMP1	bit 15-7	Unimplemen	ted: Read as 'd)'				
1111001 = Input tied to RPI121	bit 6-0		•		· · ·	he Correspondir	ng RPn pin bits	5
					,			
		0000001 = Ir	nout tied to CM	⊃1				
·								
		0000000 - II	iput tied to vss					


15.0 OUTPUT COMPARE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Output Compare" (DS70358) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The output compare module can select one of seven available clock sources for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The output compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events and trigger DMA data transfers.

Note: See "Output Compare" (DS70358) in the "dsPIC33/PIC24 Family Reference Manual" for OCxR and OCxRS register restrictions.

17.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Quadrature Encoder Interface (QEI)" (DS70601) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data.

The operational features of the QEI module include:

- 32-Bit Position Counter
- 32-Bit Index Pulse Counter
- 32-Bit Interval Timer
- 16-Bit Velocity Counter
- 32-Bit Position Initialization/Capture/Compare High register
- 32-Bit Position Compare Low register
- x4 Quadrature Count mode
- External Up/Down Count mode
- External Gated Count mode
- External Gated Timer mode
- Internal Timer mode

Figure 17-1 illustrates the QEI block diagram.

17.1 QEI Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this UDL increases
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

17.1.1 KEY RESOURCES

- "Quadrature Encoder Interface" (DS70601) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 17-3: QEI1STAT: QEI1 STATUS REGISTER (CONTINUED)

bit 2	HOMIEN: Home Input Event Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled
bit 1	IDXIRQ: Status Flag for Index Event Status bit 1 = Index event has occurred 0 = No Index event has occurred
bit 0	IDXIEN: Index Input Event Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled

Note 1: This status bit is only applicable to PIMOD<2:0> modes, '011' and '100'.

19.1 I²C Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this UDL increases
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

19.1.1 KEY RESOURCES

- "Inter-Integrated Circuit (I²C)" (DS70330) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

-									
R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC		
ACKSTAT	TRSTAT	—	—	—	BCL	GCSTAT	ADD10		
bit 15							bit 8		
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC		
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF		
bit 7							bit 0		
Legend:		C = Clearab	le bit	HS = Hardwa	re Settable bit	HSC = Hardware S	ettable/Clearable bit		
R = Readable bit W = Writable			e bit	U = Unimplen	nented bit, read	as '0'			
-n = Value at	t POR	'1' = Bit is se	et	'0' = Bit is clea	ared	x = Bit is unknown			

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER

hit 15	ACKSTAT: Acknowledge Status bit (when operating as I ² C™ master, applicable to master transmit operation)
bit 15	1 = NACK received from slave
	0 = ACK received from slave
	Hardware is set or clear at the end of slave Acknowledge.
bit 14	TRSTAT: Transmit Status bit (when operating as I ² C master, applicable to master transmit operation)
	1 = Master transmit is in progress (8 bits + ACK)
	0 = Master transmit is not in progress
	Hardware is set at the beginning of master transmission. Hardware is clear at the end of slave Acknowledge.
bit 13-11	Unimplemented: Read as '0'
bit 10	BCL: Master Bus Collision Detect bit
	1 = A bus collision has been detected during a master operation
	0 = No bus collision detected Hardware is set at detection of a bus collision.
bit 9	GCSTAT: General Call Status bit
DIL 9	1 = General call address was received
	0 = General call address was not received
	Hardware is set when address matches general call address. Hardware is clear at Stop detection.
bit 8	ADD10: 10-Bit Address Status bit
	1 = 10-bit address was matched
	0 = 10-bit address was not matched
	Hardware is set at the match of the 2nd byte of the matched 10-bit address. Hardware is clear at Stop detection.
bit 7	IWCOL: I2Cx Write Collision Detect bit
	1 = An attempt to write to the I2CxTRN register failed because the I ² C module is busy
	1 = An attempt to write to the 120x min register laned because the 1-0 module is busy 0 = No collision
	Hardware is set at the occurrence of a write to I2CxTRN while busy (cleared by software).
bit 6	I2COV: I2Cx Receive Overflow Flag bit
	1 = A byte was received while the I2CxRCV register was still holding the previous byte
	0 = No overflow
	Hardware is set at an attempt to transfer I2CxRSR to I2CxRCV (cleared by software).
bit 5	D_A: Data/Address bit (when operating as I ² C slave)
	 I = Indicates that the last byte received was data I = Indicates that the last byte received was a device address
	Hardware is clear at a device address match. Hardware is set by reception of a slave byte.
bit 4	P: Stop bit
	1 = Indicates that a Stop bit has been detected last
	0 = Stop bit was not detected last
	Hardware is set or clear when a Start, Repeated Start or Stop is detected.

21.0 ENHANCED CAN (ECAN™) MODULE (dsPIC33EPXXXGP/ MC50X DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Enhanced Controller Area Network (ECAN™)" (DS70353) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

21.1 Overview

The Enhanced Controller Area Network (ECAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33EPXXXGP/MC50X devices contain one ECAN module.

The ECAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details.

The ECAN module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- · Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to eight transmit buffers with application specified prioritization and abort capability (each buffer can contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 full (Standard/Extended Identifier)
 acceptance filters
- · Three full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- · Programmable clock source
- Programmable link to Input Capture (IC2) module for time-stamping and network synchronization
- · Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 21-13: CxBUFPNT2: ECANx FILTER 4-7 BUFFER POINTER REGISTER 2

R/W-0							
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F7BF	°<3:0>			F6BF	P<3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F5BF	°<3:0>			F4BF	P<3:0>	
bit 7							bit 0
Legend:							
R = Readable bi	t	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleare	d	x = Bit is unkr	nown	

	1110 = Filter hits received in RX Buffer 14
	•
	0001 = Filter hits received in RX Buffer 1
	0000 = Filter hits received in RX Buffer 0
bit 11-8	F6BP<3:0>: RX Buffer Mask for Filter 6 bits (same values as bits<15:12>)
bit 7-4	F5BP<3:0>: RX Buffer Mask for Filter 5 bits (same values as bits<15:12>)
bit 3-0	F4BP<3:0>: RX Buffer Mask for Filter 4 bits (same values as bits<15:12>)

REGISTER 21-14: CxBUFPNT3: ECANx FILTER 8-11 BUFFER POINTER REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F11BP<3:0>				F10B	SP<3:0>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F9BP	2<3:0>			F8B	P<3:0>	
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 15-12	1111 = Filter 1110 = Filter • • • •	RX Buffer Mar hits received ir hits received ir hits received ir hits received ir	n RX FIFO bu n RX Buffer 1 n RX Buffer 1	iffer 4			
bit 11-8	F10BP<3:0>	: RX Buffer Ma	sk for Filter 1	0 bits (same val	ues as bits<1	5:12>)	
bit 7-4	F9BP<3:0>:	RX Buffer Mas	k for Filter 9 b	oits (same value	s as bits<15:1	2>)	
bit 3-0	F8BP<3:0>:	RX Buffer Mas	k for Filter 8 k	oits (same value	s as bits<15:1	2>)	

© 2011-2013 Microchip Technology Inc.

BUFFER 21-5: ECAN™ MESSAGE BUFFER WORD 4

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	/te 3			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	/te 2			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-8 Byte 3<15:8>: ECAN Message Byte 3 bits

bit 7-0 Byte 2<7:0>: ECAN Message Byte 2 bits

BUFFER 21-6: ECAN™ MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			В	yte 5			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
				yte 4			
bit 7				-			bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown	

bit 15-8 Byte 5<15:8>: ECAN Message Byte 5 bits

bit 7-0 Byte 4<7:0>: ECAN Message Byte 4 bits

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 24-4: PTGT0LIM: PTG TIMER0 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT0	_IM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT0	LIM<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-0 **PTGT0LIM<15:0>:** PTG Timer0 Limit Register bits General Purpose Timer0 Limit register (effective only with a PTGT0 Step command).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-5: PTGT1LIM: PTG TIMER1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTGT1LIM<15:8>							
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	PTGT1LIM<7:0>								
bit 7							bit 0		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGT1LIM<15:0>:** PTG Timer1 Limit Register bits

General Purpose Timer1 Limit register (effective only with a PTGT1 Step command).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

27.6 JTAG Interface

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface is provided in future revisions of the document.

Note:	Refer to "Programming and Diagnostics"
	(DS70608) in the "dsPIC33/PIC24 Family
	Reference Manual" for further information
	on usage, configuration and operation of the
	JTAG interface.

27.7 In-Circuit Serial Programming

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration Bits" (DS70663) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

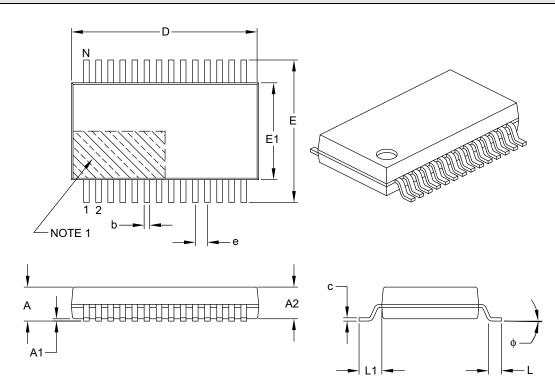
27.8 In-Circuit Debugger

When MPLAB[®] ICD 3 or REAL ICE[™] is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, Vss and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGECx and PGEDx).


27.9 Code Protection and CodeGuard™ Security

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X, and PIC24EPXXXGP/MC20X devices offer basic implementation of CodeGuard Security that supports only General Segment (GS) security. This feature helps protect individual Intellectual Property.

Note: Refer to "CodeGuard[™] Security" (DS70634) in the "dsPIC33/PIC24 Family Reference Manual" for further information on usage, configuration and operation of CodeGuard Security.

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		6	
Dime	ension Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	е		0.65 BSC	
Overall Height	A	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	E	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	9.90	10.20	10.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness	С	0.09	-	0.25
Foot Angle	ф	0°	4°	8°
Lead Width	b	0.22	-	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

TyCON (Timer3 and Timer5 Control)	211
UxMODE (UARTx Mode)	
UxSTA (UARTx Status and Control)	
VEL1CNT (Velocity Counter 1)	
Resets	123
Brown-out Reset (BOR)	
Configuration Mismatch Reset (CM)	123
Illegal Condition Reset (IOPUWR)	123
Illegal Opcode	123
Security	
Uninitialized W Register	123
Master Clear (MCLR) Pin Reset	123
Power-on Reset (POR)	
RESET Instruction (SWR)	
Resources	
Trap Conflict Reset (TRAPR)	123
Watchdog Timer Time-out Reset (WDTO)	123
Resources Required for Digital PFC	32, 34
Revision History	507

S

Serial Peripheral Interface (SPI) Software Stack Pointer (SSP)	
Special Features of the CPU	
SPI	
Control Registers	268
Helpful Tips	267
Resources	267

т

Temperature and Voltage Specifications
AC
Thermal Operating Conditions
Thermal Packaging Characteristics
Timer1
Control Register
Resources
Timer2/3 and Timer4/5
Control Registers
Resources
Timing Diagrams
10-Bit ADC Conversion (CHPS<1:0> = 01,
SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000,
SSRCG = 0)
10-Bit ADC Conversion (CHPS<1:0> = 01,
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111,
SSRCG = 0, SAMC<4:0> = 00010)
12-Bit ADC Conversion (ASAM = 0,
SSRC<2:0> = 000, SSRCG = 0)
BOR and Master Clear Reset
ECANx I/O
External Clock414
High-Speed PWMx Fault422
High-Speed PWMx Module
I/O Characteristics
I2Cx Bus Data (Master Mode)450
I2Cx Bus Data (Slave Mode)
I2Cx Bus Start/Stop Bits (Master Mode)
I2Cx Bus Start/Stop Bits (Slave Mode)

Input Capture x (ICx)	. 420
OCx/PWMx	
Output Compare x (OCx)	. 421
QEA/QEB Input	. 424
QEI Module Index Pulse	. 425
SPI1 Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	. 441
SPI1 Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	. 440
SPI1 Master Mode (Half-Duplex, Transmit Only,	
CKE = 0)	. 438
SPI1 Master Mode (Half-Duplex, Transmit Only,	
CKE = 1)	. 439
SPI1 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	. 448
SPI1 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	. 446
SPI1 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	. 442
SPI1 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	. 444
SPI2 Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	. 429
SPI2 Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	. 428
SPI2 Master Mode (Half-Duplex, Transmit Only,	
CKE = 0)	. 426
SPI2 Master Mode (Half-Duplex, Transmit Only,	
CKE = 1)	. 427
SPI2 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	. 436
SPI2 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	. 434
SPI2 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	. 430
SPI2 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	
Timer1-Timer5 External Clock	
TimerQ (QEI Module) External Clock	
UARTx I/O	. 454

U

Universal Asynchronous Receiver	
Transmitter (UART)	. 281
Control Registers	. 283
Helpful Tips	. 282
Resources	. 282
User ID Words	. 384
V	
Voltage Regulator (On-Chip)	. 384

w

Watchdog Timer (WDT)	379, 385
Programming Considerations	385
WWW Address	524
WWW, On-Line Support	23