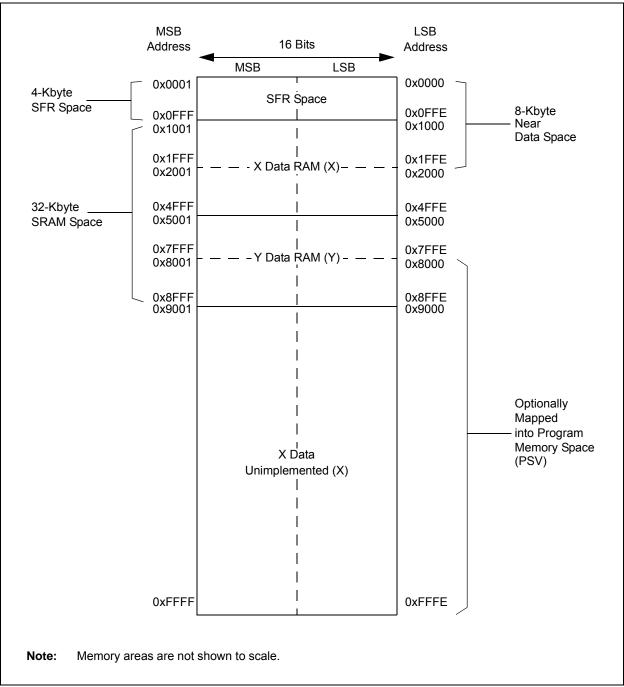


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep256gp206-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-10: DATA MEMORY MAP FOR dsPIC33EP256MC20X/50X AND dsPIC33EP256GP50X DEVICES

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_	_	_	_	_	—	_	_	—	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4		_	_	—	_	_		_	_	—	DAE	DOOVR	—	_	_		0000
INTCON4	08C6		_				Ι	_			—	_		—			SGHT	0000
INTTREG	08C8	_	_	_	_		ILR<	3:0>					VECNU	M<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.6 Modulo Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X Devices Only)

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either Data or Program Space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program Space) and Y Data Spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

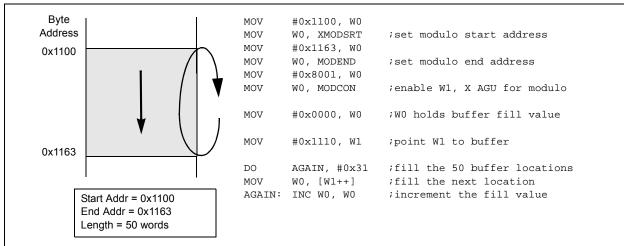
The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.6.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified, and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note:	Y space Modulo Addressing EA calcula-
	tions assume word-sized data (LSb of
	every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).


4.6.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 1111, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 1111, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X Data Space when XWM is set to any value other than '1111' and the XMODEN bit is set (MODCON<15>).

The Y Address Space Pointer W register (YWM), to which Modulo Addressing is to be applied, is stored in MODCON<7:4>. Modulo Addressing is enabled for Y Data Space when YWM is set to any value other than '1111' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-20: MODULO ADDRESSING OPERATION EXAMPLE

R/SO-0 ⁽¹) R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	NVMSIDL ⁽²⁾	_		—	
bit 15	I	1	1				bit 8
U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
_	—	—	—	NVMOP3 ^(3,4)	NVMOP2 ^(3,4)	NVMOP1 ^(3,4)	NVMOP0 ^{(3,4}
bit 7							bit (
lagandi		SO - Sottab	la Only hit				
L egend: R = Reada	ble hit	SO = Settab W = Writable	-	II – I Inimplem	nented bit, read	ae 'O'	
-n = Value		'1' = Bit is se		'0' = Bit is clea		x = Bit is unkr	
		1 - Dit 13 30					lowin
bit 15	WR: Write Co	ontrol bit(1)					
			ory program or	erase operation	on; the operatio	n is self-timed	and the bit is
	cleared b	y hardware o	nce the operati	on is complete			
	-		ration is comple	ete and inactive	9		
bit 14	WREN: Write		n/erase operati	000			
			/erase operatio				
oit 13			Error Flag bit ⁽¹⁾				
	1 = An impro	per program o	r erase sequend		rmination has oc	curred (bit is se	t automatically
		et attempt of th	e WR bit) operation com	olotod pormally			
bit 12			le Control bit ⁽²⁾	Sieteu normaliy			
			r goes into Star	ndbv mode duri	ina Idle mode		
			r is active durin				
bit 11-4	Unimplemen	ted: Read as	'0'				
bit 3-0	NVMOP<3:0>	NVM Operation	ation Select bits	₃ (1,3,4)			
	1111 = Rese						
	1110 = Rese 1101 = Rese						
	1100 = Rese						
	1011 = Rese						
	1010 = Rese 0011 = Memo		e operation				
	0010 = Rese	rved	-				
			ord program ope	eration ⁽⁵⁾			
	0000 = Rese	rvea					
	These bits can onl	-					
	If this bit is set, the (TVREG) before Fla				d upon exiting lo	dle mode, there	is a delay
	All other combinati		•				
. .				in ploinenteu.			
4:	Execution of the P	wrsav instruc	tion is ianored	while any of th	e NVM operatio	ns are in progr	ess.

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	x = Bit is unknown		
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
Legend:								
bit 7							bit C	
			NVMAD)R<23:16>				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
bit 15							bit 8	
_	—	—	—	—	_	—	—	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMADR<23:16>:** Nonvolatile Memory Write Address High bits Selects the upper 8 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

REGISTER 5-3: NVMADRL: NONVOLATILE MEMORY ADDRESS REGISTER LOW

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit			x = Bit is unkr	nown			

bit 15-0 NVMADR<15:0>: Nonvolatile Memory Write Address Low bits

Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMK	EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at P	= Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown	

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register (write-only) bits

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
TRAPF	R IOPUWR	—	_	VREGSF	—	CM	VREGS
bit 15							bit 8
		DANIO	DAMO	DAMA	DAMO		
R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR bit 7	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
							bit (
Legend:							
R = Reada	able bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown
bit 15	•	Reset Flag bit					
		onflict Reset ha onflict Reset ha		d			
bit 14	•	gal Opcode or			et Flag bit		
		I opcode detec			•	lized W registe	er used as ar
		Pointer caused					
	-	l opcode or Uni		egister Reset h	as not occurred	d	
bit 13-12	-	ted: Read as '			. 1.9		
bit 11		ash Voltage Reg Itage regulator i			p bit		
		ltage regulator (•	ing Sleep		
bit 10		ted: Read as '	-	,,	5 F		
bit 9	CM: Configur	ation Mismatch	Flag bit				
	1 = A Configu	uration Mismatc uration Mismatc	h Reset has				
bit 8	VREGS: Volta	age Regulator S	Standby Durir	ng Sleep bit			
	•	egulator is active egulator goes in	•	•	еер		
bit 7	EXTR: Extern	nal Reset (MCL	R) Pin bit				
		Clear (pin) Res Clear (pin) Res					
bit 6	SWR: Softwa	re RESET (Instr	uction) Flag	bit			
		instruction has instruction has					
bit 5	SWDTEN: So	oftware Enable/	Disable of W	DT bit ⁽²⁾			
	1 = WDT is e 0 = WDT is di						
bit 4	WDTO: Watc	hdog Timer Tim	e-out Flag bi	it			
		e-out has occur e-out has not oc					
Note 1:	All of the Reset sta cause a device Re		set or cleare	d in software. S	Setting one of th	ese bits in soft	ware does not
2:	If the FWDTEN Co SWDTEN bit settir	onfiguration bit i	s '1' (unprog	rammed), the V	VDT is always e	enabled, regard	lless of the

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

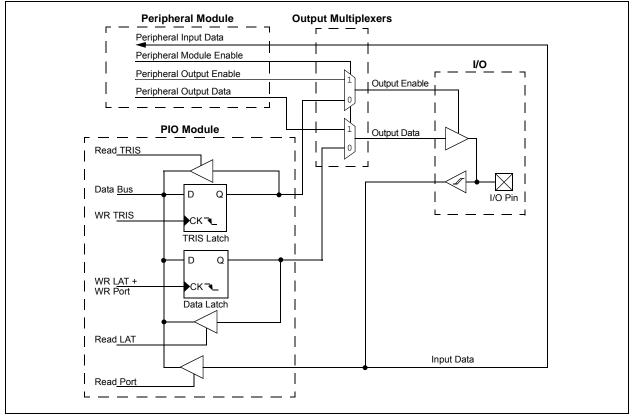
11.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports" (DS70598) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Many of the device pins are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

Generally, a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.


When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have eight registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Latch register (LATx) read the latch. Writes to the Latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device is disabled. This means the corresponding LATx and TRISx registers and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

11.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code, or a complete redesign, may be the only option.

Peripheral Pin Select configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.4.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the label, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

11.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital-only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs. In comparison, some digital-only peripheral modules are never included in the Peripheral Pin Select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I^2C^{TM} and the PWM. A similar requirement excludes all modules with analog inputs, such as the ADC Converter.

A key difference between remappable and nonremappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.4.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of SFRs: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheralselectable pin is handled in two different ways, depending on whether an input or output is being mapped.

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0
FLTMD	FLTOUT	FLTTRIEN	OCINV	—	_	—	OC32
bit 15	·				·		bit
R/W-0	R/W-0, HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
OCTRIC	G TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL
bit 7							bit
Legend:		HS = Hardwa	re Settable bit				
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	1 = Fault mo cleared i	t Mode Select b ode is maintain n software and	ed until the Fa a new PWM pe	eriod starts			
		de is maintaine	d until the Faul	t source is rem	loved and a ne	w PWM period	starts
bit 14	FLTOUT: Fau		. –				
		tput is driven hi tput is driven lo					
bit 13		ault Output Sta					
		is tri-stated on		'n			
	•	I/O state is defi			ault condition		
bit 12	OCINV: Outp	ut Compare x I	nvert bit				
		out is inverted out is not invert	ed				
bit 11-9	Unimplemen	ted: Read as '	כי				
bit 8	OC32: Casca	ide Two OCx M	odules Enable	bit (32-bit oper	ration)		
		module operate module operate					
bit 7		tput Compare x		Select bit			
		OCx from the s			CSELx bits		
		nizes OCx with				S	
bit 6	TRIGSTAT: T	imer Trigger St	atus bit				
		urce has been [.] urce has not be			d clear		
bit 5		put Compare x		•			
	1 = OCx is tr	• •	·				
	0 = Output C	ompare x mod	ule drives the C	OCx pin			
Note 1:	Do not use the O	Cx module as i	ts own Svnchro	nization or Tric	aaer source.		
	When the OCy m		-			module uses t	he OCv
	module as a Trigg						
3:	Each Output Con "Peripheral Trig PTGO0 = OC1 PTGO1 = OC2					n source. See S	Section 24.0
	PTGO2 = OC3 $PTGO3 = OC4$						

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			INTHL	D<31:24>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			INTHL	D<23:16>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

bit 15-0 INTHLD<31:16>: Hold Register for Reading and Writing INT1TMRH bits

REGISTER 17-20: INT1HLDL: INTERVAL 1 TIMER HOLD LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTHL	.D<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTH	_D<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-0 INTHLD<15:0>: Hold Register for Reading and Writing INT1TMRL bits

REGISTER 25-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT CONTROL REGISTER (CONTINUED)

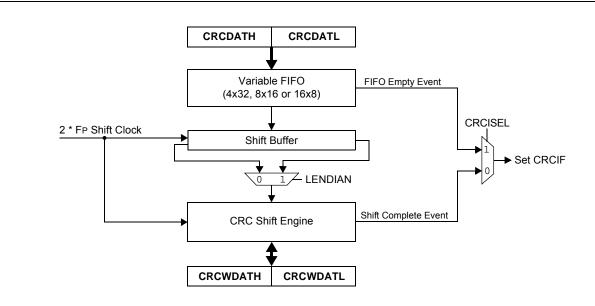
- bit 3-0 SELSRCA<3:0>: Mask A Input Select bits
 - 1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H 0010 = PWM2L 0001 = PWM1H 0000 = PWM1L

REGISTER 25-5: CMxMSKCON: COMPARATOR x MASK GATING CONTROL REGISTER (CONTINUED)

bit 3 ABEN: AND Gate B Input Enable bit 1 = MBI is connected to AND gate 0 = MBI is not connected to AND gate bit 2 ABNEN: AND Gate B Input Inverted Enable bit 1 = Inverted MBI is connected to AND gate 0 = Inverted MBI is not connected to AND gate bit 1 AAEN: AND Gate A Input Enable bit 1 = MAI is connected to AND gate 0 = MAI is not connected to AND gate bit 0 AANEN: AND Gate A Input Inverted Enable bit 1 = Inverted MAI is connected to AND gate 0 = Inverted MAI is not connected to AND gate

26.0 PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Programmable Cyclic Redundancy Check (CRC)" (DS70346) of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The programmable CRC generator offers the following features:

- User-programmable (up to 32nd order) polynomial CRC equation
- Interrupt output
- Data FIFO

The programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-programmable CRC polynomial equation, up to 32 bits
- Programmable shift direction (little or big-endian)
- · Independent data and polynomial lengths
- Configurable interrupt output
- Data FIFO

A simplified block diagram of the CRC generator is shown in Figure 26-1. A simple version of the CRC shift engine is shown in Figure 26-2.

FIGURE 26-1: CRC BLOCK DIAGRAM

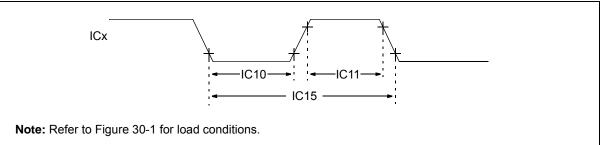
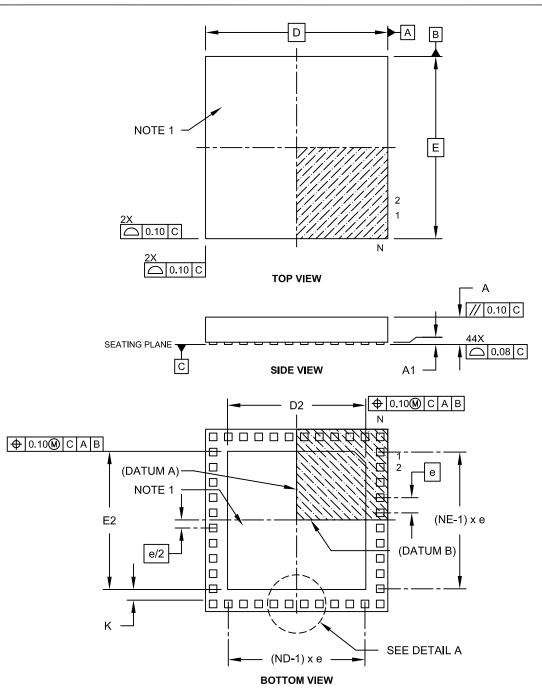

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SY00	Τρυ	Power-up Period	_	400	600	μS	
SY10	Tost	Oscillator Start-up Time		1024 Tosc			Tosc = OSC1 period
SY12	Twdt	Watchdog Timer Time-out Period	0.81	0.98	1.22	ms	WDTPRE = 0, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 30-20) at +85°C
			3.26	3.91	4.88	ms	WDTPRE = 1, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 30-20) at +85°C
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS	
SY20	TMCLR	MCLR Pulse Width (low)	2	_		μS	
SY30	TBOR	BOR Pulse Width (low)	1	_		μS	
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	500	900	μS	-40°C to +85°C
SY36	TVREG	Voltage Regulator Standby-to-Active mode Transition Time	_	—	30	μS	
SY37	Toscdfrc	FRC Oscillator Start-up Delay	46	48	54	μS	
SY38	Toscdlprc	LPRC Oscillator Start-up Delay		—	70	μS	

TABLE 30-22:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

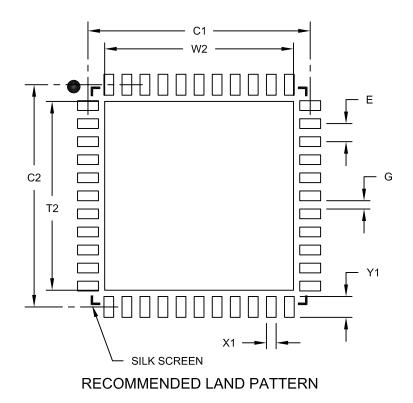
FIGURE 30-6: INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS


TABLE 30-26: INPUT CAPTURE x MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Max.	Units	Conditions	
IC10	TccL	ICx Input Low Time	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25		ns	Must also meet Parameter IC15	
IC11	ТссН	ICx Input High Time	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25	—	ns	Must also meet Parameter IC15	N = prescale value (1, 4, 16)
IC15	TccP	ICx Input Period	Greater of 25 + 50 or (1 Tcy/N) + 50	_	ns		

Note 1: These parameters are characterized, but not tested in manufacturing.

44-Terminal Very Thin Leadless Array Package (TL) – 6x6x0.9 mm Body With Exposed Pad [VTLA]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

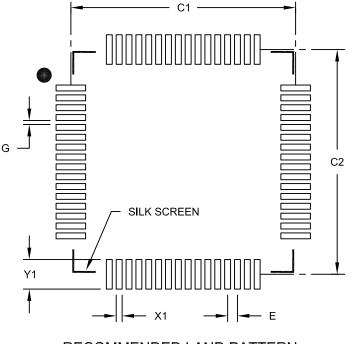
Microchip Technology Drawing C04-157C Sheet 1 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Contact Pitch	act Pitch E		0.65 BSC			
Optional Center Pad Width	W2			6.60		
Optional Center Pad Length	T2			6.60		
Contact Pad Spacing	C1		8.00			
Contact Pad Spacing	C2		8.00			
Contact Pad Width (X44)	X1			0.35		
Contact Pad Length (X44)	Y1			0.85		
Distance Between Pads	G	0.25				

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	N	/ILLIMETER	S	
Dimensio	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B

INDEX

Α

	1
AC Characteristics	1
10-Bit ADC Conversion Requirements 46	5
12-Bit ADC Conversion Requirements 46	3
ADC Module45	9
ADC Module (10-Bit Mode)461, 47	3
ADC Module (12-Bit Mode)	3
Capacitive Loading Requirements on	
Output Pins	3
DMA Module Requirements	
ECANx I/O Requirements45	
External Clock41	
High-Speed PWMx Requirements	
I/O Timing Requirements41	
I2Cx Bus Data Requirements (Master Mode) 45	1
I2Cx Bus Data Requirements (Slave Mode)	
Input Capture x Requirements	
Internal FRC Accuracy	
Internal LPRC Accuracy	
Internal RC Accuracy	
Load Conditions	
OCx/PWMx Mode Requirements	
Op Amp/Comparator Voltage Reference	•
Settling Time Specifications	7
Output Compare x Requirements	
PLL Clock	
QEI External Clock Requirements	
QEI Index Pulse Requirements	
Quadrature Decoder Requirements	
Reset, Watchdog Timer, Oscillator Start-up Timer,	4
Power-up Timer Requirements	7
Fower-up filler Requirements	
SPI1 Master Mode (Full Dupley CKE = 0 CKP = v	'
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Pequirements	
SMP = 1) Requirements	
SMP = 1) Requirements	1
SMP = 1) Requirements44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44	1
SMP = 1) Requirements44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44 SPI1 Master Mode (Half-Duplex, Transmit Only)	-1 -0
SMP = 1) Requirements	-1 -0 -9
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, 44 SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43	-1 -0 -9
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, 44 SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, 43	-1 -0 -9 -8
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44	-1 -0 -9 -8
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, 44	-1 -0 -9 -8 -9
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44	-1 -0 -9 -8 -9
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, 44	1 0 9 8 9 .9
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44	1 0 9 8 9 .9
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44	1 9 8 9 7 3
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44	1 0 9 8 9 7 3 5
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI 44	-1 -0 -9 -8 -9 -7 -3 -5 P
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI = 1) Requirements 42	-1 -0 -9 -8 -9 -7 -3 -5 P
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI = 1) Requirements 42 SPI2 Master Mode (Full-Duplex, CKE = 1, 42	1 9 8 9 7 3 5 9 9
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI = 1) Requirements 42 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 42	1 9 8 9 7 3 5 9 9
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI = 1) Requirements 42 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 42 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 42 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 42 SPI2 Master Mode (Half-Duplex, Transmit Only) 42	1 0 9 8 9 7 3 5 P 9 8
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI = 1) Requirements 42 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 42 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 42 SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 42 SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements 42	1 0 9 8 9 7 3 5 P 9 8 7 3 5 P 9
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI = 1) Requirements 42 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 42 SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 42 SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements 42 SPI2 Master Mode (Half-Duplex, Transmit Only) 42 SPI2 Maximum Data/Clock Rate Summary 42	1 0 9 8 9 7 3 5 P 9 8 7 3 5 P 9
SMP = 1) Requirements44SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements43SPI1 Maximum Data/Clock Rate Summary43SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI = 1) Requirements42SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements42SPI2 Maximum Data/Clock Rate Summary42SPI2 Maximum Data/Clock Rate Summary42SPI2 Slave Mode (Full-Duplex, CKE = 0,42SPI2 Slave Mode (Full-Duplex, CKE = 0,42	1 0 9 8 9 7 3 5 P 9 8 7 6
SMP = 1) Requirements 44 SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 44 SPI1 Master Mode (Half-Duplex, Transmit Only) 43 Requirements 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Maximum Data/Clock Rate Summary 43 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements 44 SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements 44 SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI = 1) Requirements 42 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 42 SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements 42 SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements 42 SPI2 Maximum Data/Clock Rate Summary 42 SPI2 Maximum Data/Clock Rate Summary 42 SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements 43	1 0 9 8 9 7 3 5 P 9 8 7 6 7
SMP = 1) Requirements44SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements43SPI1 Maximum Data/Clock Rate Summary43SPI1 Maximum Data/Clock Rate Summary43SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Maximum Data/Clock Rate Summary42SPI2 Maximum Data/Clock Rate Summary42SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMI	1 0 9 8 9 7 3 5 P 9 8 7 6 7 P
SMP = 1) Requirements44SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements43SPI1 Maximum Data/Clock Rate Summary43SPI1 Maximum Data/Clock Rate Summary43SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI = 1) Requirements42SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Maximum Data/Clock Rate Summary42SPI2 Maximum Data/Clock Rate Summary42SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMI43SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMI = 0) Requirements43	1 0 9 8 9 7 3 5 P 9 8 7 6 7 P
SMP = 1) Requirements44SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements43SPI1 Maximum Data/Clock Rate Summary43SPI1 Maximum Data/Clock Rate Summary43SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI = 1) Requirements42SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements42SPI2 Maximum Data/Clock Rate Summary42SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMI = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMI = 0) Requirements43	1 0 98 9 7 3 5P9 8 76 7P5
SMP = 1) Requirements44SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements43SPI1 Maximum Data/Clock Rate Summary43SPI1 Maximum Data/Clock Rate Summary43SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI = 1) Requirements42SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Half-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements43	1 0 98 9 7 3 5P9 8 76 7P5
SMP = 1) Requirements44SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements44SPI1 Master Mode (Half-Duplex, Transmit Only) Requirements43SPI1 Maximum Data/Clock Rate Summary43SPI1 Maximum Data/Clock Rate Summary43SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMP = 0) Requirements44SPI2 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMI = 1) Requirements42SPI2 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1) Requirements42SPI2 Master Mode (Half-Duplex, Transmit Only) Requirements42SPI2 Maximum Data/Clock Rate Summary42SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 0, SMP = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 0, CKP = 1, SMI = 0) Requirements43SPI2 Slave Mode (Full-Duplex, CKE = 1, CKP = 1, SMI = 0) Requirements43	1 0 98 9 7 3 5P9 8 76 7P5 1

Timer1 External Clock Requirements	418
Timer2/Timer4 External Clock Requirements	419
Timer3/Timer5 External Clock Requirements	419
UARTx I/O Requirements	454
ADC	
Control Registers	325
Helpful Tips	324
Key Features	321
Resources	324
Arithmetic Logic Unit (ALU)	44
Assembler	
MPASM Assembler	398
В	
_	
Bit-Reversed Addressing	
Example	
Implementation	
Sequence Table (16-Entry)	116
Block Diagrams	
Data Access from Program Space	
Address Generation	
16-Bit Timer1 Module	
ADC Conversion Clock Period	323
ADC with Connection Options for ANx Pins	
and Op Amps	
Arbiter Architecture	
BEMF Voltage Measurement Using ADC	
Boost Converter Implementation	
CALL Stack Frame	
Comparator (Module 4)	
Connections for On-Chip Voltage Regulator	
CPU Core	
CRC Module	
CRC Shift Engine	
CTMU Module	
Digital Filter Interconnect	
DMA Controller Module	
dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/5	
and PIC24EPXXXGP/MC20X	
ECAN Module	
EDS Read Address Generation	
EDS Write Address Generation	
Example of MCLR Pin Connections	
High-Speed PWMx Architectural Overview	
High-Speed PWMx Register Interconnection	228
I2Cx Module	
Input Capture x	
Interleaved PFC	
Multiphase Synchronous Buck Converter	
Multiplexing Remappable Output for RPn	
Op Amp Configuration A	
Op Amp Configuration B	
Op Amp/Comparator Voltage Reference Module	
Op Amp/Comparator x (Modules 1, 2, 3)	
Oscillator System	
Output Compare x Module	
PLL	
Programmer's Model	
PTG Module	
Quadrature Encoder Interface	
Recommended Minimum Connection	

NOTES: