

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep256mc202-h-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6 CPU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

3.6.1 KEY RESOURCES

- "CPU" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit 1 = REPEAT loop in progress 0 = REPEAT loop not in progress
bit 3	N: MCU ALU Negative bit 1 = Result was negative 0 = Result was non-negative (zero or positive)
bit 2	 OV: MCU ALU Overflow bit This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	 Z: MCU ALU Zero bit 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note 1: 2:	This bit is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only. The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority

- Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
- 4: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTGCST	0AC0	PTGEN		PTGSIDL	PTGTOGL	_	PTGSWT	PTGSSEN	PTGIVIS	PTGSTRT	PTGWTO	_	_	—	—	PTGIT	M<1:0>	0000
PTGCON	0AC2	F	PTGCLK<2	:0>		F	PTGDIV<4:0	>			PTGPWD	<3:0>	•	_	P	TGWDT<2:	0>	0000
PTGBTE	0AC4		ADC	CTS<4:1>		IC4TSS	IC3TSS	IC2TSS	IC1TSS	OC4CS	OC3CS	OC2CS	OC1CS	OC4TSS	OC3TSS	OC2TSS	OC1TSS	0000
PTGHOLD	0AC6								PTGHOLD	<15:0>								0000
PTGT0LIM	0AC8								PTGTOLIN	1<15:0>								0000
PTGT1LIM	0ACA								PTGT1LIN	1<15:0>								0000
PTGSDLIM	0ACC								PTGSDLIN	1<15:0>								0000
PTGC0LIM	0ACE	PTGC0LIM							1<15:0>								0000	
PTGC1LIM	0AD0	PTGC1LIN							1<15:0>								0000	
PTGADJ	0AD2		PTGADJ						<15:0>								0000	
PTGL0	0AD4								PTGL0<	15:0>						0000		
PTGQPTR	0AD6	_	_	_	_	_	_	_	_	_	_	_		P	TGQPTR<4	4:0>		0000
PTGQUE0	0AD8				STEP	21<7:0>				STEP0<7:0>						0000		
PTGQUE1	0ADA				STEP	93<7:0>				STEP2<7:0>							0000	
PTGQUE2	0ADC				STEP	95<7:0>				STEP4<7:0>						0000		
PTGQUE3	0ADE				STEP	7<7:0>				STEP6<7:0>						0000		
PTGQUE4	0AE0		STEP9<7:0>							STEP8<7:0>						0000		
PTGQUE5	0AE2	STEP11<7:0>							STEP10<7:0>						0000			
PTGQUE6	0AE4				STEP	13<7:0>				STEP12<7:0>						0000		
PTGQUE7	0AE6				STEP	15<7:0>				STEP14<7:0>						0000		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657H-page 78

TABLE 4-19: SPI1 AND SPI2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	—	SPISIDL	—	—	:	SPIBEC<2:0	>	SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	—	_	_	_	FRMDLY	SPIBEN	0000
SPI1BUF	0248	8 SPI1 Transmit and Receive Buffer Register												0000				
SPI2STAT	0260	SPIEN	—	SPISIDL	—	—	:	SPIBEC<2:0)>	SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF	0000
SPI2CON1	0262	_	—		DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	—	_	_	_	FRMDLY	SPIBEN	0000
SPI2BUF	0268	SPI2 Transmit and Receive Buffer Register											0000					

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 11-7: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12 (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				FLT2R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				FLT1R<6:0>			
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-8	FLT2R<6:0: (see Table 1	Assign PWM 1-2 for input pin	Fault 2 (FLT2 selection nur) to the Corresp mbers)	onding RPn F	Pin bits	
	1111001 =	Input tied to RPI	121				
	•						
	•						
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	5				
bit 7	Unimpleme	ented: Read as '	0'				
bit 6-0	FLT1R<6:0: (see Table 1	Second States	Fault 1 (FLT1 selection nur) to the Corresp nbers)	onding RPn F	Pin bits	
	1111001 =	Input tied to RPI	121				
	•						
	-						
		Input tied to CM	P1				
	0000000 =	Input tied to Vss	;				

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXH	LD<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXH	HLD<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown

REGISTER 17-10: INDX1HLD: INDEX COUNTER 1 HOLD REGISTER

bit 15-0 INDXHLD<15:0>: Hold Register for Reading and Writing INDX1CNTH bits

REGISTER 17-11: QEI1ICH: QEI1 INITIALIZATION/CAPTURE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			QEIIC	<31:24>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			QEIIC	<23:16>				
bit 7								
Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'					d as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unkn			nown	
1								

bit 15-0 **QEIIC<31:16>:** High Word Used to Form 32-Bit Initialization/Capture Register (QEI1IC) bits

REGISTER 17-12: QEI1ICL: QEI1 INITIALIZATION/CAPTURE LOW WORD REGISTER

QEIIC<15:8> bit 15 bit 15 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 QEIIC<7:0> bit 7 bit 7 bit 7	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
bit 15 b R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 QEIIC<7:0> b b Legend: W = Writable bit U = Unimplemented bit read as '0'				QEII	C<15:8>					
R/W-0 R/W-0 <th< td=""><td>bit 15</td><td></td><td></td><td></td><td></td><td></td><td></td><td>bit 8</td></th<>	bit 15							bit 8		
R/W-0 R/W-0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
QEIIC<7:0> bit 7 Legend: R = Readable bit W = Writable bit	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
bit 7 b Legend: W = Writable bit B = Readable bit W = Writable bit				QEII	C<7:0>					
Legend: R = Readable bit W = Writable bit U = Unimplemented bit read as '0'	bit 7							bit 0		
R = Readable bit W = Writable bit U = Unimplemented bit read as '0'										
R = Readable bit $W = Writable bit$ $U = Unimplemented bit read as '0'$	Legend:									
	R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown	-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	: = Bit is unknown		

bit 15-0 **QEIIC<15:0>:** Low Word Used to Form 32-Bit Initialization/Capture Register (QEI1IC) bits

18.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on $\frac{1}{SSx}$.

Note:	This	insures	that	the	first	fra	ame
	transn	nission	after	initializ	ation	is	not
	shifted	d or corru	upted.				

- 2. In Non-Framed 3-Wire mode, (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = 0, always place a pull-down resistor on SSx.
 - **Note:** This will insure that during power-up and initialization the master/slave will not lose Sync due to an errant SCKx transition that would cause the slave to accumulate data shift errors for both transmit and receive appearing as corrupted data.
- FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame Sync pulse is active on the SSx pin, which indicates the start of a data frame.
 - Note: Not all third-party devices support Frame mode timing. Refer to the SPIx specifications in Section 30.0 "Electrical Characteristics" for details.
- In Master mode only, set the SMP bit (SPIxCON1<9>) to a '1' for the fastest SPIx data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set.

To avoid invalid slave read data to the master, the user's master software must ensure enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF Transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPIx Shift register and is empty once the data transmission begins.

18.2 SPI Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

18.2.1 KEY RESOURCES

- "Serial Peripheral Interface (SPI)" (DS70569) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

19.0 INTER-INTEGRATED CIRCUIT[™] (I²C[™])

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated Circuit™ (I²C™)" (DS70330) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.
 - 3: There are minimum bit rates of approximately FCY/512. As a result, high processor speeds may not support 100 Kbit/second operation. See timing specifications, IM10 and IM11, and the "Baud Rate Generator" in the "dsPIC33/PIC24 Family Reference Manual".

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X family of devices contains two Inter-Integrated Circuit (I²C) modules: I2C1 and I2C2.

The l^2C module provides complete hardware support for both Slave and Multi-Master modes of the l^2C serial communication standard, with a 16-bit interface.

The I^2C module has a 2-pin interface:

- · The SCLx pin is clock
- The SDAx pin is data

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation
- I²C Slave mode supports 7 and 10-bit addressing
- I²C Master mode supports 7 and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly
- Intelligent Platform Management Interface (IPMI)
 support
- System Management Bus (SMBus) support

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC		
ACKSTAT	TRSTAT	_	—	—	BCL	GCSTAT	ADD10		
bit 15					•		bit 8		
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC		
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF		
bit 7									
Legend:		C = Clearab	le bit	HS = Hardware Settable bit HSC = Hardware Settable/Cle					
R = Readabl	e bit	W = Writable	e bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is se	et	'0' = Bit is clea	ared	x = Bit is unknown			

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER

bit 15	ACKSTAT: Acknowledge Status bit (when operating as I^2C^{TM} master, applicable to master transmit operation)
	1 = NACK received from slave 0 = ACK received from slave
	Hardware is set or clear at the end of slave Acknowledge.
bit 14	TRSTAT: Transmit Status bit (when operating as I^2C master, applicable to master transmit operation) 1 = Master transmit is in progress (8 bits + ACK)
	0 = Master transmit is not in progress Hardware is set at the beginning of master transmission. Hardware is clear at the end of slave Acknowledge.
bit 13-11	Unimplemented: Read as '0'
bit 10	BCL: Master Bus Collision Detect bit
	1 = A bus collision has been detected during a master operation0 = No bus collision detected
	Hardware is set at detection of a bus collision.
bit 9	GCSTAT: General Call Status bit
	1 = General call address was received
	0 = General call address was not received
1.11.0	Hardware is set when address matches general call address. Hardware is clear at Stop detection.
DIT 8	ADD10: 10-Bit Address Status bit
	I = 10-bit address was matched 0 = 10-bit address was not matched
	Hardware is set at the match of the 2nd byte of the matched 10-bit address. Hardware is clear at Stop detection.
bit 7	IWCOL: I2Cx Write Collision Detect bit
	1 = An attempt to write to the I2CxTRN register failed because the I^2 C module is busy 0 = No collision
	Hardware is set at the occurrence of a write to I2CxTRN while busy (cleared by software).
bit 6	I2COV: I2Cx Receive Overflow Flag bit
	 1 = A byte was received while the I2CxRCV register was still holding the previous byte 0 = No overflow
	Hardware is set at an attempt to transfer I2CxRSR to I2CxRCV (cleared by software).
bit 5	D_A: Data/Address bit (when operating as I ² C slave)
	1 = Indicates that the last byte received was data
	 Indicates that the last byte received was a device address Hardware is clear at a device address match. Hardware is set by reception of a slave byte.
bit 4	P: Stop bit
	1 = Indicates that a Stop bit has been detected last
	0 = Stop bit was not detected last
	Hardware is set or clear when a Start, Repeated Start or Stop is detected.

REGISTER 21-20:	CxRXMnSID: ECANx ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER
	REGISTER (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3			
bit 15			•	•			bit 8			
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x			
SID2	SID1	SID0	_	MIDE	—	EID17	EID16			
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit				U = Unimple	U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						
bit 15-5	SID<10:0>: S	Standard Identif	ier bits							
	1 = Includes I	bit, SIDx, in filte	er comparisor	1						
		s a don't care ir	n filter compa	rison						
bit 4	Unimplemen	ted: Read as '	0'							
bit 3	MIDE: Identif	ier Receive Mo	de bit							
	1 = Matches	only message ty	/pes (standar	d or extended a	ddress) that corre	espond to EXID	E bit in the filter			
	0 = Matches	either standard	or extended a	address messag	ge if filters match	(i.e., if (Filter SI	D) = (Message			
	SID) or if	(Filter SID/EID)		SID/EID))						
bit 2	Unimplemen	ted: Read as '	0'							
bit 1-0	EID<17:16>:	Extended Iden	tifier bits							
	1 = Includes	bit, EIDx, in filt	er compariso	n						
	0 = EIDx bit is a don't care in filter comparison									

REGISTER 21-21: CxRXMnEID: ECANx ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER REGISTER (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7	·				•		bit 0
Legend:							
R = Readable bit $W = V$		W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Includes bit, EIDx, in filter comparison

0 = EIDx bit is a don't care in filter comparison

REGISTER 21-22: CxRXFUL1: ECANx RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXFUL7 | RXFUL6 | RXFUL5 | RXFUL4 | RXFUL3 | RXFUL2 | RXFUL1 | RXFUL0 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

REGISTER 21-23: CxRXFUL2: ECANx RECEIVE BUFFER FULL REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 **RXFUL<31:16>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

R/W-0	R/W	-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
VCFG2	VCFC	G1	VCFG0		_	CSCNA	CHPS1	CHPS0			
bit 15								bit 8			
R-0	R/W	-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
BUFS	SMP	14	SMPI3	SMPI2	SMPI1	SMPI0	BUFM	ALTS			
bit 7								bit 0			
Legend:											
R = Readable	e bit		W = Writable	bit	U = Unimpl	emented bit, read	d as '0'				
-n = Value at	POR		'1' = Bit is set		'0' = Bit is c	cleared	x = Bit is unk	nown			
bit 15-13	VCFG<	2:0>:	Converter Volt	age Reference	Configuratio	on bits					
	Value		VREFH	VREFL							
	000		Avdd	Avss							
	001	Ext	ernal VREF+	Avss							
	010		Avdd	External VRE	F-						
	011	Ext	ernal VREF+	External VRE	F-						
	lxx		Avdd	Avss							
bit 12-11	Unimple	Unimplemented: Read as '0'									
bit 10	CSCNA: Input Scan Select bit										
	1 = Scans inputs for CH0+ during Sample MUXA 0 = Does not scan inputs										
bit 9-8	CHPS<1:0>: Channel Select bits										
	In 12-bit mode (AD21B = 1), the CHPS<1:0> bits are Unimplemented and are Read as '0':										
	1x = Converts CH0, CH1, CH2 and CH3 01 = Converts CH0 and CH1 00 = Converts CH0										
bit 7	BUFS: Buffer Fill Status bit (only valid when BUFM = 1)										
	1 = ADC is currently filling the second half of the buffer; the user application should access data in the										
	 a b contently mining the second half of the buffer; the user application should access data in the second half of the buffer a ADC is currently filling the first half of the buffer; the user application should access data in the second half of the buffer 										
bit 6-2	SMPI<4:0>: Increment Rate bits										
	When A	When ADDMAEN = 0:									
	x1111 =	= Gen	erates interrup	t after completion	on of every	16th sample/conv	ersion operation	on			
	x1110 =	= Gen	erates interrup	t after completion	on of every	15th sample/conv	ersion operation	on			
	•	•									
	•										
	x0001 = x0000 =	x0001 = Generates interrupt after completion of every 2nd sample/conversion operation x0000 = Generates interrupt after completion of every sample/conversion operation									
	When ADDMAEN = 1:										
	11111 =	= Incre	ements the DM	IA address after	completion	of every 32nd sa	ample/conversi	ion operation			
	11110 =	= Incre	ements the DM	IA address after	r completion	of every 31st sa	mple/conversion	on operation			
	•										
	•										
	00001 = 00000 =	= Incre = Incre	ements the DM ements the DM	IA address aftei IA address aftei	^r completion ^r completion	of every 2nd sar	nple/conversio /conversion op	on operation peration			

. . ACOND. ADCA CONTROL DECISTED 2

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0 R/W-0 R		R/W-0			
CH0NB		_	CH0SB4 ⁽¹⁾	CH0SB3 ⁽¹⁾	CH0SB2 ⁽¹⁾	CH0SB1 ⁽¹⁾	CH0SB0 ⁽¹⁾			
bit 15		·	•		•		bit 8			
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CH0NA		_	CH0SA4 ⁽¹⁾	CH0SA3 ⁽¹⁾	CH0SA2 ⁽¹⁾	CH0SA1 ⁽¹⁾	CH0SA0 ⁽¹⁾			
bit 7										
Legend:										
R = Read	able bit	W = Writable b	bit	U = Unimpler	nented bit. read	as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	lown			
bit 15	CHONB. Cha	nnel () Negative	Innut Select fo	r Sample MLIX	(B hit					
Sit 10	1 = Channel (negative input	is AN1(1)							
	0 = Channel (0 negative input	is Vrefl							
bit 14-13	Unimplemen	ted: Read as '0'								
bit 12-8	CH0SB<4:0>	Channel 0 Pos	itive Input Sele	ect for Sample	MUXB bits ⁽¹⁾					
	11111 = Ope	en; use this seled	tion with CTM	U capacitive ar	nd time measure	ement				
	11110 = Cha	nnel 0 positive inp	out is connected	to the CTMU te	emperature mea	surement diode	(CTMU TEMP)			
	11101 = Res	erved								
	11100 = Res	erved								
	11011 = Res 11010 = Cha	innel 0 positive ir	nout is the outp	out of OA3/AN6	_ວ (2,3)					
	11001 = Cha	innel 0 positive ir	nput is the outp	out of OA2/AN	(2)					
	11000 = Cha	innel 0 positive ir	nput is the outp	out of OA1/AN3	₃ (2)					
	10111 = Res	erved								
	•									
	•									
	10000 = Res	erved								
	01111 = Cha	innel 0 positive ir	1put is AN15 ⁽³⁾							
	01110 = Cha	innel 0 positive ir	1put is AN14(°)							
	•		iput is AN 15.							
	•									
	•		(2)							
	00010 = Cha	innel 0 positive ir	nput is $AN2^{(3)}$							
	00001 = Cha	innel 0 positive ir	$\frac{1000 \text{ is AN } (3)}{1000 \text{ is AN } (3)}$							
hit 7	CHONA: Cha	nnel 0 Negative	Input Select fo	r Samole MLIX	(A hit					
	1 = Channel (negative input	is ANI1(1)							
	0 = Channel (0 negative input	is Vrefl							
bit 6-5	Unimplemen	ited: Read as '0'								
Net: 4		17				in an alt of C				
Note 1:	ANU through AN	v are repurpose	a wnen compa ticular on amn	arator and op a	mp runctionality	is enabled. Se	e ⊢igure 23-1			
	and 3.		uculai op amp				1, 2			
2:	The OAx input is	s used if the corr	esponding op	amp is selecte	d (OPMODE (C	MxCON<10>) =	= 1);			

REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

3: See the "**Pin Diagrams**" section for the available analog channels for each device.

otherwise, the ANx input is used.

REGISTER 24-1: PTGCST: PTG CONTROL/STATUS REGISTER (CONTINUED)

- PTGITM<1:0>: PTG Input Trigger Command Operating Mode bits⁽¹⁾
 - 11 = Single level detect with Step delay not executed on exit of command (regardless of the PTGCTRL command)
 - 10 = Single level detect with Step delay executed on exit of command
 - 01 = Continuous edge detect with Step delay not executed on exit of command (regardless of the PTGCTRL command)
 - 00 = Continuous edge detect with Step delay executed on exit of command
- Note 1: These bits apply to the PTGWHI and PTGWLO commands only.

bit 1-0

- **2:** This bit is only used with the PTGCTRL step command software trigger option.
- **3:** Use of the PTG Single-Step mode is reserved for debugging tools only.

29.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

29.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

DC CHARACT	ERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Parameter No.	Тур.	Max.	Units	Conditions					
Operating Cur	rent (IDD) ⁽¹⁾								
DC20d	9	15	mA	-40°C					
DC20a	9	15	mA	+25°C	3 3\/	10 MIPS			
DC20b	9	15	mA	+85°C	3.5 V				
DC20c	9	15	mA	+125°C					
DC22d	16	25	mA	-40°C		20 MIPS			
DC22a	16	25	mA	+25°C	2 2)/				
DC22b	16	25	mA	+85°C	3.3V				
DC22c	16	25	mA	+125°C					
DC24d	27	40	mA	-40°C					
DC24a	27	40	mA	+25°C	2 2)/	40 MIPS			
DC24b	27	40	mA	+85°C	3.3V				
DC24c	27	40	mA	+125°C					
DC25d	36	55	mA	-40°C					
DC25a	36	55	mA	+25°C	2.21/	60 MIPS			
DC25b	36	55	mA	+85°C	3.3V				
DC25c	36	55	mA	+125°C					
DC26d	41	60	mA	-40°C					
DC26a	41	60	mA	+25°C	3.3V	70 MIPS			
DC26b	41	60	mA	+85°C	7				

TABLE 30-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (all PMDx bits are zeroed)
- CPU is executing while(1) {NOP(); } statement
- · JTAG is disabled

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO10	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾		—	0.4	V	VDD = 3.3V, $IOL \le 6 \text{ mA}, -40^{\circ}\text{C} \le Ta \le +85^{\circ}\text{C}$ $IOL \le 5 \text{ mA}, +85^{\circ}\text{C} < Ta \le +125^{\circ}\text{C}$
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾		—	0.4	V	
DO20	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4	_	_	V	$IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	_	—	V	$IOH \ge -15 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
DO20A	Voн1	Output High Voltage 4x Source Driver Pins ⁽²⁾	1.5 ⁽¹⁾	_		V	$IOH \ge -14 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
			2.0 ⁽¹⁾	_			$IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
			3.0(1)	—	—		$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
		Output High Voltage 8x Source Driver Pins ⁽³⁾	1.5 ⁽¹⁾	_		V	$IOH \ge -22 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
			2.0 ⁽¹⁾	—	_		$IOH \ge -18 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
			3.0(1)	—	—		$IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{V}$

TABLE 30-12: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized but not tested.

2: Includes all I/O pins that are not 8x Sink Driver pins (see below).

Includes the following pins:
 For devices with less than 64 pins: RA3, RA4, RA9, RB<7:15> and RC3
 For 64-pin devices: RA4, RA9, RB<7:15>, RC3 and RC15

TABLE 30-13: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min. ⁽²⁾	Тур.	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low	2.65	_	2.95	V	VDD (Notes 2 and 3)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance.

2: Parameters are for design guidance only and are not tested in manufacturing.

3: The VBOR specification is relative to VDD.

TABLE 30-48:SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK1 Input Frequency		_	11	MHz	(Note 3)	
SP72	TscF	SCK1 Input Fall Time	_		_	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCK1 Input Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time			_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30	_	_	ns		
SP50	TssL2scH, TssL2scL	$\overline{SS1}$ ↓ to SCK1 ↑ or SCK1 ↓ Input	120	Ι	—	ns		
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	—	50	ns	(Note 4)	
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	—	_	ns	(Note 4)	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 91 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

NOTES: