

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep256mc202-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-bit Digital Signal Controllers and Microcontrollers	29
3.0	CPU	35
4.0	Memory Organization	45
5.0	Flash Program Memory	119
6.0	Resets	
7.0	Interrupt Controller	127
8.0	Direct Memory Access (DMA)	139
9.0	Oscillator Configuration	
10.0	Power-Saving Features	163
11.0	I/O Ports	173
12.0	Timer1	203
13.0	Timer2/3 and Timer4/5	207
14.0	Input Capture	213
	Output Compare	
	High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)	
	Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)	
	Serial Peripheral Interface (SPI)	
	Inter-Integrated Circuit™ (I ² C™)	
	Universal Asynchronous Receiver Transmitter (UART)	
	Enhanced CAN (ECAN™) Module (dsPIC33EPXXXGP/MC50X Devices Only)	
	Charge Time Measurement Unit (CTMU)	
	10-Bit/12-Bit Analog-to-Digital Converter (ADC)	
	Peripheral Trigger Generator (PTG) Module	
25.0	Op Amp/Comparator Module	
	Programmable Cyclic Redundancy Check (CRC) Generator	
27.0		
29.0	Development Support	
	Electrical Characteristics	
	High-Temperature Electrical Characteristics	
	DC and AC Device Characteristics Graphs	
	Packaging Information	
	ndix A: Revision History	
	(
	Vicrochip Web Site	
	omer Change Notification Service	
	omer Support	
Produ	uct Identification System	527

Pin Name ⁽⁴⁾	Pin Type	Buffer Type	PPS	Description			
C1IN1-	I	Analog	No	Op Amp/Comparator 1 Negative Input 1.			
C1IN2-	I	Analog	No	Comparator 1 Negative Input 2.			
C1IN1+	I	Analog	No	Op Amp/Comparator 1 Positive Input 1.			
OA1OUT	0	Analog	No	Op Amp 1 output.			
C1OUT	0	—	Yes	Comparator 1 output.			
C2IN1-	I	Analog	No	Op Amp/Comparator 2 Negative Input 1.			
C2IN2-	I	Analog	No	Comparator 2 Negative Input 2.			
C2IN1+	I	Analog	No	Op Amp/Comparator 2 Positive Input 1.			
OA2OUT	0	Analog	No	Op Amp 2 output.			
C2OUT	0		Yes	Comparator 2 output.			
C3IN1-	I	Analog	No	Op Amp/Comparator 3 Negative Input 1.			
C3IN2-	I	Analog	No	Comparator 3 Negative Input 2.			
C3IN1+	I	Analog	No	Op Amp/Comparator 3 Positive Input 1.			
OA3OUT	0	Analog	No	Op Amp 3 output.			
C3OUT	0		Yes	Comparator 3 output.			
C4IN1-	I.	Analog	No	Comparator 4 Negative Input 1.			
C4IN1+	I.	Analog	No	Comparator 4 Positive Input 1.			
C4OUT	0		Yes	Comparator 4 output.			
CVREF10	0	Analog	No	Op amp/comparator voltage reference output.			
CVREF20	0	Analog	No	Op amp/comparator voltage reference divided by 2 output.			
PGED1	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 1.			
PGEC1	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 1.			
PGED2	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 2.			
PGEC2	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 2.			
PGED3	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 3.			
PGEC3	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 3.			
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.			
AVDD	Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.			
AVss	Р	Р	No	Ground reference for analog modules. This pin must be connected at all times.			
Vdd	Р		No	Positive supply for peripheral logic and I/O pins.			
VCAP	Р		No	CPU logic filter capacitor connection.			
Vss	Р		No	Ground reference for logic and I/O pins.			
VREF+	1	Analog	No	Analog voltage reference (high) input.			
VREF-	Ι	Analog	No	Analog voltage reference (low) input.			
Legend: CMOS = C ST = Schn	nitt Trigg	jer input v	with CI	or output Analog = Analog input P = Power MOS levels O = Output I = Input			

Note 1: This pin is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: This pin is available on dsPIC33EPXXXGP/MC50X devices only.

PPS = Peripheral Pin Select

3: This is the default Fault on Reset for dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices. See Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)" for more information.

TTL = TTL input buffer

4: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

5: There is an internal pull-up resistor connected to the TMS pin when the JTAG interface is active. See the JTAGEN bit field in Table 27-2.

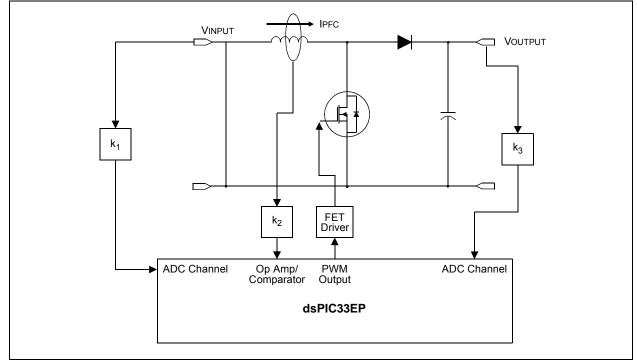
2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 3 MHz < F_{IN} < 5.5 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

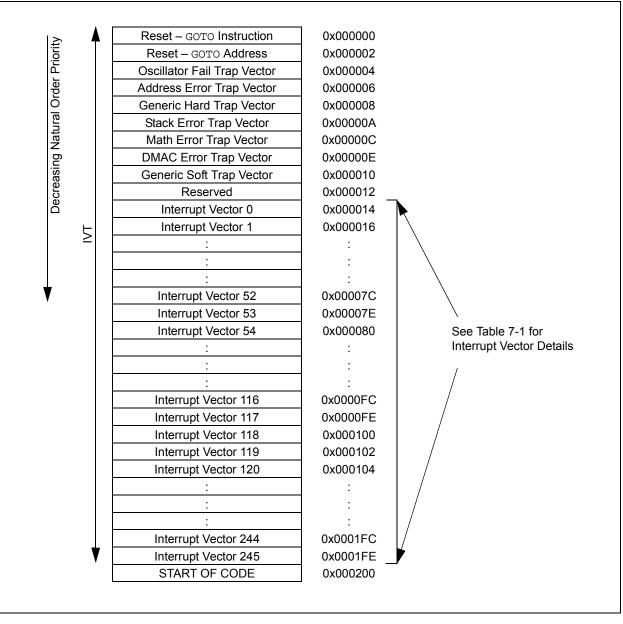
Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLFBD, to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.


Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

2.9 Application Examples


- · Induction heating
- Uninterruptable Power Supplies (UPS)
- DC/AC inverters
- · Compressor motor control
- · Washing machine 3-phase motor control
- BLDC motor control
- · Automotive HVAC, cooling fans, fuel pumps
- Stepper motor control
- · Audio and fluid sensor monitoring
- · Camera lens focus and stability control
- Speech (playback, hands-free kits, answering machines, VoIP)
- Consumer audio
- Industrial and building control (security systems and access control)
- · Barcode reading
- Networking: LAN switches, gateways
- Data storage device management
- · Smart cards and smart card readers

Examples of typical application connections are shown in Figure 2-4 through Figure 2-8.

FIGURE 2-4: BOOST CONVERTER IMPLEMENTATION

FIGURE 7-1: dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X INTERRUPT VECTOR TABLE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR ⁽¹⁾	OVBERR ⁽¹⁾	COVAERR ⁽¹⁾	COVBERR ⁽¹⁾	OVATE ⁽¹⁾	OVBTE ⁽¹⁾	COVTE ⁽¹⁾
pit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR ⁽¹) DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—
pit 7							bit 0
_egend:							
R = Readable		W = Writable		U = Unimpleme			
n = Value at	POR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unk	nown
bit 15	NSTDIS: Inte	errupt Nesting	Disable hit				
		nesting is disa					
	•	nesting is ena					
pit 14	-	-	Overflow Trap F	lag bit ⁽¹⁾			
			erflow of Accur				
	=		overflow of A				
pit 13			Overflow Trap F	•			
	 1 = Trap was caused by overflow of Accumulator B 0 = Trap was not caused by overflow of Accumulator B 						
pit 12	-			Overflow Trap Fla	ag bit ⁽¹⁾		
	1 = Trap was	caused by ca	tastrophic over	flow of Accumula	ator A		
pit 11				Overflow Trap Fla			
			•	flow of Accumula	•		
	=		-	overflow of Accur	nulator B		
pit 10			erflow Trap Ena	able bit ⁽¹⁾			
	1 = Trap ove 0 = Trap is d	rflow of Accum	ulator A				
pit 9	OVBTE: Acc	umulator B Ov	erflow Trap En	able bit ⁽¹⁾			
	1 = Trap ove 0 = Trap is d	rflow of Accum	ulator B				
oit 8	COVTE: Cat	astrophic Over	flow Trap Enat	ole bit ⁽¹⁾			
	 1 = Trap on catastrophic overflow of Accumulator A or B is enabled 0 = Trap is disabled 						
oit 7	SFTACERR:	Shift Accumul	ator Error Statu	us bit ⁽¹⁾			
	 1 = Math error trap was caused by an invalid accumulator shift 0 = Math error trap was not caused by an invalid accumulator shift 						
bit 6 DIV0ERR: Divide-by-Zero Error Status bit							
			used by a divide caused by a d				
	DMACERR:			-			
oit 5							

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the powersaving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

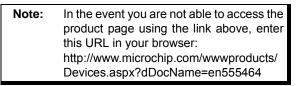
Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the ECAN[™] module has been configured for 500 kbps, based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the ECAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable


The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note:	If a PMD bit is set, the corresponding
	module is disabled after a delay of one
	instruction cycle. Similarly, if a PMD bit is
	cleared, the corresponding module is
	enabled after a delay of one instruction
	cycle (assuming the module control regis-
	ters are already configured to enable
	module operation).

10.5 Power-Saving Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

10.5.1 KEY RESOURCES

- "Watchdog Timer and Power-Saving Modes" (DS70615) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment	Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment
010 1000	I/O	RP40	101 0101	—	_
010 1001	I/O	RP41	101 0110	—	—
010 1010	I/O	RP42	101 0111	—	—
010 1011	I/O	RP43	101 1000		—
010 1100	I	RPI44	101 1001		—
101 1010	—	_	110 1101	—	_
101 1011	—	—	110 1110		—
101 1100	—	—	110 1111		—
101 1101	—	_	111 0000	—	_
101 1110	1	RPI94	111 0001	—	_
101 1111	I	RP195	111 0010		—
110 0000	I	RPI96	111 0011	—	—
110 0001	I/O	RP97	111 0100		—
110 0010	—	—	111 0101		—
110 0011	—	—	111 0110	I/O	RP118
110 0100	—	—	111 0111	Ι	RPI119
110 0101	—	—	111 1000	I/O	RP120
110 0110	_		111 1001	Ι	RPI121
110 0111			111 1010	—	
110 1000	—	_	111 1011	—	_
110 1001	—		111 1100	—	
110 1010			111 1101	—	
110 1011	—	_	111 1110	—	
110 1100	—	_	111 1111	_	

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES (CONTINUED)

Legend: Shaded rows indicate PPS Input register values that are unimplemented.

Note 1: See Section 11.4.4.1 "Virtual Connections" for more information on selecting this pin assignment.

2: These inputs are available on dsPIC33EPXXXGP/MC50X devices only.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—			RP39	R<5:0>		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP38	R<5:0>		
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						d as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				
bit 15-14	Unimplemer	nted: Read as '	0'				
bit 13-8	RP39R<5:0>: Peripheral Output Function is Assigned to RP39 Output Pin bits						

REGISTER 11-20: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

	(see Table 11-3 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP38R<5:0>: Peripheral Output Function is Assigned to RP38 Output Pin bits
	(see Table 11-3 for peripheral function numbers)

REGISTER 11-21: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP41	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP40	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

- bit 13-8 **RP41R<5:0>:** Peripheral Output Function is Assigned to RP41 Output Pin bits (see Table 11-3 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP40R<5:0>:** Peripheral Output Function is Assigned to RP40 Output Pin bits (see Table 11-3 for peripheral function numbers)

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP57	R<5:0>		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—			RP56	R<5:0>		
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set	:	'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13-8	RP57R<5:0>: Peripheral Output Function is Assigned to RP57 Output Pin bits (see Table 11-3 for peripheral function numbers)						
bit 7-6	Unimplemented: Read as '0'						

REGISTER 11-24: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

(see Table 11-3 for peripheral function numbers)

REGISTER 11-25: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—		RP97R<5:0>						
bit 15							bit 8		

RP56R<5:0>: Peripheral Output Function is Assigned to RP56 Output Pin bits

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	—		—
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	J = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP97R<5:0>:** Peripheral Output Function is Assigned to RP97 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-0 Unimplemented: Read as '0'

bit 5-0

15.2 Output Compare Control Registers

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
	0-0	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0		ENFLTB
 bit 15		COOIDE		OUTOLLI	OUTOLLU		bit 8
Sit 10							bit 0
R/W-0	U-0	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0
ENFLT		OCFLTB	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0
bit 7							bit 0
Legend:		HSC = Hardw	are Settable/Cl	earable bit			
R = Read	able bit	W = Writable I	oit	U = Unimplem	nented bit, read	as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-14	Unimplemen	ted: Read as '0)'				
bit 13	OCSIDL: Out	tput Compare x	Stop in Idle Mo	de Control bit			
		ompare x Halts					
	•	compare x conti	•		ode		
bit 12-10)>: Output Com	pare x Clock S	elect bits			
	111 = Periph 110 = Reserv	eral clock (FP)					
	101 = PTGO						
		is the clock so			hronous clock	is supported)	
		is the clock so					
		(is the clock so (is the clock so					
		is the clock so					
bit 9	Unimplemen	ted: Read as '0)'				
bit 8	ENFLTB: Fau	ult B Input Enab	le bit				
		compare Fault B compare Fault B					
bit 7	-	ult A Input Enab					
	1 = Output C	ompare Fault A compare Fault A	input (OCFA)				
bit 6	•	ted: Read as '0	• • •				
bit 5	OCFLTB: PW	M Fault B Con	dition Status bit				
		ult B condition of Fault B condition					
bit 4		/M Fault A Cond	•				
		ult A condition o					
Note 1:	OCxR and OCxF	29 are double h	uffered in D\\//	/ mode only			
Note 1. 2:	Each Output Cor			-	irce. See Secti	on 24.0 "Perin	heral Trigger
2.	Generator (PTG					5.1 2 7.0 1 611p	
	PTGO4 = OC1	-					
	PTGO5 = OC2						
	PTGO6 = OC3 PTGO7 = OC4						

REGISTER 16-15: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER⁽¹⁾

- bit 7-3 FLTSRC<4:0>: Fault Control Signal Source Select for PWM Generator # bits 11111 = Fault 32 (default) 11110 = Reserved . . 01100 = Reserved 01011 = Comparator 4 01010 = Op Amp/Comparator 3
 - 01001 = Op Amp/Comparator 2
 - 01000 = Op Amp/Comparator 1
 - 00111 = Reserved
 - 00110 = Reserved
 - 00101 = Reserved
 - 00100 = Reserved
 - 00011 = Fault 4
 - 00010 = Fault 3
 - 00001 = Fault 2 00000 = Fault 1
- bit 2 ELTROL Fault Delarity for DWM Concrete

bit 2 **FLTPOL:** Fault Polarity for PWM Generator # bit⁽²⁾

- 1 = The selected Fault source is active-low
- 0 = The selected Fault source is active-high
- bit 1-0 FLTMOD<1:0>: Fault Mode for PWM Generator # bits
 - 11 = Fault input is disabled
 - 10 = Reserved
 - 01 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (cycle)
 - 00 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (latched condition)
- **Note 1:** If the PWMLOCK Configuration bit (FOSCSEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.
 - **2:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

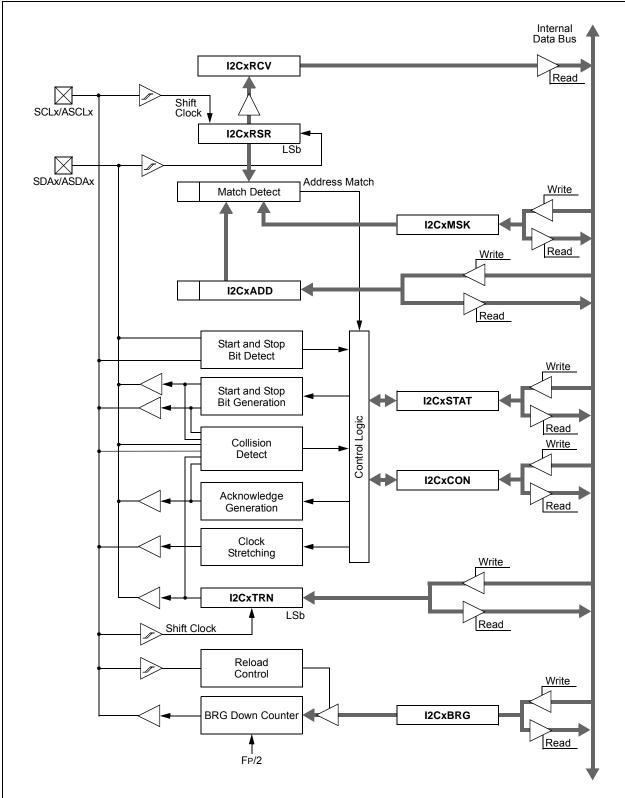


FIGURE 19-1: I2Cx BLOCK DIAGRAM (X = 1 OR 2)

20.3 UARTx Control Registers

REGISTER 20-1: UXMODE: UARTX MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹) _	USIDL	IREN ⁽²⁾	RTSMD		UEN1	UEN0
bit 15							bit
					D 444 A		
R/W-0, HC		R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7							bit
Legend:		HC = Hardwar	e Clearable b	it			
R = Readal	ole bit	W = Writable b	it	U = Unimplem	nented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	iown
bit 15	1 = UARTx is	ARTx Enable bit s enabled; all UA s disabled; all UA	ARTx pins are				
bit 14	Unimplemen	ted: Read as '0	,				
bit 13	USIDL: UAR	Tx Stop in Idle M	lode bit				
		nues module opera			le mode		
bit 12	1 = IrDA end	Encoder and De oder and decod oder and decod	er are enable	d			
bit 11	$1 = \overline{\text{UxRTS}} p$	le Selection for bin is in Simplex bin is in Flow Co	mode	t			
bit 10	Unimplemen	ted: Read as '0	,				
bit 9-8	11 = UxTX, U 10 = UxTX, U 01 = UxTX, U	JARTx Pin Enab JxRX and BCLK JxRX, UxCTS ar JxRX and UxRT nd UxRX pins a atches	x p <u>ins are</u> ena nd UxRTS pin S pins are ena	s are enabled a abled and used;	nd used ⁽⁴⁾ 	controlled by PC	ORT latches ⁽⁴
bit 7	WAKE: Wake	e-up on Start bit	Detect During	Sleep Mode E	nable bit		
	in hardw	continues to sam are on the follow -up is enabled			generated on t	the falling edge	; bit is cleare
bit 6	LPBACK: UA	ARTx Loopback	Mode Select I	bit			
		Loopback mode k mode is disabl					
e	Refer to the " UAI enabling the UAF	RTx module for re	ceive or trans	mit operation.	-	<i>ce Manual"</i> for i	nformation or
2:	This feature is or	nly available for	the 16x BRG	mode (BRGH =	0).		
	This feature is or	-	=	-			
4	This fasture is ar	ly available on (24 nin dovice	-			

4: This feature is only available on 64-pin devices.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

Legend: R = Readable	bit	C = Writable b W = Writable			n to clear the bit mented bit, read		
							
bit 7							bit 0
IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
bit 15	•						bit 8
_	—	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0

'0' = Bit is cleared

x = Bit is unknown

REGISTER 21-6: CxINTF: ECANx INTERRUPT FLAG REGISTER

'1' = Bit is set

bit 15-14	Unimplemented: Read as '0'
bit 13	TXBO: Transmitter in Error State Bus Off bit
	1 = Transmitter is in Bus Off state
	0 = Transmitter is not in Bus Off state
bit 12	TXBP: Transmitter in Error State Bus Passive bit
	1 = Transmitter is in Bus Passive state
	0 = Transmitter is not in Bus Passive state
bit 11	RXBP: Receiver in Error State Bus Passive bit
	1 = Receiver is in Bus Passive state
	0 = Receiver is not in Bus Passive state
bit 10	TXWAR: Transmitter in Error State Warning bit
	1 = Transmitter is in Error Warning state
h:+ 0	0 = Transmitter is not in Error Warning state
bit 9	RXWAR: Receiver in Error State Warning bit
	1 = Receiver is in Error Warning state 0 = Receiver is not in Error Warning state
bit 8	EWARN: Transmitter or Receiver in Error State Warning bit
bit o	1 = Transmitter or receiver is in Error Warning state
	0 = Transmitter or receiver is not in Error Warning state
bit 7	IVRIF: Invalid Message Interrupt Flag bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 6	WAKIF: Bus Wake-up Activity Interrupt Flag bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 5	ERRIF: Error Interrupt Flag bit (multiple sources in CxINTF<13:8>)
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 4	Unimplemented: Read as '0'
bit 3	FIFOIF: FIFO Almost Full Interrupt Flag bit
	1 = Interrupt request has occurred
hit O	0 = Interrupt request has not occurred
bit 2	RBOVIF: RX Buffer Overflow Interrupt Flag bit
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

-n = Value at POR

Field	Description		
Wm,Wn	Dividend, Divisor working register pair (direct addressing)		
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions \in {W4 * W4,W5 * W5,W6 * W6,W7 * W7}		
Wm*Wn Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}			
Wn	One of 16 working registers ∈ {W0W15}		
Wnd	One of 16 destination working registers ∈ {W0W15}		
Wns	One of 16 source working registers ∈ {W0W15}		
WREG	W0 (working register used in file register instructions)		
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }		
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }		
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}		
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}		
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}		
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}		

TABLE 28-1:	SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED))
	······································	,

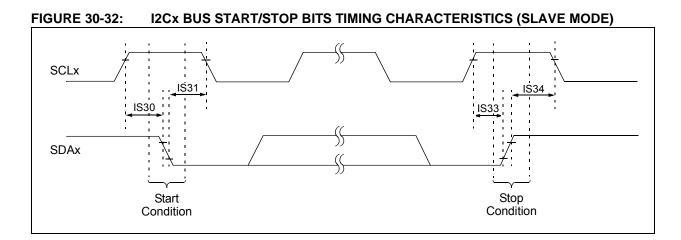
29.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

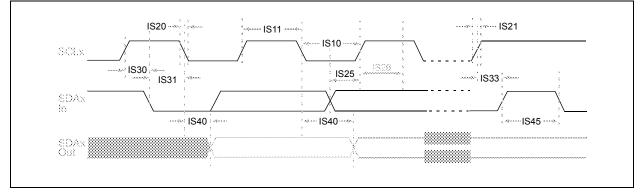
The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.


Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.


29.12 Third-Party Development Tools

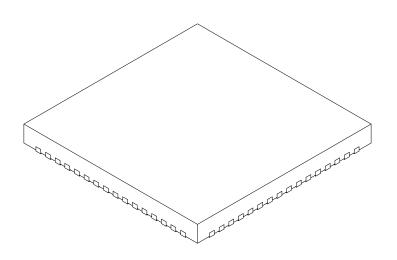
Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions:3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No. Symbol Characteristic			Min.	Тур.	Max.	Units	Conditions	
CTMU Curr	rent Source	9						
CTMUI1	Ιουτ1	Base Range ⁽¹⁾	0.29		0.77	μA	CTMUICON<9:8> = 01	
CTMUI2	IOUT2	10x Range ⁽¹⁾	3.85		7.7	μA	CTMUICON<9:8> = 10	
CTMUI3	Ιουτ3	100x Range ⁽¹⁾	38.5	_	77	μA	CTMUICON<9:8> = 11	
CTMUI4	IOUT4	1000x Range ⁽¹⁾	385	_	770	μA	CTMUICON<9:8> = 00	
CTMUFV1	VF	Temperature Diode Forward Voltage ^(1,2)	_	0.598	_	V	TA = +25°C, CTMUICON<9:8> = 01	
			_	0.658	_	V	TA = +25°C, CTMUICON<9:8> = 10	
			_	0.721	_	V	TA = +25°C, CTMUICON<9:8> = 11	
CTMUFV2	VFVR	Temperature Diode Rate of	_	-1.92	_	mV/ºC	CTMUICON<9:8> = 01	
		Change ^(1,2,3)	_	-1.74	_	mV/ºC	CTMUICON<9:8> = 10	
				-1.56	_	mV/ºC	CTMUICON<9:8> = 11	

TABLE 30-56: CTMU CURRENT SOURCE SPECIFICATIONS

Note 1: Nominal value at center point of current trim range (CTMUICON<15:10> = 000000).


2: Parameters are characterized but not tested in manufacturing.

3: Measurements taken with the following conditions:

- VREF+ = AVDD = 3.3V
- ADC configured for 10-bit mode
- ADC module configured for conversion speed of 500 ksps
- All PMDx bits are cleared (PMDx = 0)
- Executing a while(1) statement
- · Device operating from the FRC with no PLL

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		64	
Pitch	е		0.50 BSC	
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Width	E		9.00 BSC	
Exposed Pad Width	E2	5.30	5.40	5.50
Overall Length	D		9.00 BSC	
Exposed Pad Length	D2	5.30	5.40	5.50
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2

TyCON (Timer3 and Timer5 Control)	
UxMODE (UARTx Mode)	
UxSTA (UARTx Status and Control)	
VEL1CNT (Velocity Counter 1)	259
Resets	123
Brown-out Reset (BOR)	
Configuration Mismatch Reset (CM)	123
Illegal Condition Reset (IOPUWR)	123
Illegal Opcode	123
Security	
Uninitialized W Register	123
Master Clear (MCLR) Pin Reset	123
Power-on Reset (POR)	
RESET Instruction (SWR)	
Resources	
Trap Conflict Reset (TRAPR)	123
Watchdog Timer Time-out Reset (WDTO)	123
Resources Required for Digital PFC	32, 34
Revision History	

S

Serial Peripheral Interface (SPI) Software Stack Pointer (SSP)	
Special Features of the CPU	
SPI	
Control Registers	268
Helpful Tips	267
Resources	267

т

Temperature and Voltage Specifications
AC
Thermal Operating Conditions
Thermal Packaging Characteristics
Timer1
Control Register
Resources
Timer2/3 and Timer4/5
Control Registers
Resources
Timing Diagrams
10-Bit ADC Conversion (CHPS<1:0> = 01,
SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000,
SSRCG = 0)
10-Bit ADC Conversion (CHPS<1:0> = 01,
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111,
SSRCG = 0, SAMC<4:0> = 00010)
12-Bit ADC Conversion (ASAM = 0,
SSRC<2:0> = 000, SSRCG = 0)
BOR and Master Clear Reset
ECANx I/O
External Clock414
High-Speed PWMx Fault422
High-Speed PWMx Module
I/O Characteristics
I2Cx Bus Data (Master Mode)450
I2Cx Bus Data (Slave Mode)
I2Cx Bus Start/Stop Bits (Master Mode)
I2Cx Bus Start/Stop Bits (Slave Mode)

Input Capture x (ICx)	. 420
OCx/PWMx	
Output Compare x (OCx)	. 421
QEA/QEB Input	. 424
QEI Module Index Pulse	. 425
SPI1 Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	. 441
SPI1 Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	. 440
SPI1 Master Mode (Half-Duplex, Transmit Only,	
CKE = 0)	. 438
SPI1 Master Mode (Half-Duplex, Transmit Only,	
CKE = 1)	. 439
SPI1 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	. 448
SPI1 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	. 446
SPI1 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	. 442
SPI1 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	. 444
SPI2 Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	. 429
SPI2 Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	. 428
SPI2 Master Mode (Half-Duplex, Transmit Only,	
CKE = 0)	. 426
SPI2 Master Mode (Half-Duplex, Transmit Only,	
CKE = 1)	. 427
SPI2 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	. 436
SPI2 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	. 434
SPI2 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	. 430
SPI2 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	
Timer1-Timer5 External Clock	
TimerQ (QEI Module) External Clock	
UARTx I/O	. 454

U

Universal Asynchronous Receiver	
Transmitter (UART)	. 281
Control Registers	. 283
Helpful Tips	. 282
Resources	. 282
User ID Words	. 384
V	
Voltage Regulator (On-Chip)	. 384

w

Watchdog Timer (WDT)	379, 385
Programming Considerations	385
WWW Address	524
WWW, On-Line Support	23