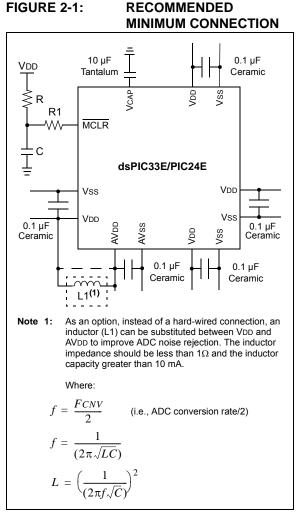


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Betans	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep256mc204-h-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

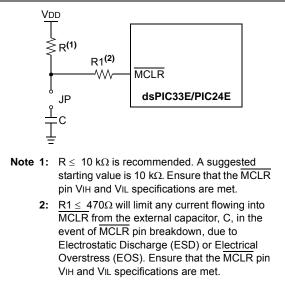
2.3 CPU Logic Filter Capacitor Connection (VCAP)

A low-ESR (< 1 Ohm) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must have a capacitor greater than 4.7 μ F (10 μ F is recommended), 16V connected to ground. The type can be ceramic or tantalum. See **Section 30.0** "**Electrical Characteristics**" for additional information.

The placement of this capacitor should be close to the VCAP pin. It is recommended that the trace length not exceeds one-quarter inch (6 mm). See **Section 27.3 "On-Chip Voltage Regulator"** for details.

2.4 Master Clear (MCLR) Pin


The MCLR pin provides two specific device functions:


- Device Reset
- Device Programming and Debugging.

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor, C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

4.6 Modulo Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X Devices Only)

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either Data or Program Space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program Space) and Y Data Spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.6.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified, and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note:	Y space Modulo Addressing EA calcula-								
	tions assume word-sized data (LSb of								
	every EA is always clear).								

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.6.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 1111, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 1111, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X Data Space when XWM is set to any value other than '1111' and the XMODEN bit is set (MODCON<15>).

The Y Address Space Pointer W register (YWM), to which Modulo Addressing is to be applied, is stored in MODCON<7:4>. Modulo Addressing is enabled for Y Data Space when YWM is set to any value other than '1111' and the YMODEN bit is set at MODCON<14>.

Byte MOV #0x1100. W0 Address MOV W0, XMODSRT :set modulo start address MOV #0x1163, W0 0x1100 MOV W0, MODEND set modulo end address MOV #0x8001, W0 MOV W0, MODCON ;enable W1, X AGU for modulo MOV #0x0000, W0 ;W0 holds buffer fill value MOV ;point W1 to buffer #0x1110. W1 0x1163 DO AGAIN, #0x31 ;fill the 50 buffer locations MOV W0, [W1++] ;fill the next location AGAIN: INC W0, W0 increment the fill value Start Addr = 0x1100 End Addr = 0x1163 Length = 50 words

FIGURE 4-20: MODULO ADDRESSING OPERATION EXAMPLE

	Vector	IRQ		Interrupt Bit Location			
Interrupt Source	# #		IVT Address	Flag	Enable	Priority	
QEI1 – QEI1 Position Counter Compare ⁽²⁾	66	58	0x000088	IFS3<10>	IEC3<10>	IPC14<10:8>	
Reserved	67-72	59-64	0x00008A-0x000094	_	_	_	
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>	
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4<2>	IEC4<2>	IPC16<10:8>	
CRC – CRC Generator Interrupt	75	67	0x00009A	IFS4<3>	IEC4<3>	IPC16<14:12>	
Reserved	76-77	68-69	0x00009C-0x00009E	—	_	—	
C1TX – CAN1 TX Data Request ⁽¹⁾	78	70	0x000A0	IFS4<6>	IEC4<6>	IPC17<10:8>	
Reserved	79-84	71-76	0x0000A2-0x0000AC	—	_	—	
CTMU – CTMU Interrupt	85	77	0x0000AE	IFS4<13>	IEC4<13>	IPC19<6:4>	
Reserved	86-101	78-93	0x0000B0-0x0000CE	—	_	—	
PWM1 – PWM Generator 1 ⁽²⁾	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>	
PWM2 – PWM Generator 2 ⁽²⁾	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>	
PWM3 – PWM Generator 3 ⁽²⁾	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>	
Reserved	105-149	97-141	0x0001D6-0x00012E	—	_	—	
ICD – ICD Application	150	142	0x000142	IFS8<14>	IEC8<14>	IPC35<10:8>	
JTAG – JTAG Programming	151	143	0x000130	IFS8<15>	IEC8<15>	IPC35<14:12>	
Reserved	152	144	0x000134	—	—	_	
PTGSTEP – PTG Step	153	145	0x000136	IFS9<1>	IEC9<1>	IPC36<6:4>	
PTGWDT – PTG Watchdog Time-out	154	146	0x000138	IFS9<2>	IEC9<2>	IPC36<10:8>	
PTG0 – PTG Interrupt 0	155	147	0x00013A	IFS9<3>	IEC9<3>	IPC36<14:12>	
PTG1 – PTG Interrupt 1	156	148	0x00013C	IFS9<4>	IEC9<4>	IPC37<2:0>	
PTG2 – PTG Interrupt 2	157	149	0x00013E	IFS9<5>	IEC9<5>	IPC37<6:4>	
PTG3 – PTG Interrupt 3	158	150	0x000140	IFS9<6>	IEC9<6>	IPC37<10:8>	
Reserved	159-245	151-245	0x000142-0x0001FE	—	—	_	
	Lowe	est Natura	I Order Priority				

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

Note 1: This interrupt source is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

2: This interrupt source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0				
CHEN	SIZE	DIR	HALF	NULLW	—						
bit 15			•				bit				
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0				
	—	AMODE1	AMODE0	—	—	MODE1	MODE0				
bit 7							bit				
Legend:											
R = Readat	ole bit	W = Writable	bit	U = Unimplem	nented bit, rea	ıd as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15	-	Channel Enabl	e bit								
	1 = Channel 0 = Channel										
hit 11			izo hit								
bit 14	1 = Byte	ata Transfer S	ze bil								
	0 = Word										
bit 13	DIR: DMA Tra	ansfer Directior	n bit (source/d	estination bus	select)						
				eripheral addre	-						
	0 = Reads fr	om peripheral a	address, write	s to RAM addre	SS						
bit 12	HALF: DMA	Block Transfer	Interrupt Sele	ct bit							
				a has been mov has been move							
bit 11	NULLW: Null	Data Periphera	al Write Mode	Select bit							
	1 = Null data 0 = Normal c		eral in additio	n to RAM write	(DIR bit must	also be clear)					
bit 10-6	Unimplemen	ted: Read as '	0'								
bit 5-4	AMODE<1:0	>: DMA Chann	el Addressing	Mode Select b	its						
		11 = Reserved									
	10 = Peripheral Indirect Addressing mode										
	01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode										
bit 3-2	-	ited: Read as '		Thous							
bit 1-0	-	DMA Channel		ode Select bits							
					k transfer from	n/to each DMA t	ouffer)				
		ous, Ping-Pong					,				
	01 = One-Sh	ot, Ping-Pong i	nodes are dis	abled							
		ous, Ping-Pong									

REGISTER 8-1: DMAXCON: DMA CHANNEL X CONTROL REGISTER

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—	_	—	—	—	PLLDIV8
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
PLLDIV7	PLLDIV6	PLLDIV5	PLLDIV4	PLLDIV3	PLLDIV2	PLLDIV1	PLLDIV0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-9	Unimplemen	ted: Read as '	0'				
bit 8-0	PLLDIV<8:0>	: PLL Feedbad	ck Divisor bits	(also denoted	as 'M', PLL mul	tiplier)	
	111111111 =	= 513					
	•						
	•						
	•						
	000110000 =	= 50 (default)					
	•						
	•						
	000000010 =	- 4					
	000000001 =						
	00000000 =	= 2					

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ROON		ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾		
bit 15						1	bit		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—			_					
bit 7		1					bit		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown		
bit 15	1 = Reference		out is enabled	on the REFCL	K pin ⁽²⁾				
		e oscillator out		ł					
bit 14	-	ted: Read as '							
bit 13		ROSSLP: Reference Oscillator Run in Sleep bit							
		e oscillator out _l e oscillator out _l		to run in Sleep d in Sleep					
bit 12	ROSEL: Refe	erence Oscillato	or Source Sel	ect bit					
		crystal is used lock is used as							
bit 11-8	RODIV<3:0>:	Reference Os	cillator Divide	er bits ⁽¹⁾					
	1110 = Refer 1101 = Refer 1100 = Refer 1011 = Refer 1010 = Refer 1001 = Refer 0101 = Refer 0111 = Refer 0110 = Refer 0101 = Refer 0100 = Refer 0101 = Refer	ence clock divi ence clock divi	ded by 16,38 ded by 8,192 ded by 4,096 ded by 2,048 ded by 1,024 ded by 512 ded by 256 ded by 128 ded by 64 ded by 32 ded by 16 ded by 8 ded by 4						
	0000 = Refer		464 89 2						

REGISTER 9-5: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- **Note 1:** The reference oscillator output must be disabled (ROON = 0) before writing to these bits.
 - 2: This pin is remappable. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

10.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Watchdog Timer and Power-Saving Modes" (DS70615) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of peripherals being clocked constitutes lower consumed power.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices can manage power consumption in four ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software-Controlled Doze mode
- · Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV	#SLEEP_MODE	; Put the device into Sleep mode
PWRSAV	#IDLE_MODE	; Put the device into Idle mode

10.1 Clock Frequency and Clock Switching

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or highprecision oscillators by simply changing the NOSCx bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0 "Oscillator Configuration**".

10.2 Instruction-Based Power-Saving Modes

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAWnstruction is shown in Example 10-1.

Note: SLEEP_MODEand IDLE_MODEare constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment	Pin Assignment Select Register		Input/ Output	Pin Assignment
010 1000	I/O	RP40		101 0101		
010 1001	I/O	RP41		101 0110	—	
010 1010	I/O	RP42		101 0111	—	_
010 1011	I/O	RP43		101 1000	—	_
010 1100	I	RPI44		101 1001	—	_
101 1010		—		110 1101	—	_
101 1011		—		110 1110	—	_
101 1100		_		110 1111	—	_
101 1101		_		111 0000	—	_
101 1110	I	RPI94		111 0001		_
101 1111	I	RPI95		111 0010		_
110 0000	I	RPI96		111 0011	—	_
110 0001	I/O	RP97		111 0100	—	_
110 0010	—	_		111 0101	—	_
110 0011		—		111 0110	I/O	RP118
110 0100		_		111 0111	I	RPI119
110 0101		_		111 1000	I/O	RP120
110 0110		_		111 1001	Ι	RPI121
110 0111		_		111 1010	—	
110 1000		—		111 1011	—	_
110 1001	—	_		111 1100	—	_
110 1010		—		111 1101	—	_
110 1011		—		111 1110	—	—
110 1100	—	_		111 1111	—	

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES (CONTINUED)

Legend: Shaded rows indicate PPS Input register values that are unimplemented.

Note 1: See Section 11.4.4.1 "Virtual Connections" for more information on selecting this pin assignment.

2: These inputs are available on dsPIC33EPXXXGP/MC50X devices only.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	_	—			LEB	<11:8>		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			LEE	3<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknow			nown		

REGISTER 16-17: LEBDLYx: PWMx LEADING-EDGE BLANKING DELAY REGISTER

bit 15-12 Unimplemented: Read as '0'

bit 11-0 LEB<11:0>: Leading-Edge Blanking Delay for Current-Limit and Fault Inputs bits

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 6	 STREN: SCLx Clock Stretch Enable bit (when operating as I²C slave) Used in conjunction with the SCLREL bit. 1 = Enables software or receives clock stretching 0 = Disables software or receives clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit. Hardware is clear at the end of the master Acknowledge sequence. 0 = Acknowledge sequence is not in progress
bit 3	 RCEN: Receive Enable bit (when operating as I²C master) 1 = Enables Receive mode for I²C. Hardware is clear at the end of the eighth bit of the master receive data byte. 0 = Receive sequence is not in progress
bit 2	 PEN: Stop Condition Enable bit (when operating as I²C master) 1 = Initiates Stop condition on SDAx and SCLx pins. Hardware is clear at the end of the master Stop sequence. 0 = Stop condition is not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiates Repeated Start condition on SDAx and SCLx pins. Hardware is clear at the end of the master Repeated Start sequence. 0 = Repeated Start condition is not in progress
bit 0	 SEN: Start Condition Enable bit (when operating as I²C master) 1 = Initiates Start condition on SDAx and SCLx pins. Hardware is clear at the end of the master Start sequence. 0 = Start condition is not in progress

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

R-0	R-0	R-0	R-0	R-0	R-0	R-0
		TERR	CNT<7:0>			
						bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0
		RERR	CNT<7:0>			
						bit 0
t	W = Writable bit		U = Unimplemented bit, read as '0'			
OR '1' = Bit is set '0' = Bit is cleared			ed	x = Bit is unknown		
	R-0	R-0 R-0	R-0 R-0 R-0 RERR W = Writable bit	TERRCNT<7:0> R-0 R-0 R-0 RERRCNT<7:0> U = Unimplement	TERRCNT<7:0> R-0 R-0 R-0 RERRCNT<7:0> U = Unimplemented bit, real	$R-0 \qquad R-0 \qquad RERRCNT<7:0>$

bit 15-8 TERRCNT<7:0>: Transmit Error Count bits

bit 7-0 **RERRCNT<7:0>:** Receive Error Count bits

REGISTER 21-9: CxCFG1: ECANx BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SJW1 | SJW0 | BRP5 | BRP4 | BRP3 | BRP2 | BRP1 | BRP0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	SJW<1:0>: Synchronization Jump Width bits 11 = Length is 4 x TQ 10 = Length is 3 x TQ 01 = Length is 2 x TQ 00 = Length is 1 x TQ				
bit 5-0	BRP<5:0>: Baud Rate Prescaler bits 11 1111 = TQ = 2 x 64 x 1/FCAN • • 00 0010 = TQ = 2 x 3 x 1/FCAN 00 0001 = TQ = 2 x 2 x 1/FCAN				

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0
bit 7							bit 0
Legend:							

REGISTER 21-11: CxFEN1: ECANx ACCEPTANCE FILTER ENABLE REGISTER 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

FLTEN<15:0>: Enable Filter n to Accept Messages bits

1 = Enables Filter n

0 = Disables Filter n

REGISTER 21-12: CxBUFPNT1: ECANx FILTER 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F3BP<3:0>				F2BI	><3:0>		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F1BP<3:0>				F0BI	><3:0>			
bit 7							bit (
Legend:								
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	
bit 15-12	1111 = Filte 1110 = Filte	: RX Buffer Masl er hits received ir er hits received ir er hits received ir er hits received ir	n RX FIFO bu n RX Buffer 14 n RX Buffer 1	ffer 4				
bit 11-8	F2BP<3:0>	: RX Buffer Masl	k for Filter 2 b	oits (same value	s as bits<15:1	2>)		
DIL II-O	F1BP<3:0>: RX Buffer Mask for Filter 1 bits (same values as bits<15:12>)							
bit 7-4	F1BP<3:0>	: RX Buffer Masl	k for Filter 1 b	oits (same value	s as bits<15:1	2>)		

NOTES:

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 27-1: DEVID: DEVICE ID REGISTER

	nd: R = Read-Only bit U = Unimplemented bit						
bit 7							bit 0
			DEVID	<7:0> ⁽¹⁾			
R	R	R	R	R	R	R	R
bit 15							bit 8
			DEVID<	:15:8> ⁽¹⁾			
R	R	R	R	R	R	R	R
bit 23							bit 16
			DEVID<2	23:16>(1)			
R	R	R	R	R	R	R	R

bit 23-0 **DEVID<23:0>:** Device Identifier bits⁽¹⁾

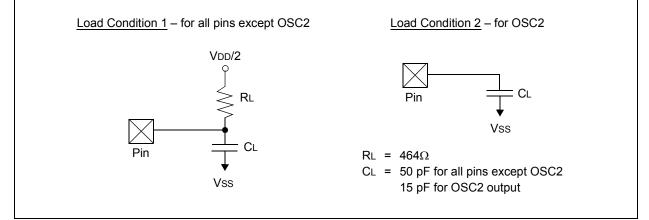
Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration *Bits*" (DS70663) for the list of device ID values.

REGISTER 27-2: DEVREV: DEVICE REVISION REGISTER

R	R	R	R	R	R	R	R
			DEVREV	<23:16> ⁽¹⁾			
bit 23							bit 16
R	R	R	R	R	R	R	R
			DEVREV	<15:8>(1)			
bit 15							bit 8
R	R	R	R	R	R	R	R
			DEVRE\	/<7:0> ⁽¹⁾			
bit 7							bit 0
Legend: R =	nd: R = Read-only bit U = Unimplemented bit						

bit 23-0 **DEVREV<23:0>:** Device Revision bits⁽¹⁾

Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration *Bits*" (DS70663) for the list of device revision values.


30.2 AC Characteristics and Timing Parameters

This section defines dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X AC characteristics and timing parameters.

TABLE 30-15: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

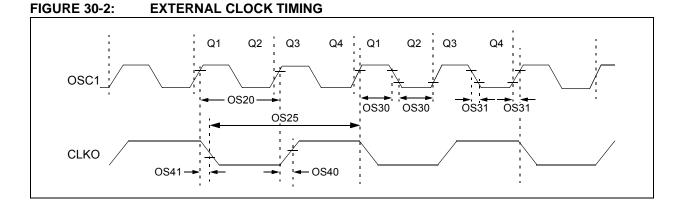

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	Characteristics".

FIGURE 30-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 30-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	_	—	15		In XT and HS modes, when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	_	400	pF	In l ² C™ mode

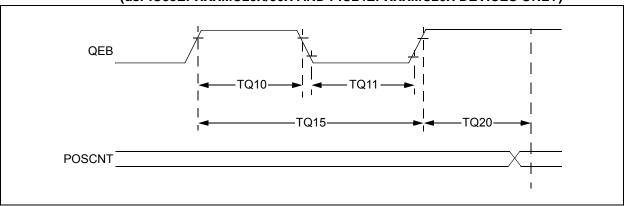

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symb	Characteristic	Min.	Min. Typ. ⁽¹⁾ Max.		Units	Conditions		
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	60	MHz	EC		
		Oscillator Crystal Frequency	3.5 10		10 25	MHz MHz	XT HS		
OS20	Tosc	Tosc = 1/Fosc	8.33	_	DC	ns	+125°C		
		Tosc = 1/Fosc	7.14	_	DC	ns	+85°C		
OS25	Тсү	Instruction Cycle Time ⁽²⁾	16.67	_	DC	ns	+125°C		
		Instruction Cycle Time ⁽²⁾	14.28	_	DC	ns	+85°C		
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.45 x Tosc	—	0.55 x Tosc	ns	EC		
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	—	20	ns	EC		
OS40	TckR	CLKO Rise Time ^(3,4)	—	5.2	_	ns			
OS41	TckF	CLKO Fall Time ^(3,4)	—	5.2		ns			
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	—	12	_	mA/V	HS, VDD = 3.3V, TA = +25°C		
			—	6	_	mA/V	XT, VDD = 3.3V, TA = +25°C		

TABLE 30-17: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- 2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Minimum" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Maximum" cycle time limit is "DC" (no clock) for all devices.
- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: This parameter is characterized, but not tested in manufacturing.

FIGURE 30-11: TIMERQ (QEI MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-30: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY)

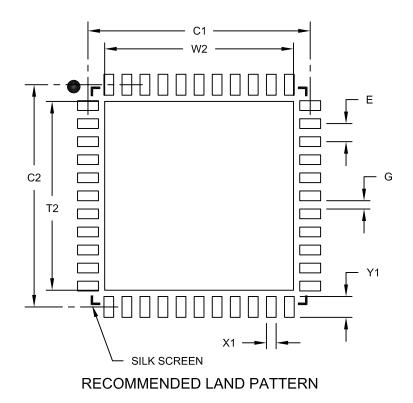
AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾		Min.	Тур.	Max.	Units	Conditions	
TQ10	TtQH	TQCK High Time	Synchronous, with prescaler	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25			ns	Must also meet Parameter TQ15	
TQ11	TtQL	TQCK Low Time	Synchronous, with prescaler	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25	—	_	ns	Must also meet Parameter TQ15	
TQ15	TtQP	TQCP Input Period	Synchronous, with prescaler	Greater of 25 + 50 or (1 Tcy/N) + 50	—	_	ns		
TQ20	TCKEXTMRL	Delay from External TQCK Clock Edge to Timer Increment		_	1	Тсү	—		

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 30-37:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK2 Input Frequency	-	-	Lesser of FP or 15	MHz	(Note 3)	
SP72	TscF	SCK2 Input Fall Time	_	-		ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCK2 Input Rise Time	—			ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO2 Data Output Fall Time	—			ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO2 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30			ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30			ns		
SP50	TssL2scH, TssL2scL	$\overline{SS2}$ ↓ to SCK2 ↑ or SCK2 ↓ Input	120	_	_	ns		
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	_	50	ns	(Note 4)	
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 TCY + 40	_	_	ns	(Note 4)	
SP60	TssL2doV	SDO2 Data Output Valid after SS2 Edge	—		50	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch E		0.65 BSC			
Optional Center Pad Width	W2			6.60	
Optional Center Pad Length	T2			6.60	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.85	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B