

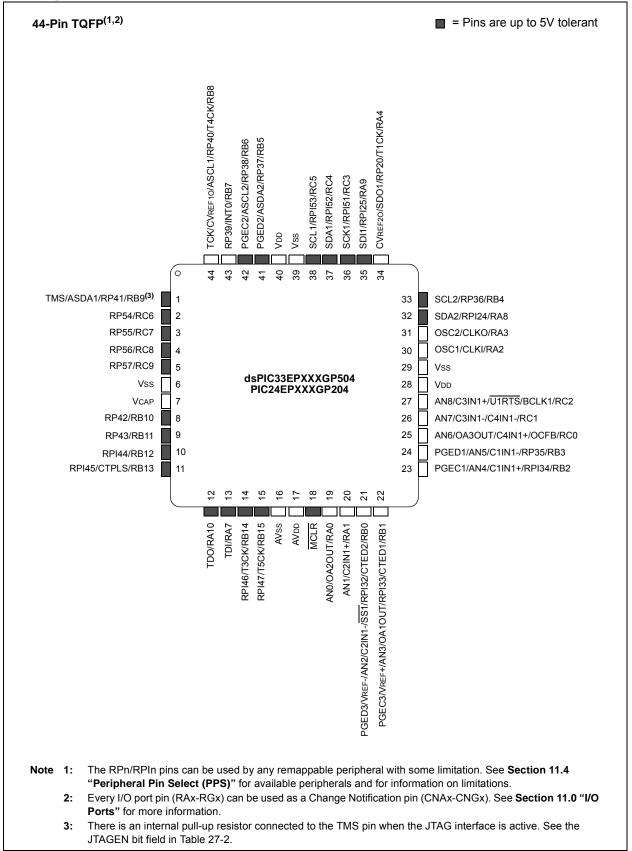
Welcome to E-XFL.COM

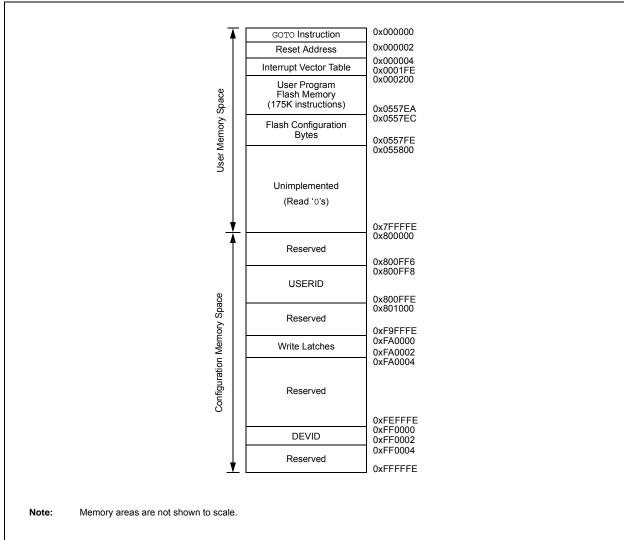
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

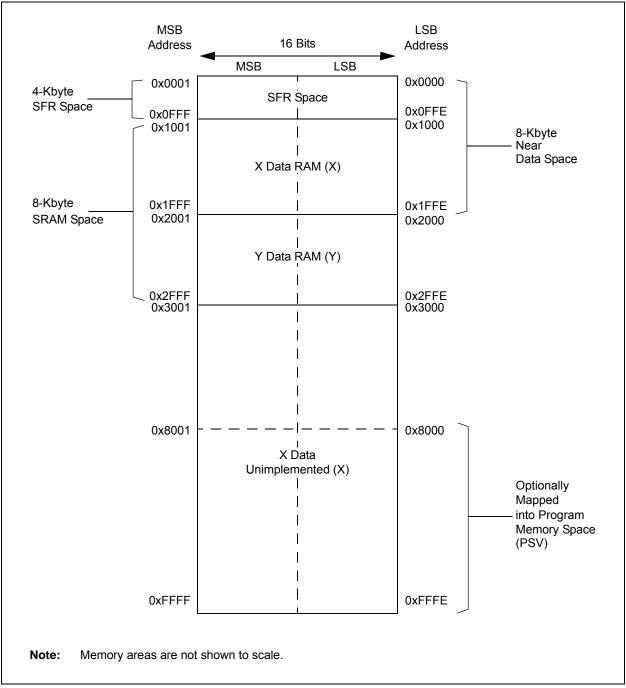
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI


Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep256mc204-i-pt

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

FIGURE 4-5: PROGRAM MEMORY MAP FOR dsPIC33EP512GP50X, dsPIC33EP512MC20X/50X AND PIC24EP512GP/MC20X DEVICES

FIGURE 4-8: DATA MEMORY MAP FOR dsPIC33EP64MC20X/50X AND dsPIC33EP64GP50X DEVICES

TABLE 4-33 :	PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY
---------------------	---

				-	-	-												
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	_		INT1R<6:0>						_	_	_	_		_	_	0000	
RPINR1	06A2		—	—	-		-			-				INT2R<6:0>				0000
RPINR3	06A6		_	_	_	_	_	_	_	_			-	[2CKR<6:0>	>			0000
RPINR7	06AE	_				IC2R<6:0>				—				IC1R<6:0>				0000
RPINR8	06B0	_				IC4R<6:0>				—	IC3R<6:0>					0000		
RPINR11	06B6	_	_	_	—	_	_	_	_	—	OCFAR<6:0>				0000			
RPINR12	06B8	_			l	=LT2R<6:0>				—	— FLT1				R<6:0>			0000
RPINR14	06BC	_			(QEB1R<6:0	>			—	QEA1R<6:0>					0000		
RPINR15	06BE	_			Н	OME1R<6:0)>			—	INDX1R<6:0>				0000			
RPINR18	06C4	_	_	_	—	—	_	_	_	—			ι	J1RXR<6:0>	>			0000
RPINR19	06C6	_	_	_	_	_	_	_	_	—			ι	J2RXR<6:0>	>			0000
RPINR22	06CC	_		•	S	CK2INR<6:0)>			_				SDI2R<6:0>	•			0000
RPINR23	06CE	_	_		_	_	_	_	_	_	SS2R<6:0>					0000		
RPINR37	06EA	_	SYNCI1R<6:0>						_	_	_	_	_	_	_	_	0000	
RPINR38	06EC	_			DI	CMP1R<6:	0>			_	_	_	_		_	_	_	0000
RPINR39	06EE	_			DT	CMP3R<6:	0>			—	DTCMP2R<6:0>				0000			

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT	DL2	DL1	DL0
bit 15	-	•					bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7		•					bit 0

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit

VAR: Variable Exception Processing Latency Control
 1 = Variable exception processing is enabled
0 = Fixed exception processing is enabled
IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾
 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

	12. 2007.00						
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—		—	—	RQCOL3	RQCOL2	RQCOL1	RQCOL0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-4	Unimplemen	ted: Read as '	כ'				
bit 3	RQCOL3: DN	/IA Channel 3 T	ransfer Requ	est Collision F	ag bit		
		e and interrupt est collision is d		st collision is d	etected		
h # 0	•			est Callisian Fl	aa hit		
bit 2		/IA Channel 2 T ce and interrupt	•		0		
		e and interrupt est collision is d			elecieu		
bit 1	RQCOL1: DN	/IA Channel 1 T	ransfer Requ	est Collision F	ag bit		
	1 = User for	e and interrupt	-based reque	st collision is d	etected		
	0 = No reque	est collision is d	etected				
bit 0	RQCOLO: DN	/IA Channel 0 T	ransfer Requ	est Collision F	lag bit		
	1 = User force	e and interrupt	-based reque	st collision is d	etected		

REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER

0 = No request collision is detected

NOTES:

10.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the internal regulator and the Flash regulator can be configured to go into Standby when Sleep mode is entered by clearing the VREGS (RCON<8>) and VREGSF (RCON<11>) bits (default configuration).

If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS (RCON<8>) and VREGSF (RCON<11>) bits can be set to keep the internal regulator and the Flash regulator active during Sleep mode.

10.2.2 IDLE MODE

The following occurs in Idle mode:

- The CPU stops executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- · A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the Interrupt Service Routine (ISR).

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral; for example, the TSIDL bit in the Timer1 Control register (T1CON<13>).

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 11-26: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP118	3R<5:0>		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	_	_	—	_
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP118R<5:0>: Peripheral Output Function is Assigned to RP118 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-0 Unimplemented: Read as '0'

REGISTER 11-27: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

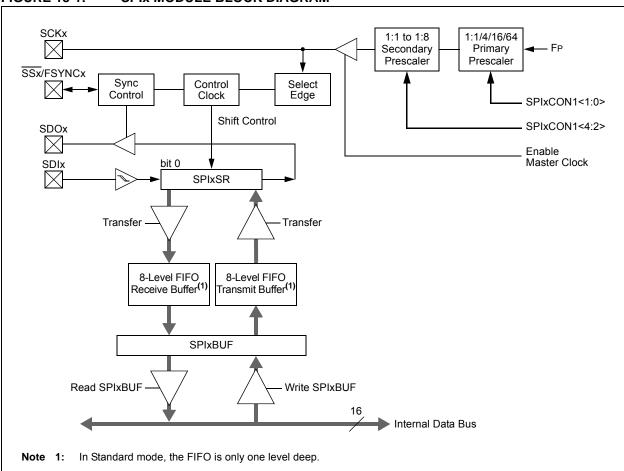
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP120)R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 **RP120R<5:0>:** Peripheral Output Function is Assigned to RP120 Output Pin bits (see Table 11-3 for peripheral function numbers)


15.1 Output Compare Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

15.1.1 KEY RESOURCES

- "Output Compare" (DS70358) in the "dsPIC33/ PIC24 Family Reference Manual"
- · Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

FIGURE 18-1: SPIX MODULE BLOCK DIAGRAM

19.2 I²C Control Registers

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0	
I2CEN	—	I2CSIDL	SCLREL	IPMIEN ⁽¹⁾	A10M	DISSLW	SMEN	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	
bit 7							bit 0	
Legend:		HC = Hardware	Clearable bit					
R = Readab	le bit	W = Writable bi		U = Unimpler	mented bit, rea	d as '0'		
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown	
bit 15	I2CEN: I2Cx	Enable bit						
		the I2Cx module					;	
L:1 4 4		the I2Cx module	; all I-C ™ pins a	are controlled	by port function	IS		
bit 14 bit 13	-	ited: Read as '0'	do bit					
DIC 13		Stop in Idle Mo ues module oper		rice enters an l	dle mode			
		s module operati						
bit 12	SCLREL: SC	Lx Release Con	rol bit (when op	perating as I ² C	slave)			
	1 = Releases							
		Lx clock low (clo	ck stretch)					
	If STREN = 1 Bit is R/W (i e	<u>.:</u> e., software can w	rite '0' to initiate	e stretch and w	rite '1' to relea	se clock) Harr	lware is clear	
	at the beginn	ing of every slav reception. Hardv	ve data byte tra	ansmission. Ha	ardware is clea	r at the end o		
	If STREN = 0							
		., software can or						
hit 11	-	te transmission. Iligent Peripheral			-	address byte re	eception.	
bit 11		le is enabled; all						
	$0 = IPMI \mod$, lon no me agea				
bit 10	A10M: 10-Bit	Slave Address b	oit					
		is a 10-bit slave						
		is a 7-bit slave a						
bit 9		able Slew Rate (
	1 = Slew rate control is disabled 0 = Slew rate control is enabled							
bit 8		SMEN: SMBus Input Levels bit						
		1 = Enables I/O pin thresholds compliant with SMBus specification						
		SMBus input thre		,				
bit 7	GCEN: Gene	eral Call Enable b	it (when operat	ing as I ² C slav	/e)			
		nterrupt when a ge call address disal		ss is received ir	n I2CxRSR (mo	dule is enabled	for reception)	

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

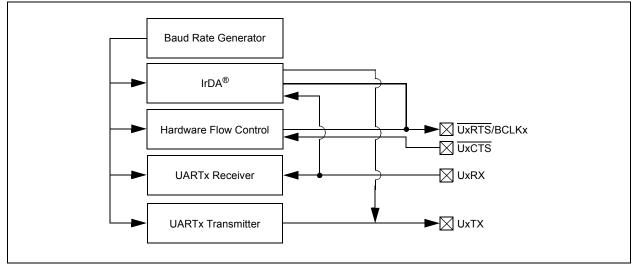
20.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "UART" (DS70582) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X family of devices contains two UART modules.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.

Note: <u>Hardware</u> flow control using UxRTS and UxCTS is not available on all pin count devices. See the "**Pin Diagrams**" section for availability.


The primary features of the UARTx module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 4.375 Mbps to 67 bps at 16x mode at 70 MIPS
- Baud Rates Ranging from 17.5 Mbps to 267 bps at 4x mode at 70 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- A Separate Interrupt for all UARTx Error Conditions
- · Loopback mode for Diagnostic Support
- · Support for Sync and Break Characters
- Support for Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UARTx module is shown in Figure 20-1. The UARTx module consists of these key hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 20-1: UARTx SIMPLIFIED BLOCK DIAGRAM

© 2011-2013 Microchip Technology Inc.

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0
bit 7							bit 0
Legend:							

REGISTER 21-11: CxFEN1: ECANx ACCEPTANCE FILTER ENABLE REGISTER 1

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

FLTEN<15:0>: Enable Filter n to Accept Messages bits

1 = Enables Filter n

0 = Disables Filter n

REGISTER 21-12: CxBUFPNT1: ECANx FILTER 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F3BI	P<3:0>			F2BI	P<3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F1BP<3:0>					F0BI	P<3:0>	
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	1111 = Filte 1110 = Filte • • • • •	: RX Buffer Mas er hits received in er hits received in er hits received in er hits received in	n RX FIFO bu n RX Buffer 1 n RX Buffer 1	iffer			
bit 11-8	F2BP<3:0>	: RX Buffer Mas	k for Filter 2 b	oits (same value	s as bits<15:1	2>)	
bit 7-4	F1BP<3:0>	: RX Buffer Mas	k for Filter 1 k	oits (same value	s as bits<15:1	2>)	
		F0BP<3:0>: RX Buffer Mask for Filter 0 bits (same values as bits<15:12>)					

FIGURE 22-1: CTMU BLOCK DIAGRAM

5: The switch connected to ADC CH0 is closed when IDISSEN (CTMUCON1<9>) = 1, and opened when IDISSEN = 0.

22.1 CTMU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

22.1.1 KEY RESOURCES

- "Charge Time Measurement Unit (CTMU)" (DS70661) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- · Development Tools

30.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant, with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(3)}$	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽³⁾	-0.3V to +3.6V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	
Maximum current sunk/sourced by any 4x I/O pin	15 mA
Maximum current sunk/sourced by any 8x I/O pin	25 mA
Maximum current sunk by all ports ^(2,4)	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 30-2).
 - 3: See the "Pin Diagrams" section for the 5V tolerant pins.
 - 4: Exceptions are: dsPIC33EPXXXGP502, dsPIC33EPXXXMC202/502 and PIC24EPXXXGP/MC202 devices, which have a maximum sink/source capability of 130 mA.

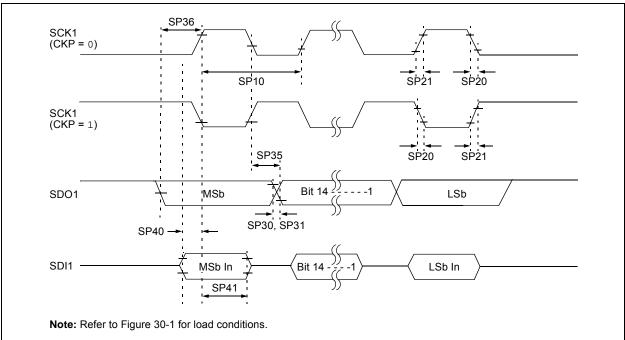

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Parameter No.	Тур.	Max.	Units	Units Conditions			
Power-Down Cu	urrent (IPD) ⁽¹⁾ -	dsPIC33EP32GI	P50X, dsPIC33EF	P32MC20X/50X and PIC2	4EP32GP/MC20X		
DC60d	30	100	μA	-40°C			
DC60a	35	100	μA	+25°C	3.3V		
DC60b	150	200	μA	+85°C	3.3V		
DC60c	250	500	μA	+125°C			
Power-Down Cu	urrent (IPD) ⁽¹⁾ –	dsPIC33EP64GI	P50X, dsPIC33EF	P64MC20X/50X and PIC2	4EP64GP/MC20X		
DC60d	25	100	μA	-40°C			
DC60a	30	100	μA	+25°C	3.3V		
DC60b	150	350	μΑ	+85°C	3.3V		
DC60c	350	800	μΑ	+125°C			
Power-Down Cu	urrent (IPD) ⁽¹⁾ –	dsPIC33EP128G	P50X, dsPIC33E	P128MC20X/50X and PIC	24EP128GP/MC20X		
DC60d	30	100	μΑ	-40°C			
DC60a	35	100	μΑ	+25°C	3.3V		
DC60b	150	350	μΑ	+85°C	5.50		
DC60c	550	1000	μΑ	+125°C			
Power-Down Cu	urrent (IPD) ⁽¹⁾ –	dsPIC33EP256G	P50X, dsPIC33E	P256MC20X/50X and PIC	24EP256GP/MC20X		
DC60d	35	100	μΑ	-40°C			
DC60a	40	100	μΑ	+25°C	3.3V		
DC60b	250	450	μΑ	+85°C	5.57		
DC60c	1000	1200	μΑ	+125°C			
Power-Down Cu	urrent (IPD) ⁽¹⁾ –	dsPIC33EP512G	P50X, dsPIC33E	P512MC20X/50X and PIC	24EP512GP/MC20X		
DC60d	40	100	μΑ	-40°C			
DC60a	45	100	μΑ	+25°C	3.3V		
DC60b	350	800	μΑ	+85°C	0.0 v		
DC60c	1100	1500	μA	+125°C			

TABLE 30-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: IPD (Sleep) current is measured as follows:

• CPU core is off, oscillator is configured in EC mode and external clock is active; OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all set)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- JTAG is disabled

FIGURE 30-24: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 30-43:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHA	RACTERIST	ICS		Operatin otherwise temperat	stated) ture -40	°C ≤ Ta ≤	7 to 3.6V +85°C for Industrial +125°C for Extended
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency	_	—	10	MHz	(Note 3)
SP20	TscF	SCK1 Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdoV2sc, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30			ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK1 is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPI1 pins.

AC CHARACTERISTICS							Ta ≤ +85°C for Industrial
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
		ADC A	ccuracy (10-Bit N	lode)		
AD20b	Nr	Resolution	10) Data B	its	bits	
AD21b	INL	Integral Nonlinearity	-0.625		0.625	LSb	-40°C ≤ TA ≤ +85°C (Note 2)
			-1.5		1.5	LSb	+85°C < TA ≤ +125°C (Note 2)
AD22b	DNL	Differential Nonlinearity	-0.25	—	0.25	LSb	-40°C ≤ TA ≤ +85°C (Note 2)
			-0.25	—	0.25	LSb	+85°C < TA \leq +125°C (Note 2)
AD23b	Gerr	Gain Error	-2.5	—	2.5	LSb	-40°C \leq TA \leq +85°C (Note 2)
			-2.5		2.5	LSb	+85°C < TA \leq +125°C (Note 2)
AD24b	EOFF	Offset Error	-1.25	—	1.25	LSb	$-40^{\circ}C \le TA \le +85^{\circ}C \text{ (Note 2)}$
			-1.25	—	1.25	LSb	+85°C < TA \leq +125°C (Note 2)
AD25b	—	Monotonicity	_		_	—	Guaranteed
		Dynamic P	erforman	ce (10-E	Bit Mode)		
AD30b	THD	Total Harmonic Distortion ⁽³⁾	_	64		dB	
AD31b	SINAD	Signal to Noise and Distortion ⁽³⁾		57		dB	
AD32b	SFDR	Spurious Free Dynamic Range ⁽³⁾	—	72	—	dB	
AD33b	Fnyq	Input Signal Bandwidth ⁽³⁾	—	550	—	kHz	
AD34b	ENOB	Effective Number of Bits ⁽³⁾	_	9.4	—	bits	

TABLE 30-59: ADC MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

3: Parameters are characterized but not tested in manufacturing.

TABLE A-1:MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 30.0 "Electrical Characteristics"	Removed Voltage on VCAP with respect to Vss and added Note 5 in Absolute Maximum Ratings ⁽¹⁾ .
	Removed Parameter DC18 (VCORE) and Note 3 from the DC Temperature and Voltage Specifications (see Table 30-4).
	Updated Note 1 in the DC Characteristics: Operating Current (IDD) (see Table 30-6).
	Updated Note 1 in the DC Characteristics: Idle Current (IIDLE) (see Table 30-7).
	Changed the Typical values for Parameters DC60a-DC60d and updated Note 1 in the DC Characteristics: Power-down Current (IPD) (see Table 30-8).
	Updated Note 1 in the DC Characteristics: Doze Current (IDOZE) (see Table 30-9).
	Updated Note 2 in the Electrical Characteristics: BOR (see Table 30-12).
	Updated Parameters CM20 and CM31, and added Parameters CM44 and CM45 in the AC/DC Characteristics: Op amp/Comparator (see Table 30-14).
	Added the Op amp/Comparator Reference Voltage Settling Time Specifications (see Table 30-15).
	Added Op amp/Comparator Voltage Reference DC Specifications (see Table 30-16).
	Updated Internal FRC Accuracy Parameter F20a (see Table 30-21).
	Updated the Typical value and Units for Parameter CTMUI1, and added Parameters CTMUI4, CTMUFV1, and CTMUFV2 to the CTMU Current Source Specifications (see Table 30-55).
Section 31.0 "Packaging Information"	Updated packages by replacing references of VLAP with TLA.
"Product Identification System"	Changed VLAP to TLA.