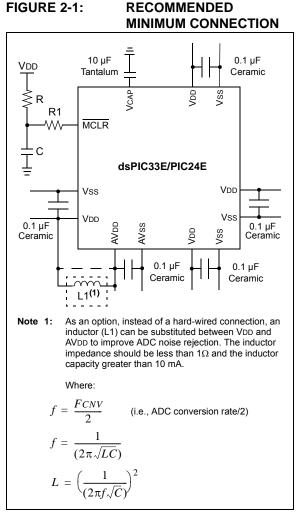


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep256mc204t-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

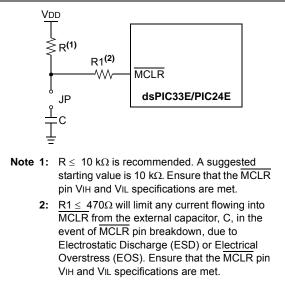
2.3 CPU Logic Filter Capacitor Connection (VCAP)

A low-ESR (< 1 Ohm) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD and must have a capacitor greater than 4.7 μ F (10 μ F is recommended), 16V connected to ground. The type can be ceramic or tantalum. See **Section 30.0** "**Electrical Characteristics**" for additional information.

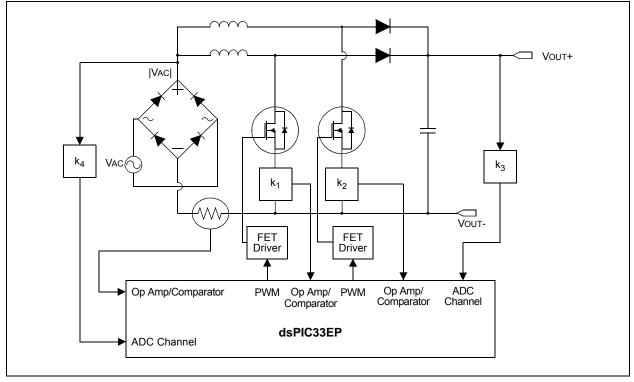
The placement of this capacitor should be close to the VCAP pin. It is recommended that the trace length not exceeds one-quarter inch (6 mm). See **Section 27.3 "On-Chip Voltage Regulator"** for details.

2.4 Master Clear (MCLR) Pin


The MCLR pin provides two specific device functions:


- Device Reset
- Device Programming and Debugging.

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.


For example, as shown in Figure 2-2, it is recommended that the capacitor, C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

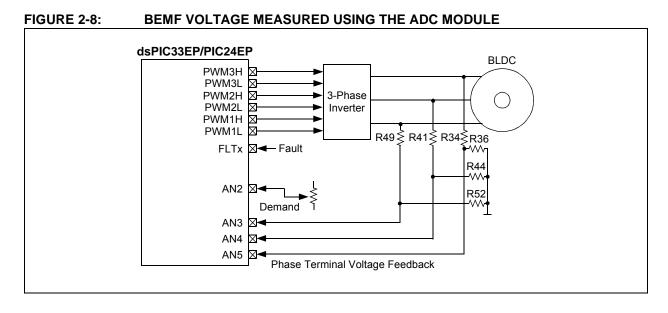

Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

FIGURE 2-7: INTERLEAVED PFC

TABLE 4-33 :	PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY
---------------------	---

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	_				NT1R<6:0>					_	_	_	_		_	_	0000
RPINR1	06A2		—	—	-		-		-	-				INT2R<6:0>				0000
RPINR3	06A6	-	_	_	_	_	_	_	_	_			-	[2CKR<6:0>	>			0000
RPINR7	06AE	_				IC2R<6:0>				—				IC1R<6:0>				0000
RPINR8	06B0	_				IC4R<6:0>				—	IC3R<6:0>				0000			
RPINR11	06B6	_	_	_	—	_	_	_	_	—	OCFAR<6:0>			0000				
RPINR12	06B8	_		FLT2R<6:0> — FLT1R<6:0>						0000								
RPINR14	06BC	_	QEB1R<6:0>					—			(QEA1R<6:0>	>			0000		
RPINR15	06BE	_			Н	OME1R<6:0)>			—			I	NDX1R<6:0	>			0000
RPINR18	06C4	_	_	_	—	_	_	_	_	—			ι	J1RXR<6:0>	>			0000
RPINR19	06C6	_	_	_	_	_	_	_	_	—			ι	J2RXR<6:0>	>			0000
RPINR22	06CC	_		•	S	CK2INR<6:0)>			_	- SDI2R<6:0>				0000			
RPINR23	06CE	_	_		_	_	_	_	_	_	SS2R<6:0>			0000				
RPINR37	06EA	_	SYNCI1R<6:0>				_	_	_	_	_	_	_	_	0000			
RPINR38	06EC	_	DTCMP1R<6:0>				_	_	0000									
RPINR39	06EE	_			DT	CMP3R<6:	0>			—			D	CMP2R<6:	0>			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.2 RTSP Operation

RTSP allows the user application to erase a single page of memory and to program two instruction words at a time. See the General Purpose and Motor Control Family tables (Table 1 and Table 2, respectively) for the page sizes of each device.

For more information on erasing and programming Flash memory, refer to "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual".

5.3 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

For erase and program times, refer to Parameters D137a and D137b (Page Erase Time), and D138a and D138b (Word Write Cycle Time) in Table 30-14 in **Section 30.0 "Electrical Characteristics"**.

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of program Flash memory at a time on every other word address boundary (0x000002, 0x000006, 0x00000A, etc.). To do this, it is necessary to erase the page that contains the desired address of the location the user wants to change.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Refer to **Flash Programming**" (DS70609) in the "*dsPIC33/PIC24 Family Reference Manual*" for details and codes examples on programming using RTSP.

5.4 Flash Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

5.4.1 KEY RESOURCES

- "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

5.5 Control Registers

Four SFRs are used to erase and write the program Flash memory: NVMCON, NVMKEY, NVMADRH and NVMADRL.

The NVMCON register (Register 5-1) enables and initiates Flash memory erase and write operations.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register.

There are two NVM Address registers: NVMADRH and NVMADRL. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word for programming operations or the selected page for erase operations.

The NVMADRH register is used to hold the upper 8 bits of the EA, while the NVMADRL register is used to hold the lower 16 bits of the EA.

	Vector	IRQ		Inte	Interrupt Bit Location			
Interrupt Source	# #		IVT Address	Flag	Enable	Priority		
QEI1 – QEI1 Position Counter Compare ⁽²⁾	66	58	0x000088	IFS3<10>	IEC3<10>	IPC14<10:8>		
Reserved	67-72	59-64	0x00008A-0x000094	_	_	_		
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>		
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4<2>	IEC4<2>	IPC16<10:8>		
CRC – CRC Generator Interrupt	75	67	0x00009A	IFS4<3>	IEC4<3>	IPC16<14:12>		
Reserved	76-77	68-69	0x00009C-0x00009E	—	_	—		
C1TX – CAN1 TX Data Request ⁽¹⁾	78	70	0x000A0	IFS4<6>	IEC4<6>	IPC17<10:8>		
Reserved	79-84	71-76	0x0000A2-0x0000AC	—	_	—		
CTMU – CTMU Interrupt	85	77	0x0000AE	IFS4<13>	IEC4<13>	IPC19<6:4>		
Reserved	86-101	78-93	0x0000B0-0x0000CE	—	_	—		
PWM1 – PWM Generator 1 ⁽²⁾	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>		
PWM2 – PWM Generator 2 ⁽²⁾	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>		
PWM3 – PWM Generator 3 ⁽²⁾	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>		
Reserved	105-149	97-141	0x0001D6-0x00012E	—	_	—		
ICD – ICD Application	150	142	0x000142	IFS8<14>	IEC8<14>	IPC35<10:8>		
JTAG – JTAG Programming	151	143	0x000130	IFS8<15>	IEC8<15>	IPC35<14:12>		
Reserved	152	144	0x000134	—	—	_		
PTGSTEP – PTG Step	153	145	0x000136	IFS9<1>	IEC9<1>	IPC36<6:4>		
PTGWDT – PTG Watchdog Time-out	154	146	0x000138	IFS9<2>	IEC9<2>	IPC36<10:8>		
PTG0 – PTG Interrupt 0	155	147	0x00013A	IFS9<3>	IEC9<3>	IPC36<14:12>		
PTG1 – PTG Interrupt 1	156	148	0x00013C	IFS9<4>	IEC9<4>	IPC37<2:0>		
PTG2 – PTG Interrupt 2	157	149	0x00013E	IFS9<5>	IEC9<5>	IPC37<6:4>		
PTG3 – PTG Interrupt 3	158	150	0x000140	IFS9<6>	IEC9<6>	IPC37<10:8>		
Reserved	159-245	151-245	0x000142-0x0001FE	—	—	_		
	Lowe	est Natura	I Order Priority					

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

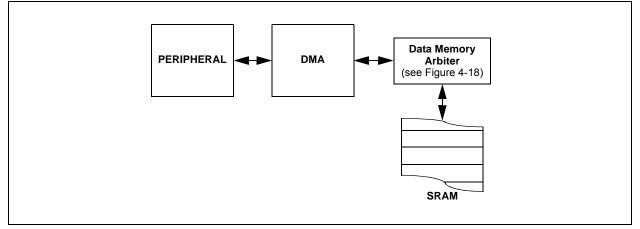
Note 1: This interrupt source is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

2: This interrupt source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Direct Memory Access (DMA)" (DS70348) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The DMA Controller transfers data between Peripheral Data registers and Data Space SRAM


In addition, DMA can access the entire data memory space. The Data Memory Bus Arbiter is utilized when either the CPU or DMA attempts to access SRAM, resulting in potential DMA or CPU stalls.

The DMA Controller supports 4 independent channels. Each channel can be configured for transfers to or from selected peripherals. Some of the peripherals supported by the DMA Controller include:

- ECAN[™]
- Analog-to-Digital Converter (ADC)
- Serial Peripheral Interface (SPI)
- UART
- Input Capture
- Output Compare

Refer to Table 8-1 for a complete list of supported peripherals.

FIGURE 8-1: DMA CONTROLLER MODULE

13.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter
- They also support these features:
- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (32-bit timer pairs, and Timer3 and Timer5 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, and T4CON, T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1. T3CON and T5CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (lsw); Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

A block diagram for an example 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 13-3.

Note: Only Timer2, 3, 4 and 5 can trigger a DMA data transfer.

19.0 INTER-INTEGRATED CIRCUIT[™] (I²C[™])

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated Circuit™ (I²C™)" (DS70330) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.
 - 3: There are minimum bit rates of approximately FCY/512. As a result, high processor speeds may not support 100 Kbit/second operation. See timing specifications, IM10 and IM11, and the "Baud Rate Generator" in the "dsPIC33/PIC24 Family Reference Manual".

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X family of devices contains two Inter-Integrated Circuit (I²C) modules: I2C1 and I2C2.

The l^2C module provides complete hardware support for both Slave and Multi-Master modes of the l^2C serial communication standard, with a 16-bit interface.

The I^2C module has a 2-pin interface:

- · The SCLx pin is clock
- The SDAx pin is data

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation
- I²C Slave mode supports 7 and 10-bit addressing
- I²C Master mode supports 7 and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly
- Intelligent Platform Management Interface (IPMI)
 support
- System Management Bus (SMBus) support

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0					
_		FBP5	FBP4	FBP3	FBP2	FBP1	FBP0					
bit 15							bit 8					
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0					
		FNRB5	FNRB4	FNRB3	FNRB2	FNRB1	FNRB0					
bit 7							bit (
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown					
bit 15-14	Unimpleme	ented: Read as '	0'									
bit 13-8	FBP<5:0>:	FIFO Buffer Poir	nter bits									
		011111 = RB31 buffer										
	011110 = F	RB30 buffer										
	•											
	•											
	•	TRB1 buffer										
		TRB0 buffer										
bit 7-6	Unimpleme	ented: Read as '	0'									
bit 5-0	FNRB<5:0	>: FIFO Next Rea	ad Buffer Poir	iter bits								
	011111 = F	RB31 buffer										
	011110 = F	RB30 buffer										
	•											
	•											
	•											
		FRB1 buffer FRB0 buffer										

REGISTER 21-5: CxFIFO: ECANx FIFO STATUS REGISTER

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 23-5: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	-	CH123NB1	CH123NB0	CH123SB
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	CH123NA1	CH123NA0	CH123SA
bit 7							bit 0

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'

bit 10-9

CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample MUXB bits In 12-bit mode (AD21B = 1), CH123NB is Unimplemented and is Read as '0':

Value	ADC Channel					
value	CH1	CH2	CH3			
11	AN9	AN10	AN11			
10 (1,2)	OA3/AN6	AN7	AN8			
0x	Vrefl	VREFL	Vrefl			

bit 8 **CH123SB:** Channel 1, 2, 3 Positive Input Select for Sample MUXB bit In 12-bit mode (AD21B = 1), CH123SB is Unimplemented and is Read as '0':

Value	ADC Channel						
value	CH1 CH2 CH3						
1 (2)	OA1/AN3	OA2/AN0	OA3/AN6				
0 (1,2)	OA2/AN0	AN1	AN2				

bit 7-3 Unimplemented: Read as '0'

bit 2-1 **CH123NA<1:0>:** Channel 1, 2, 3 Negative Input Select for Sample MUXA bits In 12-bit mode (AD21B = 1), CH123NA is Unimplemented and is Read as '0':

Value	ADC Channel					
value	CH1	CH2	CH3			
11	AN9	AN10	AN11			
10 (1,2)	OA3/AN6	AN7	AN8			
0x	VREFL	VREFL	VREFL			

- **Note 1:** AN0 through AN7 are repurposed when comparator and op amp functionality is enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
CH0NB		_	CH0SB4 ⁽¹⁾	CH0SB3 ⁽¹⁾	CH0SB2 ⁽¹⁾	CH0SB1 ⁽¹⁾	CH0SB0 ⁽¹⁾					
bit 15		-					bit 8					
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
CH0NA		_	CH0SA4 ⁽¹⁾	CH0SA3 ⁽¹⁾	CH0SA2 ⁽¹⁾	CH0SA1 ⁽¹⁾	CH0SA0 ⁽¹⁾					
bit 7							bit C					
Legend:												
R = Reada		W = Writable			nented bit, read							
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own					
hit 15			Input Coloct for	r Comple MUX								
bit 15		nannel 0 Negative el 0 negative input										
		el 0 negative input										
bit 14-13	Unimpleme	ented: Read as '0)'									
bit 12-8	CH0SB<4:0	0>: Channel 0 Po:	sitive Input Sele	ect for Sample I	MUXB bits ⁽¹⁾							
		pen; use this sele				ement						
	11110 = Ch	11110 = Channel 0 positive input is connected to the CTMU temperature measurement diode (CTMU TEMP)										
		11101 = Reserved										
		11100 = Reserved 11011 = Reserved										
	11011 = Reserved 11010 = Channel 0 positive input is the output of OA3/AN6 ^(2,3)											
		11001 = Channel 0 positive input is the output of OA2/AN0 ⁽²⁾										
		nannel 0 positive i	input is the outp	out of OA1/AN3	(2)							
	10111 = Re	served										
	•											
	•											
	10000 = Re											
	01111 = Ch	nannel 0 positive i	input is AN15 ⁽³⁾									
	01110 = Cr	nannel 0 positive i nannel 0 positive i	input is AN14 ⁽³⁾									
	•											
	•											
	•		(2)									
	00010 = Ch	nannel 0 positive i	input is AN2 ⁽³⁾									
		00001 = Channel 0 positive input is AN1 ⁽³⁾ 00000 = Channel 0 positive input is AN0 ⁽³⁾										
bit 7		nannel 0 Negative	•	r Samnle MI IX	Δ hit							
	CINIA. OI	lanner o Negative	•		A DIL							
	1 = Channell	1 0 negative input	is AN1(1)									
		el 0 negative input el 0 negative input										
bit 6-5	0 = Channe	el 0 negative input el 0 negative input ented: Read as '0	is Vrefl									
	0 = Channe Unimpleme AN0 through A	el 0 negative input	is VREFL ,' ed when compa									

REGISTER 23-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

3: See the "**Pin Diagrams**" section for the available analog channels for each device.

otherwise, the ANx input is used.

24.2 PTG Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

24.2.1 KEY RESOURCES

- "Peripheral Trigger Generator" (DS70669) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2) (CONTINUED)

bit 4	OC1CS: Clock Source for OC1 bit
	 1 = Generates clock pulse when the broadcast command is executed 0 = Does not generate clock pulse when the broadcast command is executed
bit 3	OC4TSS: Trigger/Synchronization Source for OC4 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed
bit 2	OC3TSS: Trigger/Synchronization Source for OC3 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed
bit 1	OC2TSS: Trigger/Synchronization Source for OC2 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed
bit 0	OC1TSS: Trigger/Synchronization Source for OC1 bit
	 1 = Generates Trigger/Synchronization when the broadcast command is executed 0 = Does not generate Trigger/Synchronization when the broadcast command is executed

- **Note 1:** This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).
 - 2: This register is only used with the PTGCTRL OPTION = 1111 Step command.

REGISTER 24-10: PTGADJ: PTG ADJUST REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGA	DJ<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGA	DJ<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown				nown			

bit 15-0 **PTGADJ<15:0>:** PTG Adjust Register bits This register holds user-supplied data to be added to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 registers with the PTGADD command.

REGISTER 24-11: PTGL0: PTG LITERAL 0 REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PTGL0<15:8>									
bit 15							bit 8		

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGL)<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 PTGL0<15:0>: PTG Literal 0 Register bits

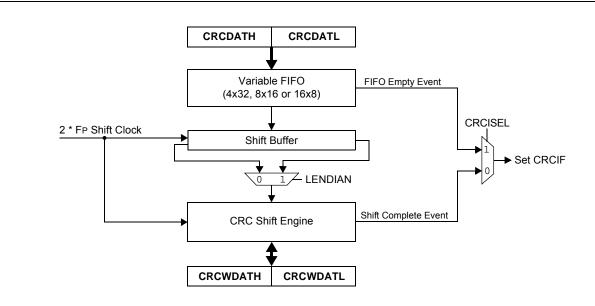
This register holds the 16-bit value to be written to the AD1CHS0 register with the ${\tt PTGCTRL}$ Step command.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

26.0 PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Programmable Cyclic Redundancy Check (CRC)" (DS70346) of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The programmable CRC generator offers the following features:

- User-programmable (up to 32nd order) polynomial CRC equation
- Interrupt output
- Data FIFO

The programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-programmable CRC polynomial equation, up to 32 bits
- Programmable shift direction (little or big-endian)
- · Independent data and polynomial lengths
- Configurable interrupt output
- Data FIFO

A simplified block diagram of the CRC generator is shown in Figure 26-1. A simple version of the CRC shift engine is shown in Figure 26-2.

FIGURE 26-1: CRC BLOCK DIAGRAM

29.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16 and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

29.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

29.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

29.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

			(unless	s otherw	ating Covinse stat	ed) -40°C	s: 3.0V to 3.6V \leq TA \leq +85°C for Industrial \leq TA \leq +125°C for Extended
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO10	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾			0.4	V	VDD = 3.3V, $IOL \le 6 \text{ mA}, -40^{\circ}\text{C} \le Ta \le +85^{\circ}\text{C}$ $IOL \le 5 \text{ mA}, +85^{\circ}\text{C} < Ta \le +125^{\circ}\text{C}$
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	_		0.4	V	
DO20	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4		_	V	$IOH \ge -10 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	_	—	V	$IOH \ge -15 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
DO20A	Von1	Output High Voltage	1.5(1)	_		V	$IOH \ge -14 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
		4x Source Driver Pins ⁽²⁾	2.0 ⁽¹⁾	_	—		$IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
			3.0(1)		—		$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{V}$
		Output High Voltage	1.5 ⁽¹⁾	—	—	V	$IOH \geq -22 mA, VDD = 3.3 V$
		8x Source Driver Pins ⁽³⁾	2.0 ⁽¹⁾	—	—		IOH \geq -18 mA, VDD = 3.3V
			3.0(1)	—	—	1	IOH \geq -10 mA, VDD = 3.3V

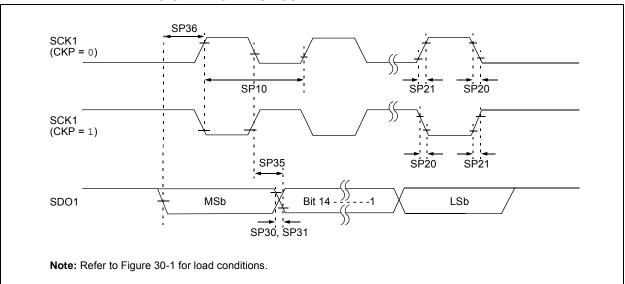
TABLE 30-12: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized but not tested.

2: Includes all I/O pins that are not 8x Sink Driver pins (see below).

Includes the following pins:
 For devices with less than 64 pins: RA3, RA4, RA9, RB<7:15> and RC3
 For 64-pin devices: RA4, RA9, RB<7:15>, RC3 and RC15

TABLE 30-13: ELECTRICAL CHARACTERISTICS: BOR


DC CHAR	DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min. ⁽²⁾	Тур.	Max.	Units	Conditions	
BO10	VBOR	BOR Event on VDD Transition High-to-Low	2.65	_	2.95	V	VDD (Notes 2 and 3)	

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance.

2: Parameters are for design guidance only and are not tested in manufacturing.

3: The VBOR specification is relative to VDD.

FIGURE 30-23: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

TABLE 30-42: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS			(unless o	I Operatin otherwise g tempera	stated) ature -4	0°C ≤ Ta	0V to 3.6V ≤ +85°C for Industrial ≤ +125°C for Extended
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency	—		15	MHz	(Note 3)
SP20	TscF	SCK1 Output Fall Time	-	-	_	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	-	-	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdiV2scH, TdiV2scL	SDO1 Data Output Setup to First SCK1 Edge	30			ns	

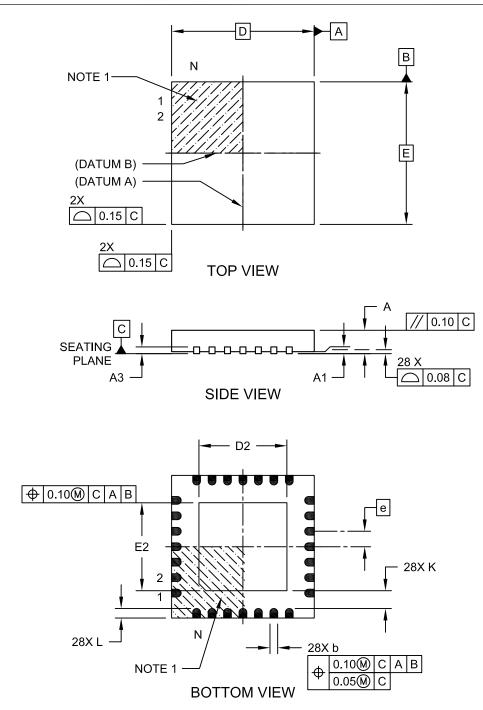
Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated) ⁽¹⁾ Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
			Devi	ce Sup	ply				
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 3.0		Lesser of: VDD + 0.3 or 3.6	V			
AD02	AVss	Module Vss Supply	Vss – 0.3		Vss + 0.3	V			
			Refere	ence In	puts				
AD05	Vrefh	Reference Voltage High	AVss + 2.5		AVDD	V	VREFH = VREF+ VREFL = VREF- (Note 1)		
AD05a			3.0	_	3.6	V	VREFH = AVDD VREFL = AVSS = 0		
AD06	VREFL	Reference Voltage Low	AVss		AVDD - 2.5	V	(Note 1)		
AD06a			0		0	V	VREFH = AVDD VREFL = AVSS = 0		
AD07	VREF	Absolute Reference Voltage	2.5	_	3.6	V	VREF = VREFH - VREFL		
AD08	IREF	Current Drain			10 600	μΑ μΑ	ADC off ADC on		
AD09	Iad	Operating Current ⁽²⁾	—	5	_	mA	ADC operating in 10-bit mode (Note 1)		
			—	2	—	mA	ADC operating in 12-bit mode (Note 1)		
	•		Ana	log Inp	ut				
AD12	Vinh	Input Voltage Range VinH	VINL		Vrefh	V	This voltage reflects Sample-and- Hold Channels 0, 1, 2 and 3 (CH0-CH3), positive input		
AD13	VINL	Input Voltage Range VINL	Vrefl	_	AVss + 1V	V	This voltage reflects Sample-and- Hold Channels 0, 1, 2 and 3 (CH0-CH3), negative input		
AD17	Rin	Recommended Impedance of Analog Voltage Source	_	_	200	Ω	Impedance to achieve maximum performance of ADC		


TABLE 30-57: ADC MODULE SPECIFICATIONS

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 30-13 for the minimum and maximum BOR values.

2: Parameter is characterized but not tested in manufacturing.

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-124C Sheet 1 of 2