

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep256mc206-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X Digital Signal Controller (DSC) and Microcontroller (MCU) devices.

dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X BLOCK DIAGRAM

3.7 CPU Control Registers

R/W-0) R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0		
0A ⁽¹⁾	OB ⁽¹⁾	SA ^(1,4)	SB ^(1,4)	OAB ⁽¹⁾	SAB ⁽¹⁾	DA ⁽¹⁾	DC		
bit 15							bit 8		
R/W-0 ⁽²	R/W-0 ^(2,3)	R/W-0 ^(2,3)	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
IPL2	IPL1	IPL0	RA	N	OV	Z	С		
bit 7							bit 0		
Legend:		C = Clearable	bit						
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value	Value at POR'1'= Bit is set'0' = Bit is clearedx = Bit is unknown								
bit 15	OA: Accumu	lator A Overflow	v Status bit ⁽¹⁾						
	1 = Accumula	1 = Accumulator A has overflowed							
	0 = Accumula	0 = Accumulator A has not overflowed							
bit 14	OB: Accumu	OB: Accumulator B Overflow Status bit ⁽¹⁾							
	1 = Accumula	1 = Accumulator B has overflowed							
hit 13		lator A Saturatio	n 'Sticky' Sta	tue hit(1,4)					
DIL 15	$1 = \Delta c cumula$	ator A is saturat	ed or has her	n saturated at	some time				
	0 = Accumula	ator A is not sat	urated		Some time				
bit 12	SB: Accumu	lator B Saturatio	on 'Sticky' Sta	tus bit ^(1,4)					
	1 = Accumula	ator B is satura	ed or has bee	en saturated at	some time				
	0 = Accumula	ator B is not sat	urated						
bit 11	OAB: OA (OB Combined A	ccumulator O	verflow Status	bit ⁽¹⁾				
	1 = Accumula	ators A or B have	ve overflowed						
	0 = Neither A	Accumulators A	or B have ove	erflowed	(1)				
bit 10	SAB: SA S	B Combined A	cumulator 'Si	icky Status bit		1			
	1 = Accumula 0 = Neither A	ators A or B are	or B are satur	nave been sat	urated at some	time			
hit 9		Active hit(1)		alou					
bit 0	1 = DO loop is	s in progress							
	0 = DO loop is	s not in progres	S						
bit 8	DC: MCU ALU Half Carry/Borrow bit								
	1 = A carry-o	out from the 4th	low-order bit (for byte-sized o	data) or 8th low-	order bit (for wo	ord-sized data)		
	of the re	sult occurred							
	0 = No carry	-out from the 4	th low-order t	bit (for byte-siz	ed data) or 8th	low-order bit (1	for word-sized		
	uala) U								
Note 1:	This bit is availabl	e on dsPIC33E	PXXXMC20X	/50X and dsPl	C33EPXXXGP	50X devices on	ly.		
2:	The IPL<2:0> bits	are concatenat	ed with the IF	PL<3> bit (COR	RCON<3>) to fo	rm the CPU Inte	errupt Priority		
	Level. The value I IPL< $3 > = 1$.	n parentheses i	naicates the I	PL, IT IPL<3> =	= ⊥. User interru	ipts are disable	a wnen		

REGISTER 3-1: SR: CPU STATUS REGISTER

- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
- **4:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR		US1 ⁽¹⁾	US0 ⁽¹⁾	EDT ^(1,2)	DL2 ⁽¹⁾	DL1 ⁽¹⁾	DL0 ⁽¹⁾
bit 15							bit 8
							
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA(1)	SATB	SATDW ⁽¹⁾	ACCSAT(1)	IPL3(3)	SFA	RND ⁽¹⁾	IF ⁽¹⁾
bit 7							bit 0
Legend:		C - Clearable	hit				
R = Reada	hle hit	W = Writable	hit	U = Unimple	mented hit read	1 as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
			1				
bit 15	VAR: Variable	e Exception Pro	ocessing Later	ncy Control bit			
	1 = Variable e	exception proce	essing latency	is enabled			
	0 = Fixed exc	eption process	ing latency is	enabled			
bit 14	Unimplemen	ted: Read as '	0'				
bit 13-12	US<1:0>: DS	P Multiply Uns	igned/Signed (Control bits ⁽¹⁾			
	11 = Reserve	ed nine multiplies	are mixed sign	,			
	01 = DSP eng	gine multiplies	are unsigned	1			
	00 = DSP eng	gine multiplies	are signed				
bit 11	EDT: Early DO	D Loop Termina	ation Control bi	it(1,2)			
	1 = Terminate 0 = No effect	es executing DO	loop at end o	f current loop	iteration		
bit 10-8	DL<2:0>: DO	Loop Nesting I	Level Status bi	ts ⁽¹⁾			
	111 = 7 do lo	ops are active					
	•						
	•						
	001 = 1 DO IO	on is active					
	000 = 0 DO lo	ops are active					
bit 7	SATA: ACCA	Saturation En	able bit ⁽¹⁾				
	1 = Accumula 0 = Accumula	ator A saturatio ator A saturatio	n is enabled n is disabled				
bit 6	SATB: ACCB	Saturation En	able bit ⁽¹⁾				
	1 = Accumula	ator B saturatio	n is enabled				
	0 = Accumula	ator B saturatio	n is disabled				
bit 5	SATDW: Data	a Space Write f	from DSP Eng	ine Saturation	Enable bit ⁽¹⁾		
	1 = Data Space	ce write satura ce write satura	tion is enabled tion is disabled	1			
bit 4	ACCSAT: Acc	cumulator Satu	ration Mode S	elect bit ⁽¹⁾			
	1 = 9.31 satu	ration (super sa	aturation)				
	0 = 1.31 satu	ration (normal	saturation)				
bit 3	IPL3: CPU In	terrupt Priority	Level Status b	oit 3 (3)			
	1 = CPU Inter	rrupt Priority Le	evel is greater	than 7			
	0 = CPU inter	riupt Priority Le	evel is / or less	5			
Note 1: 2:	This bit is available This bit is always r	e on dsPIC33E read as '0'.	PXXXMC20X/	50X and dsPI	C33EPXXXGP	50X devices on	ly.

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

3.8 Arithmetic Logic Unit (ALU)

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X ALU is 16 bits wide, and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the <u>SR register. The C and DC</u> Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157) for information on the SR bits affected by each instruction.

The core CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.8.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier, the ALU supports unsigned, signed, or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit signed x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.8.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.9 DSP Engine (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X Devices Only)

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a 40-bit barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The DSP engine can also perform inherent accumulatorto-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- · Signed, unsigned or mixed-sign DSP multiply (US)
- · Conventional or convergent rounding (RND)
- · Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

	SOMMAN	
Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	$A = A + (x \bullet y)$	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	$A = x \bullet y$	No
MPY	$A = x^2$	No
MPY.N	$A = -x \bullet y$	No
MSC	$A = A - x \bullet y$	Yes

TABLE 3-2: DSP INSTRUCTIONS SUMMARY

TABLE 4-39: PMD REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	—	—	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	AD1MD	0000
PMD2	0762	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD	_	_	CRCMD	_	_	_	_	_	I2C2MD	_	0000
PMD4	0766	_	_	_	_	_	_	_	_	_	_	_	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
PMD7	076C		_			_		_		_	_		DMA0MD DMA1MD DMA2MD DMA3MD	PTGMD	_	_	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-40: PMD REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	C1MD	AD1MD	0000
PMD2	0762	_	_	_	_	IC4MD	IC3MD	IC2MD	IC1MD	_	_	—	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	_	_	_	_	_	CMPMD	_	_	CRCMD	_	—	_	—	_	I2C2MD	_	0000
PMD4	0766	_	_	_	_	_	_	_	—	_	_	—	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	_	_	_	_	_	PWM3MD	PWM2MD	PWM1MD	_	_	—	_	—	_	_	_	0000
													DMA0MD					
	0760												DMA1MD	DTOMD				
PIVID7	0760	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	PIGMD	_	_	_	0000
													DMA3MD]				

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70000657H-page 95

EXAMPLE 4-2: EXTENDED DATA SPACE (EDS) WRITE ADDRESS GENERATION

The paged memory scheme provides access to multiple 32-Kbyte windows in the EDS and PSV memory. The Data Space Page registers, DSxPAG, in combination with the upper half of the Data Space address, can provide up to 16 Mbytes of additional address space in the EDS and 8 Mbytes (DSRPAG only) of PSV address space. The paged data memory space is shown in Example 4-3.

The Program Space (PS) can be accessed with a DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG. Writes to PS are not supported, so DSWPAG is dedicated to DS, including EDS only. The Data Space and EDS can be read from, and written to, using DSRPAG and DSWPAG, respectively.

6.1 Reset Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

6.1.1 KEY RESOURCES

- "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual"
- · Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

	Vector	IRQ		Inte	errupt Bit L	ocation
Interrupt Source	#	#	IVI Address	Flag	Enable	Priority
QEI1 – QEI1 Position Counter Compare ⁽²⁾	66	58	0x000088	IFS3<10>	IEC3<10>	IPC14<10:8>
Reserved	67-72	59-64	0x00008A-0x000094	_	_	—
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4<2>	IEC4<2>	IPC16<10:8>
CRC – CRC Generator Interrupt	75	67	0x00009A	IFS4<3>	IEC4<3>	IPC16<14:12>
Reserved	76-77	68-69	0x00009C-0x00009E	_	_	—
C1TX – CAN1 TX Data Request ⁽¹⁾	78	70	0x000A0	IFS4<6>	IEC4<6>	IPC17<10:8>
Reserved	79-84	71-76	0x0000A2-0x0000AC	_	_	_
CTMU – CTMU Interrupt	85	77	0x0000AE	IFS4<13>	IEC4<13>	IPC19<6:4>
Reserved	86-101	78-93	0x0000B0-0x0000CE	·		—
PWM1 – PWM Generator 1 ⁽²⁾	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>
PWM2 – PWM Generator 2 ⁽²⁾	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>
PWM3 – PWM Generator 3 ⁽²⁾	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>
Reserved	105-149	97-141	0x0001D6-0x00012E	—	—	—
ICD – ICD Application	150	142	0x000142	IFS8<14>	IEC8<14>	IPC35<10:8>
JTAG – JTAG Programming	151	143	0x000130	IFS8<15>	IEC8<15>	IPC35<14:12>
Reserved	152	144	0x000134	—	—	—
PTGSTEP – PTG Step	153	145	0x000136	IFS9<1>	IEC9<1>	IPC36<6:4>
PTGWDT – PTG Watchdog Time-out	154	146	0x000138	IFS9<2>	IEC9<2>	IPC36<10:8>
PTG0 – PTG Interrupt 0	155	147	0x00013A	IFS9<3>	IEC9<3>	IPC36<14:12>
PTG1 – PTG Interrupt 1	156	148	0x00013C	IFS9<4>	IEC9<4>	IPC37<2:0>
PTG2 – PTG Interrupt 2	157	149	0x00013E	IFS9<5>	IEC9<5>	IPC37<6:4>
PTG3 – PTG Interrupt 3	158	150	0x000140	IFS9<6>	IEC9<6>	IPC37<10:8>
Reserved	159-245	151-245	0x000142-0x0001FE	_	_	_
Lowest Natural Order Priority						

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

Note 1: This interrupt source is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

2: This interrupt source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB<	23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cle				eared	x = Bit is unkr	nown	

REGISTER 8-5: DMAXSTBH: DMA CHANNEL X START ADDRESS REGISTER B (HIGH)

bit 15-8 Unimplemented: Read as '0'

bit 7-0 STB<23:16>: Secondary Start Address bits (source or destination)

REGISTER 8-6: DMAXSTBL: DMA CHANNEL X START ADDRESS REGISTER B (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STE	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ST	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 **STB<15:0>:** Secondary Start Address bits (source or destination)

9.3 Oscillator Control Registers

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

11-0	R-0	R-0	R-0	U-O	R/W-v	R/W-v	R/W-v				
	COSC2	COSC1	COSCO	_	NOSC2 ⁽²⁾	NOSC1 ⁽²⁾	NOSCO ⁽²⁾				
bit 15							bit 8				
R/W-0	R/W-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0				
CLKLOC	CK IOLOCK	LOCK		CF ⁽³⁾		—	OSWEN				
bit 7							bit 0				
			(
Legend:	- h l - h :4	y = Value set	from Configur	ation bits on P	'OR	(0)					
		vv = vvritable	DIL	0 = 0	mented bit, read	as u					
-n = value	alPOR	I = BILIS Set		0 = Bit is cle	ared		IOWN				
bit 15	Unimplemen	ted: Read as '	0'								
bit 14-12	COSC<2:0>:	Current Oscilla	ator Selection	bits (read-only	')						
	111 = Fast R(111 = Fast RC Oscillator (FRC) with Divide-by-n									
	110 = Fast R	110 = Fast RC Oscillator (FRC) with Divide-by-16									
	101 = Low-Po	101 = Low-Power RC Oscillator (LPRC)									
	011 = Primary	011 = Primary Oscillator (XT, HS, EC) with PLL									
	010 = Primary	010 = Primary Oscillator (XT, HS, EC)									
	001 = Fast R 000 = Fast R	C Oscillator (F C Oscillator (F	RC) with Divid RC)	le-by-N and PL	L (FRCPLL)						
bit 11	Unimplemen	ted: Read as '	0'								
bit 10-8	NOSC<2:0>:	New Oscillator	Selection bits	_S (2)							
	111 = Fast R	C Oscillator (F	RC) with Divid	le-by-n							
	110 = Fast R	C Oscillator (F	RC) with Divic	le-by-16							
	101 - Low-PC 100 = Reserv	ed									
	011 = Primary	y Oscillator (X	r, HS, EC) wit	h PLL							
	010 = Primary	y Oscillator (X	r, HS, EC)								
	001 = Fast R0 000 = Fast R0	C Oscillator (FI	RC) with Divid RC)	Ie-by-N and PL	L (FRCPLL)						
bit 7	CLKLOCK: C	lock Lock Ena	ble bit								
	1 = If (FCKS	M0 = 1), then c	lock and PLL	configurations	are locked; if (F	CKSM0 = 0), t	hen clock and				
	0 = Clock and	d PLL selection	ns are not lock	ked, configurat	ions may be mo	dified					
bit 6	IOLOCK: I/O	Lock Enable b	it								
	1 = I/O lock is active										
	0 = I/O lock is	not active	/ I I \								
bit 5	LOCK: PLL L	ock Status bit	(read-only)	ant un tincaria	a atiafia d						
	 1 = indicates 0 = Indicates 	that PLL is in	t of lock, start	-up timer is -up timer is in	progress or PLL	is disabled					
Note 1:	Writes to this regis	ter require an e erence Manual	unlock sequer " (available fro	nce. Refer to " om the Microch	Oscillator" (DS ip web site) for	70580) in the <i>"</i> o details.	dsPIC33/				
2:	Direct clock switch This applies to cloc	t clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. applies to clock switches in either direction. In these instances, the application must switch to FRC									
	moue as a transitio	nai Clock Sour		IE IWO PLL IIIO	u c s.						

3: This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and trigger an oscillator failure trap.

11.4.4 INPUT MAPPING

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-1 through Register 11-17). Each register contains sets of 7-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 7-bit value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selections supported by the device.

For example, Figure 11-2 illustrates remappable pin selection for the U1RX input.

FIGURE 11-2: REMAPPABLE INPUT FOR U1RX

11.4.4.1 Virtual Connections

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices support virtual (internal) connections to the output of the op amp/ comparator module (see Figure 25-1 in Section 25.0 "Op Amp/Comparator Module"), and the PTG module (see Section 24.0 "Peripheral Trigger Generator (PTG) Module").

In addition, dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices support virtual connections to the filtered QEI module inputs: FINDX1, FHOME1, FINDX2 and FHOME2 (see Figure 17-1 in Section 17.0 "Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)".

Virtual connections provide a simple way of interperipheral connection without utilizing a physical pin. For example, by setting the FLT1R<6:0> bits of the RPINR12 register to the value of `b0000001, the output of the analog comparator, C1OUT, will be connected to the PWM Fault 1 input, which allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

Virtual connection to the QEI module allows peripherals to be connected to the QEI digital filter input. To utilize this filter, the QEI module must be enabled and its inputs must be connected to a physical RPn pin. Example 11-2 illustrates how the input capture module can be connected to the QEI digital filter.

EXAMPLE 11-2: CONNECTING IC1 TO THE HOME1 QEI1 DIGITAL FILTER INPUT ON PIN 43 OF THE dsPIC33EPXXXMC206 DEVICE

RPINR15 = 0x2500; RPINR7 = 0x009;	/* Connect the QEI1 HOME1 input to RP37 (pin 43) */ /* Connect the IC1 input to the digital filter on the FHOME1 input */
QEI1IOC = 0x4000;	/* Enable the QEI digital filter */
QEI1CON = 0x8000;	/* Enable the QEI module */

16.3 PWMx Control Registers

REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER

R/W-0	U-0	R/W-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SYNCEN ⁽¹⁾	SYNCSRC2 ⁽¹⁾	SYNCSRC1 ⁽¹⁾	SYNCSRC0 ⁽¹⁾	SEVTPS3(1)	SEVTPS2 ⁽¹⁾	SEVTPS1 ⁽¹⁾	SEVTPS0 ⁽¹⁾
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	PTEN: PWMx Module Enable bit
	 1 = PWMx module is enabled 0 = PWMx module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	PTSIDL: PWMx Time Base Stop in Idle Mode bit
	 1 = PWMx time base halts in CPU Idle mode 0 = PWMx time base runs in CPU Idle mode
bit 12	SESTAT: Special Event Interrupt Status bit
	 1 = Special event interrupt is pending 0 = Special event interrupt is not pending
bit 11	SEIEN: Special Event Interrupt Enable bit
	1 = Special event interrupt is enabled
	0 = Special event interrupt is disabled
bit 10	EIPU: Enable Immediate Period Updates bit ⁽¹⁾
	 1 = Active Period register is updated immediately 0 = Active Period register updates occur on PWMx cycle boundaries
bit 9	SYNCPOL: Synchronize Input and Output Polarity bit ⁽¹⁾
	1 = SYNCI1/SYNCO1 polarity is inverted (active-low)
	0 = SYNCI1/SYNCO1 is active-high
bit 8	SYNCOEN: Primary Time Base Sync Enable bit ⁽¹⁾
	1 = SYNCO1 output is enabled
L:1 7	0 = SYNCOT output is disabled
DIT /	SYNCEN: External Time Base Synchronization Enable bit
	1 = External synchronization of primary time base is enabled
Note 1:	These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user
	application must program the period register with a value that is slightly larger than the expected period of

the external synchronization input signal.

2: See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_
bit 15	1		1		1		bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	BCH(")	BCL	BPHH	BPHL	BPLH	BPLL
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	PHR: PWMxH	Rising Edge	Trigger Enabl	e bit			
	\perp = Rising edg 0 = Leading-E	ge of PyvivixH v Edge Blanking i	anores risina	edge of PWM	anking counter kH		
bit 14	PHF: PWMxH	Falling Edge	Trigger Enabl	e bit			
	1 = Falling ed	ge of PWMxH	will trigger Le	ading-Edge Bla	anking counter		
	0 = Leading-E	Edge Blanking i	gnores falling	g edge of PWM	хH		
bit 13	PLR: PWMxL	. Rising Edge T	rigger Enable	e bit oding Edgo Blo	nking countor		
	0 = Leading-E	Edge Blanking i	gnores rising	edge of PWM	kL		
bit 12	PLF: PWMxL	Falling Edge T	rigger Enable	e bit			
	1 = Falling ed	ge of PWMxL	will trigger Le	ading-Edge Bla	anking counter		
	0 = Leading-E	Edge Blanking i	gnores falling	g edge of PWM	xL		
bit 11	1 = Leading-F	-ault Input Lea Edge Blanking i	ding-Edge Bla	anking Enable	bit		
	0 = Leading-E	Edge Blanking i	s not applied	to selected Fa	ult input		
bit 10	CLLEBEN: C	urrent-Limit Le	ading-Edge E	Blanking Enable	e bit		
	1 = Leading-E	Edge Blanking i	s applied to s	selected curren	t-limit input		
hit 0.6	0 = Leading-E	tode Blanking I	s not applied	to selected cul	rrent-limit input		
bit 5	BCH Blankin	a in Selected F	J Blanking Sign	al High Enable	hit(1)		
bit 5	1 = State blan	kina (of curren	t-limit and/or	Fault input sigr	nals) when seled	ted blanking s	ianal is hiah
	0 = No blankii	ng when select	ed blanking s	signal is high	,	5	0 0
bit 4	BCL: Blanking	g in Selected B	lanking Signa	al Low Enable I	bit ⁽¹⁾		
	1 = State blan	iking (of curren	t-limit and/or	Fault input sigr	nals) when seled	cted blanking s	ignal is low
bit 3	BPHH: Blanki	ing in PWMxH	High Enable	hit			
bit o	1 = State blan	iking (of curren	t-limit and/or	Fault input sigr	nals) when PWN	/IxH output is h	igh
	0 = No blanki	ng when PWM	xH output is h	nigh			-
bit 2	BPHL: Blanki	ng in PWMxH	Low Enable b	pit			
	1 = State blan 0 = No blankii	nking (of curren ng when PWM	t-limit and/or xH output is le	Fault input sigr ow	nals) when PWN	IxH output is lo	W
bit 1	BPLH: Blanki	ng in PWMxL I	High Enable b	oit			
	1 = State blan 0 = No blankii	nking (of curren ng when PWM	t-limit and/or xL output is h	Fault input sigr igh	nals) when PWN	/IxL output is hi	igh
bit 0	BPLL: Blanki	ng in PWMxL L	ow Enable b	it			
	1 = State blan	king (of curren	t-limit and/or	Fault input sigr	nals) when PWN	IxL output is lo	W
	v = i N o diankii		x∟ output is io	JVV			

REGISTER 16-16: LEBCONX: PWMx LEADING-EDGE BLANKING CONTROL REGISTER

Note 1: The blanking signal is selected via the BLANKSELx bits in the AUXCONx register.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGE	EC<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGE	EC<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown				nown			

REGISTER 17-15: QEI1GECH: QEI1 GREATER THAN OR EQUAL COMPARE HIGH WORD REGISTER

bit 15-0 QEIGEC<31:16>: High Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEI1GEC) bits

REGISTER 17-16: QEI1GECL: QEI1 GREATER THAN OR EQUAL COMPARE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGE	C<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIG	EC<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplei	mented bit, rea	id as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	eared	x = Bit is unkr	nown	

bit 15-0 QEIGEC<15:0>: Low Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEI1GEC) bits

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_	FBP5	FBP4	FBP3	FBP2	FBP1	FBP0
bit 15							bit 8
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_	FNRB5	FNRB4	FNRB3	FNRB2	FNRB1	FNRB0
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13-8	FBP<5:0>: F	IFO Buffer Poir	nter bits				
	011111 = RE	331 buffer					
	•	50 bullet					
	•						
	•						
	000001 = TR	B1 buffer					
	000000 = TR	RB0 buffer					
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-0	FNRB<5:0>:	FIFO Next Rea	ad Buffer Poin	ter bits			
	011111 = RE	331 buffer					
	011110 = RE	330 buffer					
	•						
	•						
	•						
	000001 = TR	(B1 buffer					
	$000000 = \mathbf{IR}$						

REGISTER 21-5: CxFIFO: ECANx FIFO STATUS REGISTER

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 23-5: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	CH123NB1	CH123NB0	CH123SB
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0

0-0	0-0	0-0	0-0	0-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	CH123NA1	CH123NA0	CH123SA
bit 7							bit 0

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'

bit 10-9

CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample MUXB bits

In 12-bit mode (AD21B = 1), CH123NB is Unimplemented and is Read as '0':

Value	ADC Channel						
value	CH1	CH2	CH3				
11	AN9	AN10	AN11				
10 (1,2)	OA3/AN6	AN7	AN8				
0x	VREFL	VREFL	VREFL				

bit 8 **CH123SB:** Channel 1, 2, 3 Positive Input Select for Sample MUXB bit In 12-bit mode (AD21B = 1), CH123SB is Unimplemented and is Read as '0':

Value	ADC Channel			
value	CH1	CH2	СНЗ	
1 (2)	OA1/AN3	OA2/AN0	OA3/AN6	
0 (1,2)	OA2/AN0	AN1	AN2	

bit 7-3 Unimplemented: Read as '0'

bit 2-1 **CH123NA<1:0>:** Channel 1, 2, 3 Negative Input Select for Sample MUXA bits In 12-bit mode (AD21B = 1), CH123NA is Unimplemented and is Read as '<u>0</u>':

Value	ADC Channel			
	CH1	CH2	CH3	
11	AN9	AN10	AN11	
10 (1,2)	OA3/AN6	AN7	AN8	
0x	VREFL	VREFL	VREFL	

- **Note 1:** AN0 through AN7 are repurposed when comparator and op amp functionality is enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.

REGISTER 25-1: CMSTAT: OP AMP/COMPARATOR STATUS REGISTER (CONTINUED)

- C2OUT: Comparator 2 Output Status bit⁽²⁾ bit 1 When CPOL = 0: 1 = VIN + > VIN -0 = VIN + < VIN-When CPOL = 1: 1 = VIN + < VIN-0 = VIN + > VIN -C10UT: Comparator 1 Output Status bit⁽²⁾ bit 0 When CPOL = 0: 1 = VIN + > VIN-0 = VIN + < VIN-When CPOL = 1: 1 = VIN + < VIN-0 = VIN + > VIN -
- **Note 1:** Reflects the value of the of the CEVT bit in the respective Op Amp/Comparator Control register, CMxCON<9>.
 - 2: Reflects the value of the COUT bit in the respective Op Amp/Comparator Control register, CMxCON<8>.

FIGURE 30-23: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

TABLE 30-42: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency	—		15	MHz	(Note 3)
SP20	TscF	SCK1 Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdiV2scH, TdiV2scL	SDO1 Data Output Setup to First SCK1 Edge	30			ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

DMAxSTAH (DMA Channel x	
Start Address A, High)	144
DMAxSTAL (DMA Channel x	
Start Address A, Low)	144
DMAxSTBH (DMA Channel x	
Start Address B, High)	145
DMAxSTBL (DMA Channel x	
Start Address B, Low)	145
DSADRH (DMA Most Recent RAM	4 4 7
High Address)	147
DSADRL (DMA MOSt Recent RAM	1 4 7
DTPy (PWMy Dead-Time)	147 238
ECL CONV (PWMx Eault Current-Limit Control)	2/3
I2CYCON (I2Cy Control)	276
I2CxMSK (I2Cx Slave Mode Address Mask)	280
I2CxSTAT (I2Cx Status)	278
ICxCON1 (Input Capture x Control 1)	215
ICxCON2 (Input Capture x Control 2)	216
INDX1CNTH (Index Counter 1 High Word)	259
INDX1CNTL (Index Counter 1 Low Word)	259
INDX1HLD (Index Counter 1 Hold)	260
INT1HLDH (Interval 1 Timer Hold High Word)	264
INT1HLDL (Interval 1 Timer Hold Low Word)	264
INT1TMRH (Interval 1 Timer High Word)	263
INT1TMRL (Interval 1 Timer Low Word)	263
INTCON1 (Interrupt Control 1)	134
INTCON2 (Interrupt Control 2)	136
INTCON2 (Interrupt Control 3)	137
INTCON4 (Interrupt Control 4)	137
INTTREG (Interrupt Control and Status)	138
IOCONx (PWMx I/O Control)	240
LEBCONX (PWMx Leading-Edge	
Blanking Control)	245
LEBCONX (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge	245
LEBCONX (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay)	245
LEBCONX (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234
LEBCONX (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High)	245 246 234 122
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMADRL (Nonvolatile Memory (NV/M) Control)	245 246 234 122 122 121
LEBCONX (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory (NVM) Control) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory (Key)	245 246 234 122 122 121 122
LEBCONX (PWMx Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) OCXCON1 (Output Compare x Control 1)	245 246 234 122 122 121 122 122 122
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 2)	245 234 122 122 121 122 221 223
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OSCCON2 (Output Compare x Control 2) OSCCON (Oscillator Control)	245 246 234 122 122 121 122 221 223 156
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OSCCON (Oscillator Control) OSCCUN (FRC Oscillator Tuning)	245 246 234 122 122 121 122 221 223 156 161
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 2) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PDCx (PWMx Generator Duty Cycle)	245 246 234 122 121 122 221 223 156 161 237
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 1) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift)	245 246 234 122 121 121 221 223 156 161 237 237
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 1) OSCCON (Oscillator Control) OSCTUN (FRC Oscillator Tuning) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift) PLLFBD (PLL Feedback Divisor)	245 246 234 122 121 121 221 223 161 237 237 160
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 1) OSCCON (Oscillator Control) OSCCUN (FRC Oscillator Tuning) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift) PLLFBD (PLL Feedback Divisor) PMD1 (Peripheral Module Disable Control 1)	245 246 234 122 121 121 223 156 237 237 160 166
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 223 126 161 237 237 160 166 168
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory (NVM) Control) NVMCON (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 1) OSCCON (Oscillator Control) OSCCON (Oscillator Control) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift) PLLFBD (PLL Feedback Divisor) PMD1 (Peripheral Module Disable Control 1) PMD2 (Peripheral Module Disable Control 2)	245 246 234 122 122 121 223 126 161 237 237 160 166 168 169
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 223 126 161 237 237 160 166 168 169 169 169
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 121 121 223 126 161 237 237 160 166 168 169 169 170
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle) NVMADRH (Nonvolatile Memory Address High) NVMADRL (Nonvolatile Memory Address Low) NVMCON (Nonvolatile Memory (NVM) Control) NVMKEY (Nonvolatile Memory Key) OCxCON1 (Output Compare x Control 1) OCxCON2 (Output Compare x Control 1) OSCCON (Oscillator Control) OSCCUN (FRC Oscillator Tuning) PDCx (PWMx Generator Duty Cycle) PHASEx (PWMx Primary Phase-Shift) PLLFBD (PLL Feedback Divisor) PMD1 (Peripheral Module Disable Control 2) PMD3 (Peripheral Module Disable Control 3) PMD4 (Peripheral Module Disable Control 4) PMD6 (Peripheral Module Disable Control 6)	245 246 234 122 122 121 223 126 161 237 237 160 166 168 169 169 170 171
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 223 126 161 237 237 160 166 168 169 169 169 170 171 258
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 221 223 156 161 237 237 160 166 168 169 169 169 170 171 258 258
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 221 233 156 161 237 237 160 166 168 169 169 169 169 170 171 258 258 258
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 122 223 156 161 237 237 160 166 168 169 169 169 170 171 258 258 258 230
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 122 221 223 156 161 237 160 166 168 169 169 169 170 171 258 258 258 230
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 221 223 160 161 237 160 166 168 169 169 169 169 170 171 258 258 258 230
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 122 223 126 161 237 160 166 168 169 169 169 169 170 171 258 258 258 230 232 232
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 122 223 156 161 237 160 166 168 169 169 169 170 171 258 258 258 230 232 348 343 246
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 122 221 223 166 161 237 160 166 168 169 169 169 170 171 258 258 258 230 232 348 343 343
LEBCONX (PWMX Leading-Edge Blanking Control) LEBDLYx (PWMx Leading-Edge Blanking Delay) MDC (PWMx Master Duty Cycle)	245 246 234 122 122 121 122 223 156 161 237 160 166 168 169 169 169 169 170 171 258 258 258 258 230 232 348 343 347 347 342

PTGCST (PTG Control/Status)	340
PTGHOLD (PTG Hold)	347
PTGL0 (PTG Literal 0)	348
PTGQPTR (PTG Step Queue Pointer)	349
PTGQUEx (PTG Step Queue x)	349
PTGSDLIM (PTG Step Delay Limit)	346
PTGT0LIM (PTG Timer0 Limit)	345
PTGT1LIM (PTG Timer1 Limit)	345
PTPER (PWMx Primary Master Time	
Base Period)	233
PWMCONx (PWMx Control)	235
QEI1CON (QEI1 Control)	252
QEI1GECH (QEI1 Greater Than or Equal	
Compare High Word)	262
QEI1GECL (QEI1 Greater Than or Equal	
Compare Low Word)	262
QEI1ICH (QEI1 Initialization/Capture	
High Word)	260
QEITICL (QEIT Initialization/Capture	
	260
QEI1IOC (QEI1 I/O Control)	254
QEITLECH (QEIT Less Than or Equal	004
Compare High Word)	261
QEITLECL (QEIT Less Than or Equal	261
	201
QEITSTAT (QEIT Status)	200
REENCON (Reset Control)	162
REI OCON (Relefence Oscillator Control)	102
PDINR1 (Peripheral Pin Select Input 1)	18/
RPINR1 (Perinheral Pin Select Input 1)	187
RPINR12 (Perinheral Pin Select Input 12)	188
RPINR14 (Perinheral Pin Select Input 14)	180
RPINR15 (Peripheral Pin Select Input 15)	190
RPINR18 (Peripheral Pin Select Input 18)	191
RPINR19 (Peripheral Pin Select Input 19)	191
RPINR22 (Peripheral Pin Select Input 22)	192
RPINR23 (Peripheral Pin Select Input 23)	193
RPINR26 (Peripheral Pin Select Input 26)	193
RPINR3 (Peripheral Pin Select Input 3)	184
RPINR37 (Peripheral Pin Select Input 37)	194
RPINR38 (Peripheral Pin Select Input 38)	195
RPINR39 (Peripheral Pin Select Input 39)	196
RPINR7 (Peripheral Pin Select Input 7)	185
RPINR8 (Peripheral Pin Select Input 8)	186
RPOR0 (Peripheral Pin Select Output 0)	197
RPOR1 (Peripheral Pin Select Output 1)	197
RPOR2 (Peripheral Pin Select Output 2)	198
RPOR3 (Peripheral Pin Select Output 3)	198
RPOR4 (Peripheral Pin Select Output 4)	199
RPOR5 (Peripheral Pin Select Output 5)	199
RPOR6 (Peripheral Pin Select Output 6)	200
RPOR7 (Peripheral Pin Select Output 7)	200
RPOR8 (Peripheral Pin Select Output 8)	201
RPOR9 (Peripheral Pin Select Output 9)	201
SEVTCMP (PWMx Primary Special	
Event Compare)	233
SPIxCON1 (SPIx Control 1)	270
SPIXCON2 (SPIX Control 2)	272
SPIXSTAT (SPIX Status and Control)	268
SR (CPU STATUS)	132
TROON (Timer1 Control)	205
TRECONX (PWMX Trigger Control)	239
TRIGX (PWWX Primary Trigger Compare Value)	242
	210