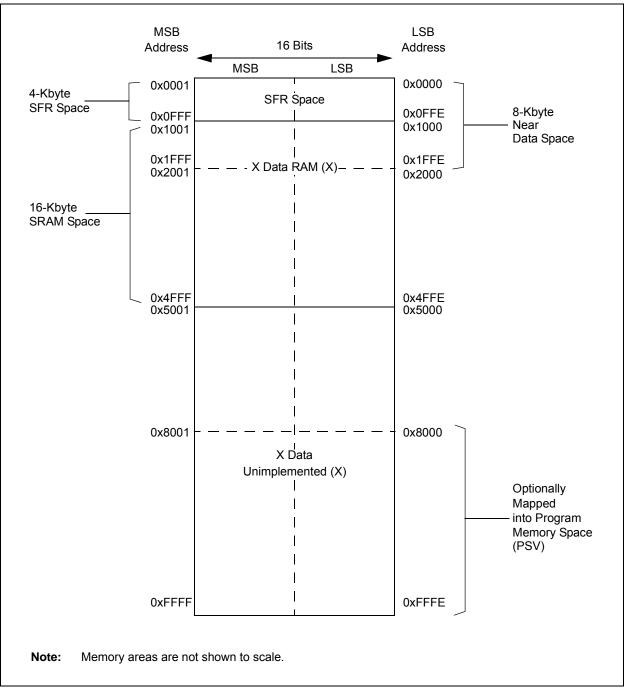


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (10.7K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep32gp202-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	_		_	_	_		_	_		IC4IF	IC3IF	DMA3IF	_	—	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	_	_	_	QEI1IF	PSEMIF	_	_	_	_	_	_	MI2C2IF	SI2C2IF	—	0000
IFS4	0808	-	_	CTMUIF	_	_		—	_	_		_	_	CRCIF	U2EIF	U1EIF		0000
IFS5	080A	PWM2IF	PWM1IF	_	_	_		—	_	_		_	_	_	_	_		0000
IFS6	080C	_	_	_	_	_		—	_	_		_	_	_	_	_	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	_	_	_		—	_	_		_	_	_	_	_	_	0000
IFS9	0812	_	_	_		_		_	_	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF		0000
IEC0	0820	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	—	_	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	_	—	-	_		—	—	_	IC4IE	IC3IE	DMA3IE		_	SPI2IE	SPI2EIE	0000
IEC3	0826	_	_	_		_	QEI1IE	PSEMIE	—	_	_	—	—	-	MI2C2IE	SI2C2IE	—	0000
IEC4	0828	_	_	CTMUIE		_		—	—	_	_	—	_	CRCIE	U2EIE	U1EIE		0000
IEC5	082A	PWM2IE	PWM1IE	—		_		_	—	_	_	—	_		_	—		0000
IEC6	082C	_	_	_		_		_	_	_	_	—	_	-	_	_	PWM3IE	0000
IEC8	0830	JTAGIE	ICDIE	_		_		_	_	_	_	—	_	-	_	_	—	0000
IEC9	0832	_	_	_		_		_	_	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE		0000
IPC0	0840	_		T1IP<2:0>		_		OC1IP<2:0)>	_		IC1IP<2:0>				INT0IP<2:0>		4444
IPC1	0842	_		T2IP<2:0>		_		OC2IP<2:0)>	_		IC2IP<2:0>		— DMA0IP<2:0>			4444	
IPC2	0844	_	-	U1RXIP<2:0	>	_	:	SPI1IP<2:0)>	_		SPI1EIP<2:0	>	— T3IP<2:0>			4444	
IPC3	0846	_	_	—	—	_	C	MA1IP<2:	0>	_		AD1IP<2:0>		-		U1TXIP<2:0>		0444
IPC4	0848	_		CNIP<2:0>		_		CMIP<2:0	>	_		MI2C1IP<2:0	>	-	5	SI2C1IP<2:0>		4444
IPC5	084A	_	_	—	—	_		—	—	_	_	—	—	-		INT1IP<2:0>		0004
IPC6	084C	_		T4IP<2:0>		_		OC4IP<2:0)>			OC3IP<2:0>			[DMA2IP<2:0>		4444
IPC7	084E	_		U2TXIP<2:0	>	_	ι	J2RXIP<2:	0>			INT2IP<2:0>	•			T5IP<2:0>		4444
IPC8	0850	_	_	—	—	_		—	—	_		SPI2IP<2:0>	•	-	5	SPI2EIP<2:0>		0044
IPC9	0852	_	_	_		_		IC4IP<2:0	>	_		IC3IP<2:0>		-	[DMA3IP<2:0>		0444
IPC12	0858	_	_	_		_	N	112C2IP<2:	0>	_		SI2C2IP<2:0	>	-	_	—		0440
IPC14	085C	_	_	_	_	_	(QEI1IP<2:0)>	_		PSEMIP<2:0	>	_	_	_	_	0440
IPC16	0860	_		CRCIP<2:0	>	_		U2EIP<2:0	>	_		U1EIP<2:0>		_	_	_	_	4440
IPC19	0866	_	_	—	—	_	—	—	_	_		CTMUIP<2:0	>	_	_	_	_	0040
IPC23	086E	_	F	PWM2IP<2:0)>	_	P	WM1IP<2:	0>	_	_	_	—	_	_	_	_	4400
IPC24	0870	_	_			_		_			_	_	_	_	F	PWM3IP<2:0>		4004

TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXMC20X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC35	0886	_		JTAGIP<2:0	>	_		ICDIP<2:0	>		—	_	_	—	_	—		4400
IPC36	0888	_	F	PTG0IP<2:0	>	_	PT	GWDTIP<	2:0>		PT	GSTEPIP<2	:0>	—	—	_	-	4440
IPC37	088A	_	—	—	_	_	F	PTG3IP<2:0)>			PTG2IP<2:0>	>	_		PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR				_	_	_	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_			—		_	—	—	_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	—	—	_	_			—		_	DAE	DOOVR	_	—	—		0000
INTCON4	08C6	_	_	_	_	_	-	_	—	_	_	_	_	—	—	_	SGHT	0000
INTTREG	08C8	Ι	_	_	_		ILR<	3:0>		VECNUM<7:0>				0000				

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-7: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC23	086E		F	PWM2IP<2:0)>		Р	WM1IP<2:	0>			_		—	_	-		4400
IPC24	0870		_	_	_	-	_	_	_	_	_	_	_	_	F	WM3IP<2:0>		0004
IPC35	0886			JTAGIP<2:0	>	-		ICDIP<2:0	>	_	_	_	_	_	_	_	_	4400
IPC36	0888		I	PTG0IP<2:0)>	-	PT	GWDTIP<	2:0>	_	P	GSTEPIP<2:	:0>	_	_	_	_	4440
IPC37	088A	_	_		—	_	F	PTG3IP<2:0)>	_		PTG2IP<2:0>	•	—	F	PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	—	_	_	_				_		_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	—		—	_	_	_				DAE	DOOVR	_	—	_		0000
INTCON4	08C6	_	_		—	_	_	_	_	_		_	_	—	—	_	SGHT	0000
INTTREG	08C8	_	—	-	—		ILR<	3:0>					VECNU	JM<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.2 RTSP Operation

RTSP allows the user application to erase a single page of memory and to program two instruction words at a time. See the General Purpose and Motor Control Family tables (Table 1 and Table 2, respectively) for the page sizes of each device.

For more information on erasing and programming Flash memory, refer to "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual".

5.3 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

For erase and program times, refer to Parameters D137a and D137b (Page Erase Time), and D138a and D138b (Word Write Cycle Time) in Table 30-14 in **Section 30.0 "Electrical Characteristics"**.

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of program Flash memory at a time on every other word address boundary (0x000002, 0x000006, 0x00000A, etc.). To do this, it is necessary to erase the page that contains the desired address of the location the user wants to change.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Refer to **Flash Programming**" (DS70609) in the "*dsPIC33/PIC24 Family Reference Manual*" for details and codes examples on programming using RTSP.

5.4 Flash Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

5.4.1 KEY RESOURCES

- "Flash Programming" (DS70609) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

5.5 Control Registers

Four SFRs are used to erase and write the program Flash memory: NVMCON, NVMKEY, NVMADRH and NVMADRL.

The NVMCON register (Register 5-1) enables and initiates Flash memory erase and write operations.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register.

There are two NVM Address registers: NVMADRH and NVMADRL. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word for programming operations or the selected page for erase operations.

The NVMADRH register is used to hold the upper 8 bits of the EA, while the NVMADRL register is used to hold the lower 16 bits of the EA.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 3	SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit
	 1 = Device was in Idle mode 0 = Device was not in Idle mode
bit 1	BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit 1 = A Power-on Reset has occurred 0 = A Power-on Reset has not occurred

- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

	12. 2007.00										
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	—	—	—	—	—	—				
bit 15							bit 8				
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0				
—		—	—	RQCOL3	RQCOL2	RQCOL1	RQCOL0				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-4	Unimplemen	ted: Read as '	כ'								
bit 3	RQCOL3: DN	/IA Channel 3 T	ransfer Requ	est Collision F	ag bit						
		e and interrupt est collision is d		st collision is d	etected						
h # 0	•			est Callisian Fl	aa hit						
bit 2		/IA Channel 2 T ce and interrupt	•		0						
		e and interrupt est collision is d			elecieu						
bit 1	RQCOL1: DN	/IA Channel 1 T	ransfer Requ	est Collision F	ag bit						
	1 = User for	e and interrupt	-based reque	st collision is d	etected						
	0 = No reque	est collision is d	etected								
bit 0	RQCOL0: DMA Channel 0 Transfer Request Collision Flag bit										
	1 = User force	e and interrupt	-based reque	st collision is d	etected						

REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER

0 = No request collision is detected

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

- bit 3 SPI1MD: SPI1 Module Disable bit 1 = SPI1 module is disabled
 - 0 = SPI1 module is enabled
- bit 2 Unimplemented: Read as '0'
- bit 1 C1MD: ECAN1 Module Disable bit⁽²⁾ 1 = ECAN1 module is disabled 0 = ECAN1 module is enabled
- bit 0 AD1MD: ADC1 Module Disable bit 1 = ADC1 module is disabled 0 = ADC1 module is enabled
- Note 1: This bit is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
 - 2: This bit is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

13.2 Timer Control Registers

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0						
TON		TSIDL	—	_			_						
bit 15							bit 8						
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0						
_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_						
bit 7							bit (
<u> </u>													
Legend:	- 1-:4			II II.									
R = Readable		W = Writable		-	nented bit, rea								
-n = Value at	PUR	'1' = Bit is set		'0' = Bit is cle	areo	x = Bit is unkn	own						
bit 15	TON: Timerx	On hit											
	When T32 = 2												
	1 = Starts 32-	bit Timerx/y											
	0 = Stops 32-												
	<u>When T32 = 0</u> 1 = Starts 16-												
	0 = Stops 16-												
bit 14	Unimplemen	Unimplemented: Read as '0'											
bit 13	TSIDL: Timerx Stop in Idle Mode bit												
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 												
		-		ode									
bit 12-7	-	ted: Read as '											
bit 6		TGATE: Timerx Gated Time Accumulation Enable bit When TCS = 1:											
	This bit is igno												
	When TCS =												
	1 = Gated tim	e accumulatior											
		e accumulation											
bit 5-4		: Timerx Input	Clock Prescal	e Select bits									
	11 = 1:256 10 = 1:64												
	01 = 1:8												
	00 = 1:1												
bit 3	T32: 32-Bit Ti	mer Mode Sele	ect bit										
		nd Timery form nd Timery act as											
bit 2	Unimplemen	ted: Read as ')'										
bit 1	TCS: Timerx	Clock Source S	elect bit										
	1 = External c 0 = Internal cl	clock is from pir lock (FP)	n, TxCK (on th	ne rising edge)									
bit 0	Unimplomon	ted: Read as '	ı'										

REGISTER 13-1: TxCON: (TIMER2 AND TIMER4) CONTROL REGISTER

NOTES:

18.3 SPIx Control Registers

R/W-0 U-0 R/W-0 U-0 R/W-0 R/W-0 R/W-0 U-0 SPIEN SPISIDL SPIBEC<2:0> _____ bit 15 R/W-0 R/W-0 R/W-0 R/C-0, HS R/W-0 R/W-0 R-0, HS, HC R-0, HS, HC SRMPT SPIROV SRXMPT SISEL2 SISEL1 SISEL0 SPITBF SPIRBF bit 7 Legend: C = Clearable bit HS = Hardware Settable bit HC = Hardware Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 SPIEN: SPIx Enable bit 1 = Enables the module and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins 0 = Disables the module bit 14 Unimplemented: Read as '0' bit 13 SPISIDL: SPIx Stop in Idle Mode bit 1 = Discontinues the module operation when device enters Idle mode 0 = Continues the module operation in Idle mode bit 12-11 Unimplemented: Read as '0' bit 10-8 SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode) Master mode: Number of SPIx transfers that are pending. Slave mode: Number of SPIx transfers that are unread. SRMPT: SPIx Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode) bit 7 1 = SPIx Shift register is empty and Ready-To-Send or receive the data 0 = SPIx Shift register is not empty bit 6 SPIROV: SPIx Receive Overflow Flag bit

REGISTER 18-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

1 = A new byte/word is completely received and discarded; the user application has not read the previous data in the SPIxBUF register 0 = No overflow has occurred SRXMPT: SPIx Receive FIFO Empty bit (valid in Enhanced Buffer mode)

- 1 = RX FIFO is empty
- 0 = RX FIFO is not empty

bit 4-2 SISEL<2:0>: SPIx Buffer Interrupt Mode bits (valid in Enhanced Buffer mode)

- 111 = Interrupt when the SPIx transmit buffer is full (SPITBF bit is set)
 - 110 = Interrupt when last bit is shifted into SPIxSR and as a result, the TX FIFO is empty
 - 101 = Interrupt when the last bit is shifted out of SPIxSR and the transmit is complete
 - 100 = Interrupt when one data is shifted into the SPIxSR and as a result, the TX FIFO has one open memory location
 - 011 = Interrupt when the SPIx receive buffer is full (SPIRBF bit is set)
 - 010 = Interrupt when the SPIx receive buffer is 3/4 or more full
 - 001 = Interrupt when data is available in the receive buffer (SRMPT bit is set)
 - 000 = Interrupt when the last data in the receive buffer is read and as a result, the buffer is empty (SRXMPT bit is set)

bit 5

bit 8

bit 0

19.2 I²C Control Registers

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0					
I2CEN	—	I2CSIDL	SCLREL	IPMIEN ⁽¹⁾	A10M	DISSLW	SMEN					
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC					
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN					
bit 7							bit 0					
Legend:		HC = Hardware	Clearable bit									
R = Readab	le bit	W = Writable bi		U = Unimpler	mented bit, rea	d as '0'						
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown					
bit 15	I2CEN: I2Cx	Enable bit										
		the I2Cx module					;					
L:1 4 4		the I2Cx module	; all I-C ™ pins a	are controlled	by port function	IS						
bit 14 bit 13	-	ited: Read as '0'	do hit									
DIC 13		Stop in Idle Mo ues module oper		rice enters an l	dle mode							
		s module operati										
bit 12	SCLREL: SC	Lx Release Con	rol bit (when op	perating as I ² C	slave)							
		1 = Releases SCLx clock										
		0 = Holds SCLx clock low (clock stretch)										
	If STREN = 1 Bit is R/W (i e	<u>.:</u> e., software can w	rite '0' to initiate	e stretch and w	rite '1' to relea	se clock) Harr	lware is clear					
	at the beginn	ing of every slav reception. Hardv	ve data byte tra	ansmission. Ha	ardware is clea	r at the end o						
	If STREN = 0											
		., software can or										
hit 11	-	te transmission. Iligent Peripheral			-	address byte re	eception.					
bit 11		le is enabled; all										
	$0 = IPMI \mod$, lon no me agea								
bit 10	A10M: 10-Bit	Slave Address b	oit									
		is a 10-bit slave										
		is a 7-bit slave a										
bit 9		able Slew Rate (
		control is disable control is enable										
bit 8		us Input Levels b										
		/O pin thresholds		SMBus speci	fication							
		SMBus input thre		,								
bit 7	GCEN: General Call Enable bit (when operating as I ² C slave)											
		nterrupt when a ge call address disal		ss is received ir	n I2CxRSR (mo	dule is enabled	for reception)					

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

21.5 ECAN Message Buffers

ECAN Message Buffers are part of RAM memory. They are not ECAN Special Function Registers. The user application must directly write into the RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 21-1: ECAN™ MESSAGE BUFFER WORD 0

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	—	_	SID10	SID9	SID8	SID7	SID6
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID5	SID4	SID3	SID2	SID1	SID0	SRR	IDE
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as '	כי				
bit 12-2	SID<10:0>: S	Standard Identifi	ier bits				
bit 1	SRR: Substitu	ute Remote Re	quest bit				
	When IDE =	0:					
	1 = Message	will request rer	note transmis	ssion			
	0 = Normal m	nessage					
	When IDE = 1	<u>1:</u>					
	The SRR bit r	must be set to '	1'.				
bit 0	IDE: Extende	d Identifier bit					
	1 = Message	will transmit Ex	tended Ident	ifier			
	0 = Message	will transmit St	andard Identi	fier			

BUFFER 21-2: ECAN™ MESSAGE BUFFER WORD 1

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	
—	—	—		EID17	EID16	EID15	EID14	
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
EID13	EID12	EID11	EID10	EID9	EID8	EID7	EID6	
bit 7							bit 0	
Legend:								
R = Readable	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				
L								

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x						
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1						
bit 15							bit 8						
U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x						
—	—	—	RB0	DLC3	DLC2	DLC1	DLC0						
bit 7							bit 0						
Lonondi													
Legend:	l. h.:.		L.11	U = Unimplemented bit, read as '0'									
R = Readable bit W = Writable bit				•	,								
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown						
bit 15-10	EID<5:0>: E	EID<5:0>: Extended Identifier bits											
bit 9	RTR: Remote Transmission Request bit												
	When IDE =	When IDE = 1:											
	•	e will request re	mote transmis	ssion									
	0 = Normal n	0											
	When IDE = The RTR bit												
h :+ 0	RB1: Reserv												
bit 8			or CAN proto										
		et this bit to '0' p	-	0001.									
bit 7-5	•	nted: Read as '	0										
bit 4	RB0: Reserv												
	User must se	et this bit to '0' p	per CAN proto	ocol.									
hit 2 0		Jota Longth Co.	da hita										

BUFFER 21-3: ECAN™ MESSAGE BUFFER WORD 2

bit 3-0 DLC<3:0>: Data Length Code bits

BUFFER 21-4: ECAN[™] MESSAGE BUFFER WORD 3

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			Ву	/te 1				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			Ву	rte 0				
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		

bit 15-8 Byte 1<15:8>: ECAN Message Byte 1 bits

bit 7-0 Byte 0<7:0>: ECAN Message Byte 0 bits

Base Instr #	Assembly Mnemonic			Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
53	NEG	NEG	_{Acc} (1)	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
54	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
55	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
56	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
57	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
58	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
59	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
60	RESET	RESET		Software device Reset	1	1	None
61	RETFIE	RETFIE		Return from interrupt	1	6 (5)	SFA
62	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	6 (5)	SFA
63	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA
64	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
65	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
66	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
67	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
~~		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
68	SAC	SAC	Acc,#Slit4,Wdo ⁽¹⁾	Store Accumulator	1	1	None
<u></u>		SAC.R	Acc,#Slit4,Wdo ⁽¹⁾	Store Rounded Accumulator	1	1	None
69	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
70	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
71	SFTAC	SETM	Ws Acc, Wn ⁽¹⁾	Ws = 0xFFFF Arithmetic Shift Accumulator by (Wn)	1	1 1	None OA,OB,OAB
		SFTAC	Acc,#Slit6 ⁽¹⁾	Arithmetic Shift Accumulator by Slit6	1	1	SA,SB,SAB OA,OB,OAB SA,SB,SAB

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

29.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

29.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- · Multiple projects
- Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

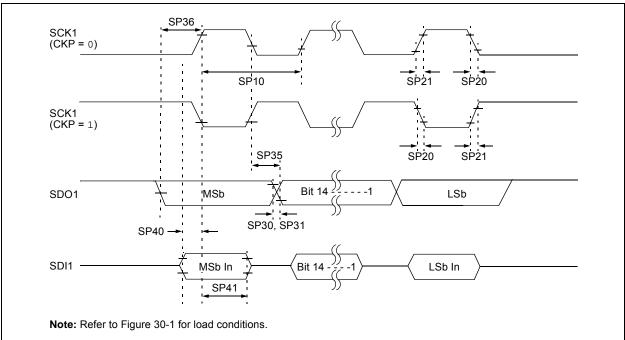
DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$							
Param No.	Symbol	Characteristic	Min.	Тур.	Max. Units Conditions				
DI60a	licl	Input Low Injection Current	0		₋₅ (4,7)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP and RB7		
DI60b	ІІСН	Input High Injection Current	0		+5 ^(5,6,7)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB7 and all 5V tolerant pins ⁽⁶⁾		
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁸⁾	_	+20 ⁽⁸⁾	mA	Absolute instantaneous sum of all \pm input injection cur- rents from all I/O pins (IICL + IICH) $\leq \sum$ IICT		

TABLE 30-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

2: Negative current is defined as current sourced by the pin.

3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.


4: VIL source < (Vss – 0.3). Characterized but not tested.

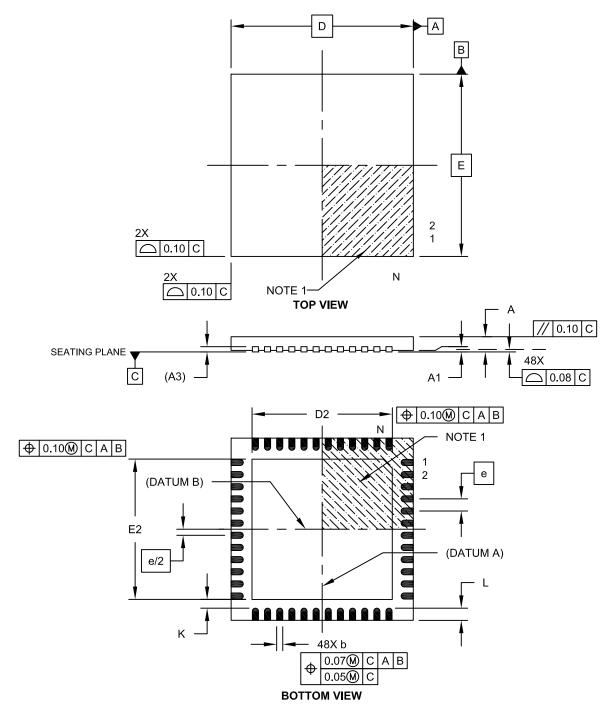
5: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.

6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.

7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.

8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

FIGURE 30-24: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

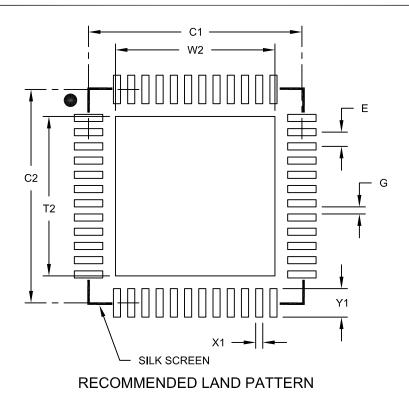

TABLE 30-43:SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)TIMING REQUIREMENTS

AC CHA	RACTERIST	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCK1 Frequency	_	—	10	MHz	(Note 3)	
SP20	TscF	SCK1 Output Fall Time	—	—		ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns		
SP36	TdoV2sc, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	30	—	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	30	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	30			ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- **3:** The minimum clock period for SCK1 is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPI1 pins.


48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-153A Sheet 1 of 2

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 6x6 mm Body [UQFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensior	MIN	NOM	MAX		
Contact Pitch	0.40 BSC				
Optional Center Pad Width	W2			4.45	
Optional Center Pad Length	T2			4.45	
Contact Pad Spacing	C1		6.00		
Contact Pad Spacing	C2		6.00		
Contact Pad Width (X28)	X1			0.20	
Contact Pad Length (X28)	Y1			0.80	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2153A