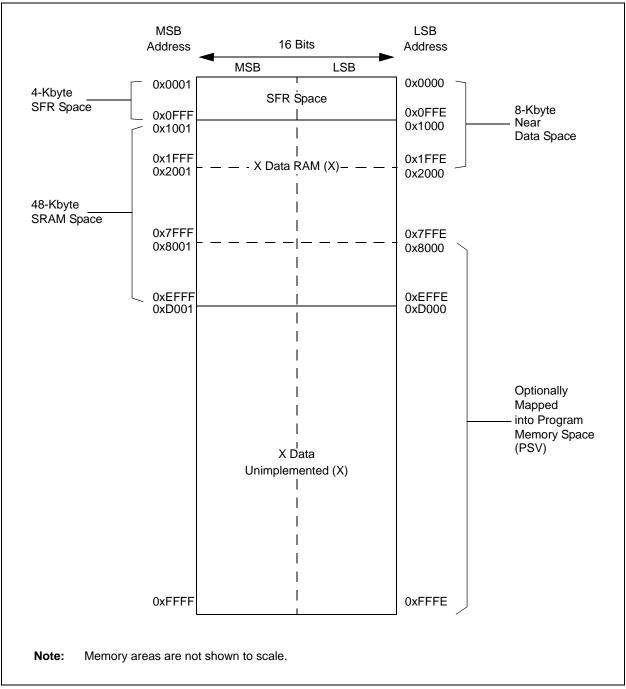


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

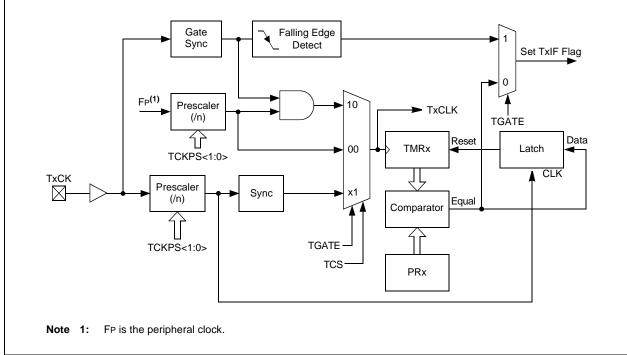

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

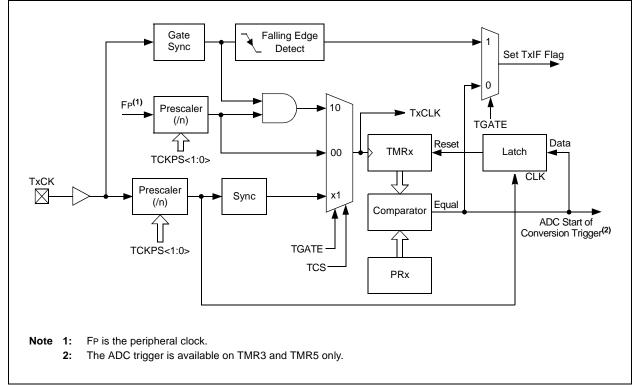
Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (10.7K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep32gp202-h-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


TABLE 4-33:	PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY
-------------	---

										-								
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0					INT1R<6:0>					—	—	—	—	—		—	0000
RPINR1	06A2	_	_						_	_				INT2R<6:0>	•			0000
RPINR3	06A6	_	_	_	_	_	_	_	_	_			-	T2CKR<6:0;	>			0000
RPINR7	06AE	_		IC2R<6:0>						_				IC1R<6:0>				0000
RPINR8	06B0	_	IC4R<6:0>					_				IC3R<6:0>				0000		
RPINR11	06B6	_	_	—	_	—	_		_	_	OCFAR<6:0>				0000			
RPINR12	06B8	_	FLT2R<6:0>					_				FLT1R<6:0>	>			0000		
RPINR14	06BC	_	QEB1R<6:0>					_			(QEA1R<6:0:	>			0000		
RPINR15	06BE	_			Н	OME1R<6:0)>			_	INDX1R<6:0>					0000		
RPINR18	06C4	_	_	_	_	_	_	_	_	_	U1RXR<6:0>				0000			
RPINR19	06C6	_	_	_	_	_	_	_	_	_	U2RXR<6:0>					0000		
RPINR22	06CC	_	SCK2INR<6:0>					_	SDI2R<6:0>						0000			
RPINR23	06CE	_	_	—	_	—	_		_	_				SS2R<6:0>				0000
RPINR37	06EA	_			S	YNCI1R<6:0)>			_	—	_	_	—	_	—	_	0000
RPINR38	06EC	_	DTCMP1R<6:0>					_	—	_	_	—	—	_	_	0000		
RPINR39	06EE	_			DT	CMP3R<6:	0>			_			D	TCMP2R<6:	0>			0000


Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC4R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC3R<6:0>			
bit 7							bit 0
Legend: R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	id as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	0000001 = I	nput tied to RPI nput tied to CMI nput tied to Vss	P1				
bit 7		nted: Read as '(
bit 6-0	IC3R<6:0>: / (see Table 11	Assign Input Ca I-2 for input pin nput tied to RPI	pture 3 (IC3) selection nur		onding RPn Pi	n bits	

REGISTER 11-5: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

FIGURE 13-2: TYPE C TIMER BLOCK DIAGRAM (x = 3 AND 5)

FIGURE 13-1:TYPE B TIMER BLOCK DIAGRAM (x = 2 AND 4)

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	—	_	LEB<11:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			LEE	3<7:0>					
bit 7							bit C		
Legend:									
R = Readable bit W		W = Writable	W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	nown					

REGISTER 16-17: LEBDLYx: PWMx LEADING-EDGE BLANKING DELAY REGISTER

bit 15-12 Unimplemented: Read as '0'

bit 11-0 LEB<11:0>: Leading-Edge Blanking Delay for Current-Limit and Fault Inputs bits

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode)⁽³⁾ 111 = Secondary prescale 1:1 110 = Secondary prescale 2:1 •
 - •
 - 000 = Secondary prescale 8:1
- bit 1-0 **PPRE<1:0>:** Primary Prescale bits (Master mode)⁽³⁾
 - 11 = Primary prescale 1:1
 - 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
- Note 1: The CKE bit is not used in Framed SPI modes. Program this bit to '0' for Framed SPI modes (FRMEN = 1).
 - 2: This bit must be cleared when FRMEN = 1.
 - 3: Do not set both primary and secondary prescalers to the value of 1:1.

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x			
_	WAKFIL	_	—	—	SEG2PH2	SEG2PH1	SEG2PH0			
bit 15							bit			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
SEG2PHTS	SAM	SEG1PH2	SEG1PH1	SEG1PH0	PRSEG2	PRSEG1	PRSEG0			
bit 7							bit			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown			
-										
bit 15	Unimplemen	ted: Read as '	D '							
bit 14	WAKFIL: Sel	lect CAN Bus L	ine Filter for V	Vake-up bit						
		N bus line filter line filter is not		2 -UD						
bit 13-11		ited: Read as '		o up						
bit 10-8	-	>: Phase Segr								
	111 = Length	-								
	•									
	•									
	•									
	000 = Length	n is 1 x TQ								
bit 7	SEG2PHTS: Phase Segment 2 Time Select bit									
	1 = Freely pro 0 = Maximum		oits or Informa	tion Processin	g Time (IPT), w	hichever is gre	ater			
bit 6	0 = Maximum of SEG1PHx bits or Information Processing Time (IPT), whichever is greater SAM: Sample of the CAN Bus Line bit									
	1 = Bus line i	s sampled threes s sampled once	e times at the							
bit 5-3	SEG1PH<2:0>: Phase Segment 1 bits									
	111 = Length is $8 \times TQ$									
	•									
	•									
	•									
	000 = Length									
L 1 0 0		>: Propagation	Time Segmen	t bits						
bit 2-0	111 = Length is 8 x TQ									
DIT 2-0										
dit 2-0	•									
dit 2-0	•									

REGISTER 21-10: CxCFG2: ECANx BAUD RATE CONFIGURATION REGISTER 2

BUFFER 21-5: ECAN™ MESSAGE BUFFER WORD 4

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
			By	/te 3					
bit 15							bit 8		
									
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
			By	/te 2					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value at P	-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown					

bit 15-8 Byte 3<15:8>: ECAN Message Byte 3 bits

bit 7-0 Byte 2<7:0>: ECAN Message Byte 2 bits

BUFFER 21-6: ECAN™ MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			By	/te 5				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			By	/te 4				
bit 7							bit C	
Legend:								
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'					
-n = Value at P	a = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknow			nown	

bit 15-8 Byte 5<15:8>: ECAN Message Byte 5 bits

bit 7-0 Byte 4<7:0>: ECAN Message Byte 4 bits

REGISTER		JCON2: CTM									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	DAM 0	R/W-0	U-0	U-0				
				R/W-0		0-0	0-0				
EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0		— hit				
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable I	oit	U = Unimplem	ented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown				
bit 15	EDG1MOD: E	Edge 1 Edge Sa	ampling Mode	Selection bit							
	1 = Edge 1 is	s edge-sensitive	;								
	0 = Edge 1 is	s level-sensitive									
bit 14	EDG1POL: E	dge 1 Polarity	Select bit								
		s programmed f s programmed f									
bit 13-10	EDG1SEL<3	: 0>: Edge 1 So	urce Select bits	5							
	1xxx = Rese	rved									
		01xx = Reserved 0011 = CTED1 pin									
		0011 = CTED1 pin 0010 = CTED2 pin									
	0001 = OC1 module										
	0000 = Timer										
bit 9	EDG2STAT:	Edge 2 Status b	it								
		status of Edge	2 and can be v	vritten to contro	I the edge sou	rce.					
	1 = Edge 2 h										
	-	as not occurred									
bit 8		Edge 1 Status b									
	Indicates the 1 = Edge 1 h	status of Edge	1 and can be v	vritten to contro	I the edge sou	rce.					
	Ų	as not occurred	1								
bit 7	-	Edge 2 Edge Sa		Selection bit							
		s edge-sensitive									
	-	s level-sensitive									
bit 6	EDG2POL: E	dge 2 Polarity	Select bit								
		s programmed f									
		s programmed f									
bit 5-2	EDG2SEL<3:0>: Edge 2 Source Select bits										
	1111 = Rese										
	01xx = Rese 0100 = CMP ²										
	0011 = CTEL										
	0010 = CTEE										
		01 pin									
	0001 = OC1	module									
bit 1-0	0001 = OC1 0000 = IC1 m	module									

REGISTER 22-2: CTMUCON2: CTMU CONTROL REGISTER 2

REGISTER 23-5: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	CH123NB1	CH123NB0	CH123SB
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0

0-0	0-0	0-0	0-0	0-0	R/VV-0	R/W-0	R/VV-0
—	—	—	—	—	CH123NA1	CH123NA0	CH123SA
bit 7							bit 0

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'

bit 10-9

CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample MUXB bits In 12-bit mode (AD21B = 1), CH123NB is Unimplemented and is Read as '0':

Value	ADC Channel								
value	CH1	CH1 CH2 CH3							
11	AN9	AN10	AN11						
10(1,2)	OA3/AN6	AN7	AN8						
0x	Vrefl	Vrefl	Vrefl						

bit 8 **CH123SB:** Channel 1, 2, 3 Positive Input Select for Sample MUXB bit In 12-bit mode (AD21B = 1), CH123SB is Unimplemented and is Read as '0':

Value	ADC Channel								
value	CH1 CH2 CH3								
1 ⁽²⁾	OA1/AN3	OA2/AN0	OA3/AN6						
0 ^(1,2)	OA2/AN0	AN1	AN2						

bit 7-3 Unimplemented: Read as '0'

bit 2-1 **CH123NA<1:0>:** Channel 1, 2, 3 Negative Input Select for Sample MUXA bits In 12-bit mode (AD21B = 1), CH123NA is Unimplemented and is Read as '0':

Value	ADC Channel								
value	CH1 CH2 CH3								
11	AN9	AN10	AN11						
10 ^(1,2)	OA3/AN6	AN7	AN8						
0x	Vrefl	Vrefl	Vrefl						

- **Note 1:** AN0 through AN7 are repurposed when comparator and op amp functionality is enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.

24.0 PERIPHERAL TRIGGER GENERATOR (PTG) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Peripheral Trigger Generator (PTG)" (DS70669) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

24.1 Module Introduction

The Peripheral Trigger Generator (PTG) provides a means to schedule complex high-speed peripheral operations that would be difficult to achieve using software. The PTG module uses 8-bit commands, called "Steps", that the user writes to the PTG Queue registers (PTGQUE0-PTGQUE7), which perform operations, such as wait for input signal, generate output trigger and wait for timer.

The PTG module has the following major features:

- Multiple clock sources
- Two 16-bit general purpose timers
- Two 16-bit general limit counters
- Configurable for rising or falling edge triggering
- Generates processor interrupts to include:
 - Four configurable processor interrupts
 - Interrupt on a Step event in Single-Step mode
 - Interrupt on a PTG Watchdog Timer time-out
- Able to receive trigger signals from these peripherals:
 - ADC
 - PWM
 - Output Compare
 - Input Capture
 - Op Amp/Comparator
 - INT2
- Able to trigger or synchronize to these peripherals:
 - Watchdog Timer
 - Output Compare
 - Input Capture
 - ADC
 - PWM
 - Op Amp/Comparator

Base Instr #	Assembly Mnemonic	Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
9	BTG	BTG f,#bit4	Bit Toggle f	1	1	None
		BTG Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST f,#bit4	Bit Test f	1	1	Z
		BTST.C Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL lit23	Call subroutine	2	4	SFA
		CALL Wn	Call indirect subroutine	1	4	SFA
		CALL.L Wn	Call indirect subroutine (long address)	1	4	SFA
15	CLR	CLR f	f = 0x0000	1	1	None
		CLR WREG	WREG = 0x0000	1	1	None
		CLR Ws	Ws = 0x0000	1	1	None
		CLR Acc,Wx,Wxd,Wy,Wyd,AWB ⁽¹⁾	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT	Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM f	$f = \overline{f}$	1	1	N,Z
		COM f,WREG	WREG = f	1	1	N,Z
		COM Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP f	Compare f with WREG	1	1	C,DC,N,OV,Z
10	01	CP Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP Wb,#ito	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0 f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
19	CFU	CP0 Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	СРВ	CPB f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
20	CFB	CPB Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ Wb,Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
	CPBEQ	CPBEQ Wb,Wn,Expr	Compare Wb with Wn, branch if =	1	1 (5)	None
22	CPSGT	CPSGT Wb,Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
	CPBGT	CPBGT Wb,Wn,Expr	Compare Wb with Wn, branch if >	1	1 (5)	None
23	CPSLT	CPSLT Wb,Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
	CPBLT	CPBLT Wb,Wn,Expr	Compare Wb with Wn, branch if <	1	1 (5)	None
24	CPSNE	CPSNE Wb,Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
	CPBNE	CPBNE Wb,Wn,Expr	Compare Wb with Wn, branch if \neq	1	1 (5)	None

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

Base Instr #	Assembly Mnemonic			Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected	
53 NEG		NEG Ad	ti)	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB	
		NEG f		$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z	
		NEG f,W	/REG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z	
		NEG Ws	,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z	
54	NOP	NOP		No Operation	1	1	None	
		NOPR		No Operation	1	1	None	
55	POP	POP f		Pop f from Top-of-Stack (TOS)	1	1	None	
		POP Wd	0	Pop from Top-of-Stack (TOS) to Wdo	1	1	None	
		POP.D Wn	d	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None	
		POP.S		Pop Shadow Registers	1	1	All	
56	PUSH	PUSH f		Push f to Top-of-Stack (TOS)	1	1	None	
		PUSH Ws	0	Push Wso to Top-of-Stack (TOS)	1	1	None	
		PUSH.D Wn	S	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None	
		PUSH.S		Push Shadow Registers	1	1	None	
57	PWRSAV	PWRSAV #lit	1	Go into Sleep or Idle mode	1	1	WDTO,Sleep	
58	RCALL	RCALL Ex	pr	Relative Call	1	4	SFA	
		RCALL Wn		Computed Call	1	4	SFA	
59	REPEAT	REPEAT #li	it15	Repeat Next Instruction lit15 + 1 times	1	1	None	
		REPEAT Wr	1	Repeat Next Instruction (Wn) + 1 times	1	1	None	
60	RESET	RESET		Software device Reset	1	1	None	
61	RETFIE	RETFIE		Return from interrupt	1	6 (5)	SFA	
62	RETLW		it10,Wn	Return with literal in Wn	1	6 (5)	SFA	
63	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA	
64	RLC	RLC f		f = Rotate Left through Carry f	1	1	C,N,Z	
		,	REG	WREG = Rotate Left through Carry f	1	1	C,N,Z	
	51.110		,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z	
65	RLNC	RLNC f		f = Rotate Left (No Carry) f	1	1	N,Z	
			REG	WREG = Rotate Left (No Carry) f	1	1	N,Z	
66	RRC	RLNC Ws RRC f	,Wd	Wd = Rotate Left (No Carry) Ws f = Rotate Right through Carry f	1	1	N,Z	
66	RRC		/REG	WREG = Rotate Right through Carry f	1	1	C,N,Z C,N,Z	
		,	,Wd		1	1	C,N,Z C,N,Z	
67	RRNC	RRNC f	,,,,,	Wd = Rotate Right through Carry Ws f = Rotate Right (No Carry) f	1	1	N,Z	
07			/REG	WREG = Rotate Right (No Carry) f	1	1	N,Z	
			s,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z	
68	SAC		c,#Slit4,Wdo ⁽¹⁾	Store Accumulator	1	1	None	
			,#Slit4,Wdo ⁽¹⁾	Store Rounded Accumulator	1	1	None	
69	SE		,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z	
70	SETM	SETM f		f = 0xFFFF	1	1	None	
			REG	WREG = 0xFFFF	1	1	None	
		SETM Ws		Ws = 0xFFFF	1	1	None	
71	SFTAC		c,Wh ⁽¹⁾	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB	
		SFTAC Acc	c,#Slit6 (1)	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB	

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

29.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

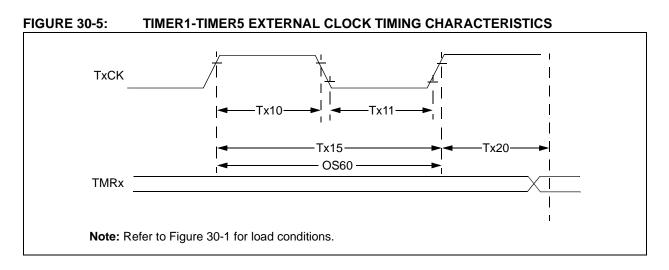
- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

29.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:


- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- Call graph window
- Project-Based Workspaces:
- Multiple projects
- Multiple tools
- Multiple configurations
- Simultaneous debugging sessions

File History and Bug Tracking:

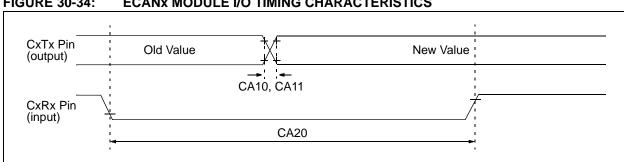
- · Local file history feature
- Built-in support for Bugzilla issue tracker

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Charao	cteristic ⁽²⁾	Min.	Тур.	Max.	Units	Conditions
TA10	ТтхН	T1CK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)
			Asynchronous	35		_	ns	
TA11	ΤτχL	T1CK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)
			Asynchronous	10	_	—	ns	
TA15	ΤτχΡ	T1CK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_	—	ns	N = prescale value (1, 8, 64, 256)
OS60	Ft1		ange (oscillator etting bit, TCS	DC		50	kHz	
TA20	TCKEXTMRL	Delay from E Clock Edge t Increment	xternal T1CK o Timer	0.75 Tcy + 40	—	1.75 Tcy + 40	ns	

Note 1: Timer1 is a Type A.

2: These parameters are characterized, but are not tested in manufacturing.

AC CHARACTERISTICS			(unless otherw	vise stat	onditions: 3.0V ed) -40°C ≤ TA ≤ + -40°C ≤ TA ≤ +	-85°C foi		
Param No.	Symbol	Charao	cteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
TB10	TtxH	TxCK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		—	ns	Must also meet Parameter TB15, N = prescale value (1, 8, 64, 256)
TB11	TtxL	TxCK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_		ns	Must also meet Parameter TB15, N = prescale value (1, 8, 64, 256)
TB15	TtxP	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_		ns	N = prescale value (1, 8, 64, 256)
TB20	TCKEXTMRL	Delay from Clock Edge Increment	External TxCK to Timer	0.75 Tcy + 40		1.75 Tcy + 40	ns	


TABLE 30-24	TIMER2 AND TIM	IER4 (TYPE B TIMER	ER) EXTERNAL CLOCK TIMING REQUIREMENTS	j.
--------------------	----------------	--------------------	--	----

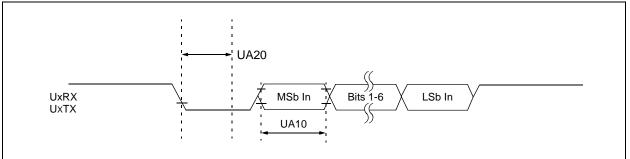
Note 1: These parameters are characterized, but are not tested in manufacturing.

TABLE 30-25: TIMER3 AND TIMER5 (TYPE C TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Oper (unless otherw Operating temp	/ise stat	,	⊦85°C fo	or Industrial		
Param No.	Symbol	Charac	teristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
TC10	TtxH	TxCK High Time	Synchronous	Tcy + 20			ns	Must also meet Parameter TC15	
TC11	TtxL	TxCK Low Time	Synchronous	Tcy + 20	_	—	ns	Must also meet Parameter TC15	
TC15	TtxP	TxCK Input Period	Synchronous, with prescaler	2 Tcy + 40	_	_	ns	N = prescale value (1, 8, 64, 256)	
TC20	TCKEXTMRL	Delay from E Clock Edge t Increment	xternal TxCK o Timer	CK 0.75 Tcy + 40 — 1.75 Tcy + 40 ns					

Note 1: These parameters are characterized, but are not tested in manufacturing.

FIGURE 30-34: ECANx MODULE I/O TIMING CHARACTERISTICS


TABLE 30-51: ECANX MODULE I/O TIMING REQUIREMENTS

AC CHAR	C CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$			
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max. Units Conditions				
CA10	TIOF	Port Output Fall Time	_	—	_	ns	See Parameter DO32
CA11	TIOR	Port Output Rise Time	—	—	—	ns	See Parameter DO31
CA20	120			ns			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 30-35: UARTX MODULE I/O TIMING CHARACTERISTICS

TABLE 30-52: UARTX MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param No. Symbol Characteristic ⁽¹⁾				Min. Typ. ⁽²⁾ Max. Units Conditions				
UA10	TUABAUD	UARTx Baud Time	66.67		_	ns		
UA11 FBAUD UARTx Baud Frequency			—	—	15	Mbps		
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	500	_	_	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

31.1 High-Temperature DC Characteristics

TABLE 31-1: OPERATING MIPS VS. VOLTAGE

			Max MIPS		
Characteristic	VDD Range (in Volts)	Temperature Range (in °C)	dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X		
HDC5	3.0 to 3.6√ ⁽¹⁾	-40°C to +150°C	40		

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules, such as the ADC, may have degraded performance. Device functionality is tested but not characterized.

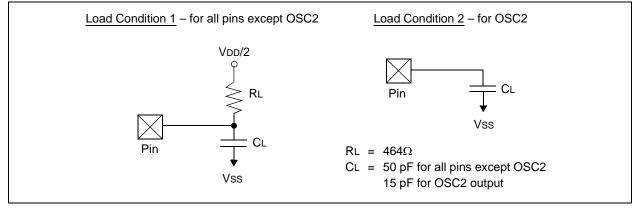
TABLE 31-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
High-Temperature Devices					
Operating Junction Temperature Range		-40	—	+155	°C
Operating Ambient Temperature Range	TA	-40	—	+150	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD \times (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{V DD - VOH\} \times I OH) + \Sigma (VOL \times IOL)$		PINT + PI/O		W	
Maximum Allowed Power Dissipation		(Tj – Ta)/θja			W

TABLE 31-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$					
Parameter No.	Symbol	Characteristic	Min Typ Max Units Conditions					
Operating Voltage								
HDC10	Supply Voltage							
	Vdd	—	3.0	3.3	3.6	V	-40°C to +150°C	

31.2 **AC Characteristics and Timing Parameters**


The information contained in this section defines dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X AC characteristics and timing parameters for high-temperature devices. However, all AC timing specifications in this section are the same as those in Section 30.2 "AC Characteristics and Timing Parameters", with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter OS53 in Section 30.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 31-9: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)			
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$			
	Operating voltage VDD range as described in Table 31-1.			

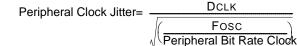

FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 31-10: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5	0.5	5	%	Measured over 100 ms period

These parameters are characterized by similarity, but are not tested in manufacturing. This specification is Note 1: based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks use this formula:

For example: FOSC = 32 MHz, DCLK = 5%, SPIx bit rate clock (i.e., SCKx) is 2 MHz. Г

SPI SCK Jitter=
$$\left\lfloor \frac{DCLK}{\sqrt{\left(\frac{32 \text{ MHz}}{2 \text{ MHz}}\right)}} \right\rfloor = \left\lfloor \frac{5\%}{\sqrt{16}} \right\rfloor = \left\lfloor \frac{5\%}{4} \right\rfloor = 1.25\%$$

٦

© 2011-2013 Microchip Technology Inc.

Revision D (December 2011)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in Table A-3.

TABLE A-3: MAJOR SECTION UPDATES

Section Name	Update Description
"16-bit Microcontrollers and Digital Signal Controllers (up to 512-Kbyte Flash and 48-Kbyte SRAM) with High- Speed PWM, Op amps, and Advanced Analog"	Removed the Analog Comparators column and updated the Op amps/Comparators column in Table 1 and Table 2.
Section 21.0 "Enhanced CAN (ECAN™) Module (dsPIC33EPXXXGP/MC50X Devices Only)"	Updated the CANCKS bit value definitions in CiCTRL1: ECAN Control Register 1 (see Register 21-1).
Section 30.0 "Electrical Characteristics"	Updated the VBOR specifications and/or its related note in the following electrical characteristics tables: Table 30-1 Table 30-4 Table 30-12 Table 30-14 Table 30-15 Table 30-16 Table 30-56 Table 30-57 Table 30-58 Table 30-59 Table 30-60