

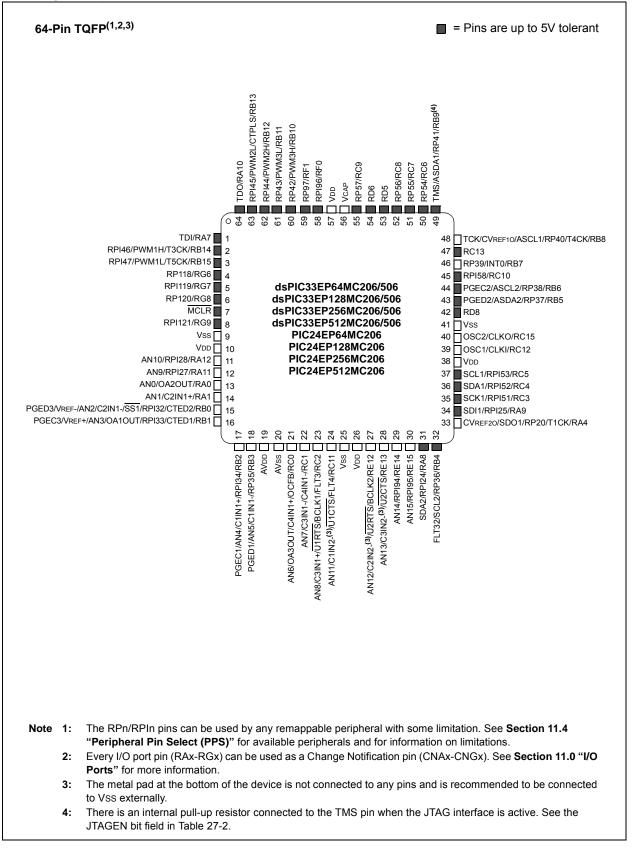
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (10.7K × 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep32gp202-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

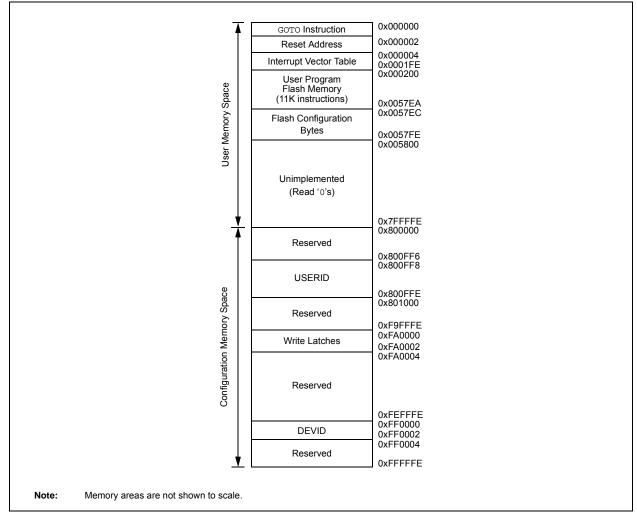
bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit 1 = REPEAT loop in progress 0 = REPEAT loop not in progress
bit 3	N: MCU ALU Negative bit 1 = Result was negative 0 = Result was non-negative (zero or positive)
bit 2	 OV: MCU ALU Overflow bit This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	 Z: MCU ALU Zero bit 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred
Note 1: 2:	This bit is available on dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices only. The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority

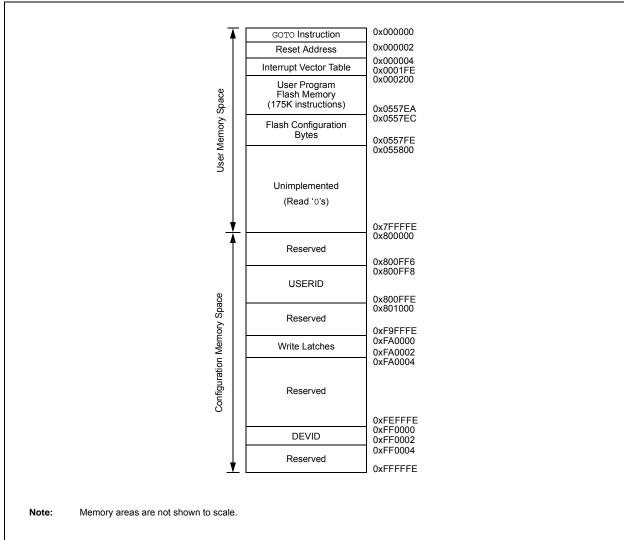
- Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
- 4: A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP/MC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Program Memory" (DS70613) in the "dsPIC33/PIC24 Family Reference Manual', which is available from the Microchip web site (www.microchip.com).

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X architecture features separate program and data memory spaces, and buses. This architecture also allows the direct access of program memory from the Data Space (DS) during code execution.


4.1 Program Address Space


The program address memory space of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit PC during program execution, or from table operation or Data Space remapping, as described in Section 4.8 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFF). The exception is the use of TBLRD operations, which use TBLPAG<7> to read Device ID sections of the configuration memory space.

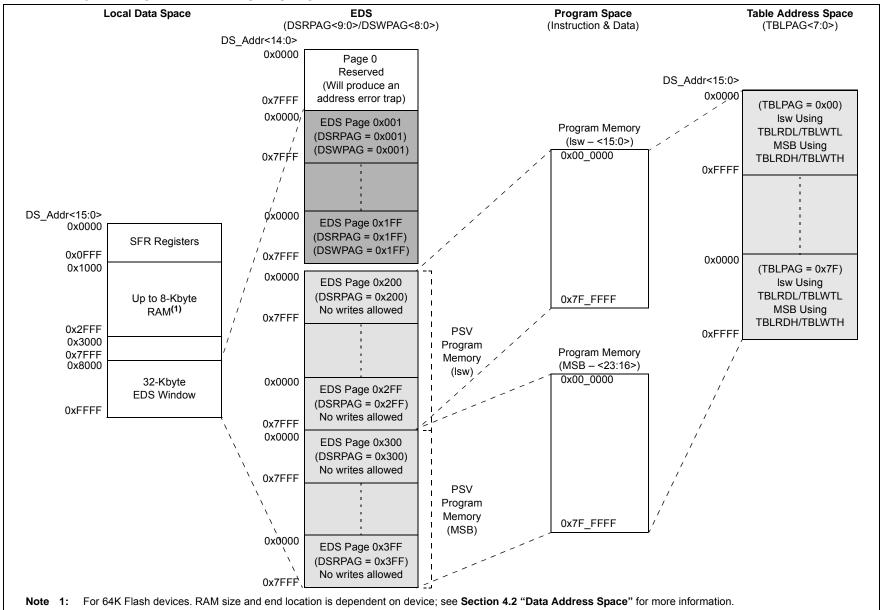

The program memory maps, which are presented by device family and memory size, are shown in Figure 4-1 through Figure 4-5.

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33EP32GP50X, dsPIC33EP32MC20X/50X AND PIC24EP32GP/MC20X DEVICES

FIGURE 4-5: PROGRAM MEMORY MAP FOR dsPIC33EP512GP50X, dsPIC33EP512MC20X/50X AND PIC24EP512GP/MC20X DEVICES

EXAMPLE 4-3: PAGED DATA MEMORY SPACE

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

	Vector	IRQ	IVT Address	Inte	errupt Bit L	ocation
Interrupt Source	# # IVI Address		Flag	Enable	Priority	
	High	est Natura	I Order Priority			
INT0 – External Interrupt 0	8	0	0x000014	IFS0<0>	IEC0<0>	IPC0<2:0>
IC1 – Input Capture 1	9	1	0x000016	IFS0<1>	IEC0<1>	IPC0<6:4>
OC1 – Output Compare 1	10	2	0x000018	IFS0<2>	IEC0<2>	IPC0<10:8>
T1 – Timer1	11	3	0x00001A	IFS0<3>	IEC0<3>	IPC0<14:12>
DMA0 – DMA Channel 0	12	4	0x00001C	IFS0<4>	IEC0<4>	IPC1<2:0>
IC2 – Input Capture 2	13	5	0x00001E	IFS0<5>	IEC0<5>	IPC1<6:4>
OC2 – Output Compare 2	14	6	0x000020	IFS0<6>	IEC0<6>	IPC1<10:8>
T2 – Timer2	15	7	0x000022	IFS0<7>	IEC0<7>	IPC1<14:12>
T3 – Timer3	16	8	0x000024	IFS0<8>	IEC0<8>	IPC2<2:0>
SPI1E – SPI1 Error	17	9	0x000026	IFS0<9>	IEC0<9>	IPC2<6:4>
SPI1 – SPI1 Transfer Done	18	10	0x000028	IFS0<10>	IEC0<10>	IPC2<10:8>
U1RX – UART1 Receiver	19	11	0x00002A	IFS0<11>	IEC0<11>	IPC2<14:12>
U1TX – UART1 Transmitter	20	12	0x00002C	IFS0<12>	IEC0<12>	IPC3<2:0>
AD1 – ADC1 Convert Done	21	13	0x00002E	IFS0<13>	IEC0<13>	IPC3<6:4>
DMA1 – DMA Channel 1	22	14	0x000030	IFS0<14>	IEC0<14>	IPC3<10:8>
Reserved	23	15	0x000032			_
SI2C1 – I2C1 Slave Event	24	16	0x000034	IFS1<0>	IEC1<0>	IPC4<2:0>
MI2C1 – I2C1 Master Event	25	17	0x000036	IFS1<1>	IEC1<1>	IPC4<6:4>
CM – Comparator Combined Event	26	18	0x000038	IFS1<2>	IEC1<2>	IPC4<10:8>
CN – Input Change Interrupt	27	19	0x00003A	IFS1<3>	IEC1<3>	IPC4<14:12>
INT1 – External Interrupt 1	28	20	0x00003C	IFS1<4>	IEC1<4>	IPC5<2:0>
Reserved	29-31	21-23	0x00003E-0x000042			_
DMA2 – DMA Channel 2	32	24	0x000044	IFS1<8>	IEC1<8>	IPC6<2:0>
OC3 – Output Compare 3	33	25	0x000046	IFS1<9>	IEC1<9>	IPC6<6:4>
OC4 – Output Compare 4	34	26	0x000048	IFS1<10>	IEC1<10>	IPC6<10:8>
T4 – Timer4	35	27	0x00004A	IFS1<11>	IEC1<11>	IPC6<14:12>
T5 – Timer5	36	28	0x00004C	IFS1<12>	IEC1<12>	IPC7<2:0>
INT2 – External Interrupt 2	37	29	0x00004E	IFS1<13>	IEC1<13>	IPC7<6:4>
U2RX – UART2 Receiver	38	30	0x000050	IFS1<14>	IEC1<14>	IPC7<10:8>
U2TX – UART2 Transmitter	39	31	0x000052	IFS1<15>	IEC1<15>	IPC7<14:12>
SPI2E – SPI2 Error	40	32	0x000054	IFS2<0>	IEC2<0>	IPC8<2:0>
SPI2 – SPI2 Transfer Done	41	33	0x000056	IFS2<1>	IEC2<1>	IPC8<6:4>
C1RX – CAN1 RX Data Ready ⁽¹⁾	42	34	0x000058	IFS2<2>	IEC2<2>	IPC8<10:8>
C1 – CAN1 Event ⁽¹⁾	43	35	0x00005A	IFS2<3>	IEC2<3>	IPC8<14:12>
DMA3 – DMA Channel 3	44	36	0x00005C	IFS2<4>	IEC2<4>	IPC9<2:0>
IC3 – Input Capture 3	45	37	0x00005E	IFS2<5>	IEC2<5>	IPC9<6:4>
IC4 – Input Capture 4	46	38	0x000060	IFS2<6>	IEC2<6>	IPC9<10:8>
Reserved	47-56	39-48	0x000062-0x000074	—	—	—
SI2C2 – I2C2 Slave Event	57	49	0x000076	IFS3<1>	IEC3<1>	IPC12<6:4>
MI2C2 – I2C2 Master Event	58	50	0x000078	IFS3<2>	IEC3<2>	IPC12<10:8>
Reserved	59-64	51-56	0x00007A-0x000084		_	
PSEM – PWM Special Event Match ⁽²⁾	65	57	0x000086	IFS3<9>	IEC3<9>	IPC14<6:4>

TABLE 7-1: INTERRUPT VECTOR DETAILS

Note 1: This interrupt source is available on dsPIC33EPXXXGP50X and dsPIC33EPXXXMC50X devices only.

2: This interrupt source is available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
GIE	DISI	SWTRAP				_						
bit 15							bit 8					
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0					
	—				INT2EP	INT1EP	INT0EP					
bit 7							bit C					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'						
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unki	nown					
bit 15	GIE: Global	Interrupt Enable	e bit									
	1 = Interrupt	1 = Interrupts and associated IE bits are enabled										
		s are disabled, I	•	still enabled								
bit 14	DISI: DISI	nstruction Statu	s bit									
		struction is active struction is not a	-									
bit 13	SWTRAP: S	Software Trap St	atus bit									
		e trap is enabled e trap is disabled										
bit 12-3	Unimpleme	nted: Read as '	0'									
bit 2	INT2EP: Ext	ternal Interrupt 2	2 Edge Detec	t Polarity Selec	t bit							
		on negative edg										
bit 1	INT1EP: Ext	ternal Interrupt 1	Edge Detec	t Polarity Selec	t bit							
		on negative edg										
bit 0	INTOEP: Ext	ternal Interrupt C	Edge Detec	t Polarity Selec	t bit							
		on negative edg										

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 8-9: DSADRH: DMA MOST RECENT RAM HIGH ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	-	—
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSADR	<23:16>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bi	t	U = Unimpler	nented bit, read	as '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8 Unimplemented: Read as '0'

bit 7-0 DSADR<23:16>: Most Recent DMA Address Accessed by DMA bits

REGISTER 8-10: DSADRL: DMA MOST RECENT RAM LOW ADDRESS REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAD	DR<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bit		U = Unimplemen	ted bit, re	ad as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						own	

bit 15-0 DSADR<15:0>: Most Recent DMA Address Accessed by DMA bits

10.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the internal regulator and the Flash regulator can be configured to go into Standby when Sleep mode is entered by clearing the VREGS (RCON<8>) and VREGSF (RCON<11>) bits (default configuration).

If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS (RCON<8>) and VREGSF (RCON<11>) bits can be set to keep the internal regulator and the Flash regulator active during Sleep mode.

10.2.2 IDLE MODE

The following occurs in Idle mode:

- The CPU stops executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

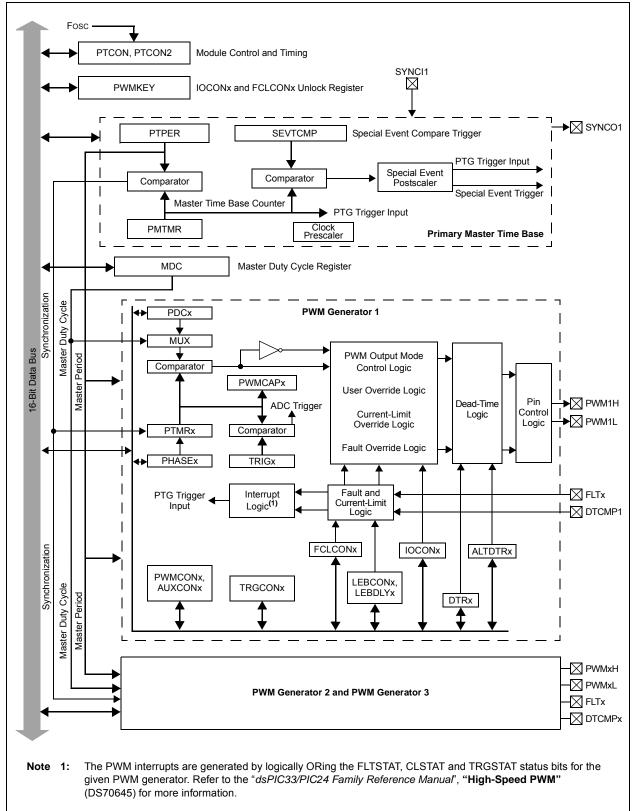
The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- Any device Reset
- · A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the Interrupt Service Routine (ISR).

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral; for example, the TSIDL bit in the Timer1 Control register (T1CON<13>).

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS


Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

bit 4-0	SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
	11111 = OCxRS compare event is used for synchronization
	11110 = INT2 pin synchronizes or triggers OCx
	11101 = INT1 pin synchronizes or triggers OCx
	11100 = CTMU module synchronizes or triggers OCx
	11011 = ADC1 module synchronizes or triggers OCx
	11010 = CMP3 module synchronizes or triggers OCx
	11001 = CMP2 module synchronizes or triggers OCx
	11000 = CMP1 module synchronizes or triggers OCx
	10111 = Reserved
	10110 = Reserved
	10101 = Reserved
	10100 = Reserved
	10011 = IC4 input capture event synchronizes or triggers OCx
	10010 = IC3 input capture event synchronizes or triggers OCx
	10001 = IC2 input capture event synchronizes or triggers OCx
	10000 = IC1 input capture event synchronizes or triggers OCx
	01111 = Timer5 synchronizes or triggers OCx
	01110 = Timer4 synchronizes or triggers OCx
	01101 = Timer3 synchronizes or triggers OCx
	01100 = Timer2 synchronizes or triggers OCx (default)
	01011 = Timer1 synchronizes or triggers OCx (2)
	01010 = PTGOx synchronizes or triggers $OCx^{(3)}$
	01001 = Reserved
	01000 = Reserved
	00111 = Reserved
	00110 = Reserved
	00101 = Reserved
	00100 = OC4 module synchronizes or triggers $OCx^{(1,2)}$
	00011 = OC3 module synchronizes or triggers $OCx^{(1,2)}$
	00010 = OC2 module synchronizes or triggers $OCx^{(1,2)}$
	00001 = OC1 module synchronizes or triggers $OCx^{(1,2)}$
	00000 = No Sync or Trigger source for OCx

- **Note 1:** Do not use the OCx module as its own Synchronization or Trigger source.
 - 2: When the OCy module is turned OFF, it sends a trigger out signal. If the OCx module uses the OCy module as a Trigger source, the OCy module must be unselected as a Trigger source prior to disabling it.
 - Each Output Compare x module (OCx) has one PTG Trigger/Synchronization source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information. PTGO0 = OC1

PTGO0 = OC1 PTGO1 = OC2 PTGO2 = OC3PTGO3 = OC4

FIGURE 16-2: HIGH-SPEED PWMx MODULE REGISTER INTERCONNECTION DIAGRAM

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT			
bit 15		1		11			bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0			
EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0	—	_			
bit 7				1 1		1	bit (
Legend:										
R = Readabl	le bit	W = Writable	oit	U = Unimplem	ented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown			
bit 15	EDG1MOD: E	Edge 1 Edge Sa	ampling Mode	Selection bit						
	1 = Edge 1 is	s edge-sensitive	9							
	•	s level-sensitive								
bit 14		dge 1 Polarity								
		s programmed f								
L:1 40 40	•	s programmed f	•	•						
bit 13-10		:0>: Edge 1 So	urce Select bits	5						
	1xxx = Reserved 01xx = Reserved									
		0011 = CTED1 pin								
	0010 = CTED2 pin									
	0001 = OC1									
hit O	0000 = Timer		:+							
bit 9		Edge 2 Status b		vritten to control	the odge cou	reo				
	1 = Edge 2 h				the edge sou	ice.				
		as not occurred	1							
bit 8	EDG1STAT: E	Edge 1 Status b	it							
			1 and can be v	vritten to control	the edge sou	rce.				
	1 = Edge 1 h									
	-	as not occurred								
bit 7		Edge 2 Edge Sa		Selection bit						
		s edge-sensitive s level-sensitive								
bit 6	•	dge 2 Polarity								
Sit 0		s programmed f		dae response						
		s programmed f								
bit 5-2	EDG2SEL<3	:0>: Edge 2 So	urce Select bits	3						
	1111 = Rese	rved								
	01xx = Rese									
	0100 = CMP ² 0011 = CTEE									
	0010 = CTEE									
		Ji pili								
	0001 = OC1	module								
		module								

REGISTER 22-2: CTMUCON2: CTMU CONTROL REGISTER 2

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 24-4: PTGT0LIM: PTG TIMER0 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT0	_IM<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT0	LIM<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at P	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown					nown	

bit 15-0 **PTGT0LIM<15:0>:** PTG Timer0 Limit Register bits General Purpose Timer0 Limit register (effective only with a PTGT0 Step command).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 24-5: PTGT1LIM: PTG TIMER1 LIMIT REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT1LI	IM<15:8>			
bit 15							bit 8

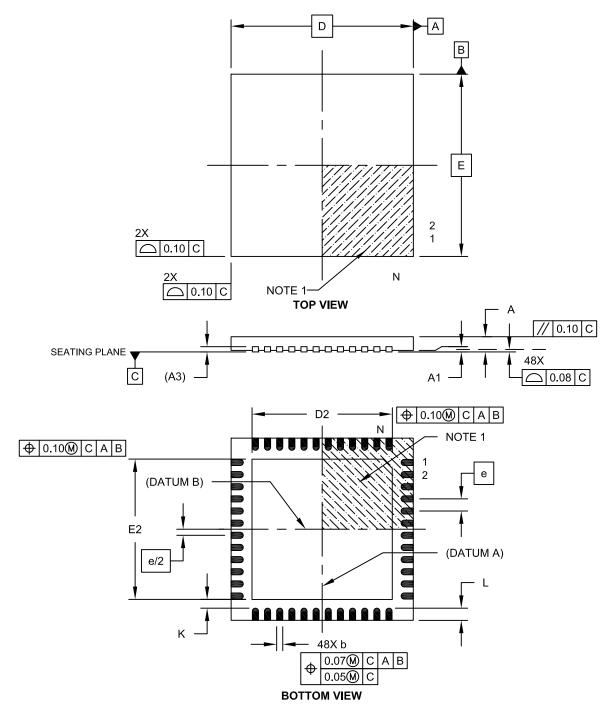
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	PTGT1LIM<7:0>										
bit 7							bit 0				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PTGT1LIM<15:0>:** PTG Timer1 Limit Register bits

General Purpose Timer1 Limit register (effective only with a PTGT1 Step command).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).


NOTES:

REGISTER 25-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT CONTROL REGISTER (CONTINUED)

- bit 3-0 SELSRCA<3:0>: Mask A Input Select bits
 - 1111 = FLT4 1110 = FLT2 1101 = PTGO19 1100 = PTGO18 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H 0010 = PWM2L 0001 = PWM1H 0000 = PWM1L

NOTES:

NOTES:

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-153A Sheet 1 of 2

TABLE A-1:MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description		
Section 30.0 "Electrical Characteristics"	Removed Voltage on VCAP with respect to Vss and added Note 5 in Absolute Maximum Ratings ⁽¹⁾ .		
	Removed Parameter DC18 (VCORE) and Note 3 from the DC Temperature and Voltage Specifications (see Table 30-4).		
	Updated Note 1 in the DC Characteristics: Operating Current (IDD) (see Table 30-6).		
	Updated Note 1 in the DC Characteristics: Idle Current (IIDLE) (see Table 30-7).		
	Changed the Typical values for Parameters DC60a-DC60d and updated Note 1 in the DC Characteristics: Power-down Current (IPD) (see Table 30-8).		
	Updated Note 1 in the DC Characteristics: Doze Current (IDOZE) (see Table 30-9).		
	Updated Note 2 in the Electrical Characteristics: BOR (see Table 30-12).		
	Updated Parameters CM20 and CM31, and added Parameters CM44 and CM45 in the AC/DC Characteristics: Op amp/Comparator (see Table 30-14).		
	Added the Op amp/Comparator Reference Voltage Settling Time Specifications (see Table 30-15).		
	Added Op amp/Comparator Voltage Reference DC Specifications (see Table 30-16).		
	Updated Internal FRC Accuracy Parameter F20a (see Table 30-21).		
	Updated the Typical value and Units for Parameter CTMUI1, and added Parameters CTMUI4, CTMUFV1, and CTMUFV2 to the CTMU Current Source Specifications (see Table 30-55).		
Section 31.0 "Packaging Information"	Updated packages by replacing references of VLAP with TLA.		
"Product Identification System"	Changed VLAP to TLA.		

NOTES: