

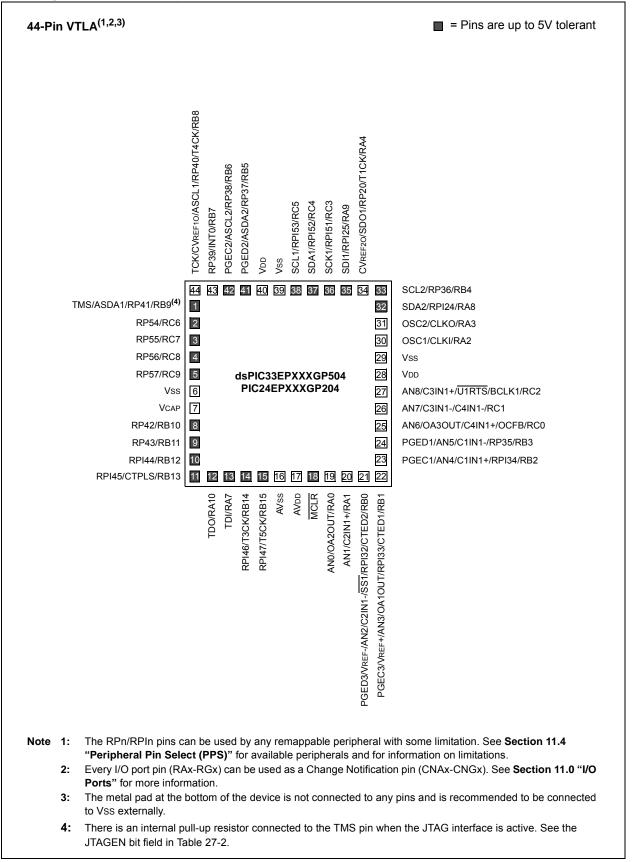
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (10.7K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep32gp204-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

2.5 ICSP Pins

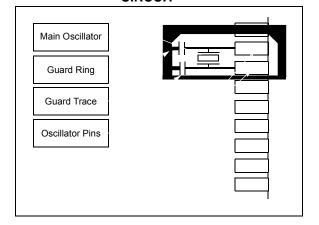
The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

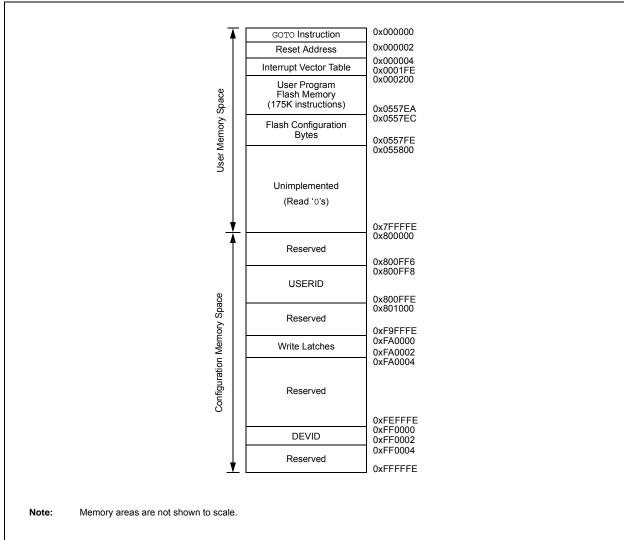
Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3, or MPLAB REAL ICE[™].

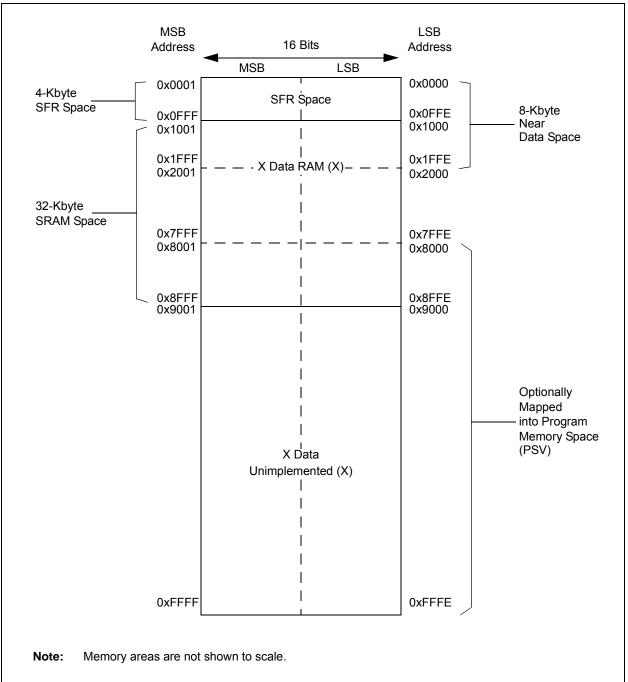
For more information on MPLAB ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB[®] ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) DS51749


2.6 External Oscillator Pins


Many DSCs have options for at least two oscillators: a high-frequency Primary Oscillator and a low-frequency Secondary Oscillator. For details, see **Section 9.0 "Oscillator Configuration"** for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.



SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

FIGURE 4-5: PROGRAM MEMORY MAP FOR dsPIC33EP512GP50X, dsPIC33EP512MC20X/50X AND PIC24EP512GP/MC20X DEVICES

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXGP20X DEVICES ONLY

TADLL	τу.	. INTERROFT CONTROLLER REGISTER MAPT OR FIC24EFXXXGF20X DEVICES ONET																
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800		DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	_	_	—	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804		_	_	-		_	—	_	_	IC4IF	IC3IF	DMA3IF	_	—	SPI2IF	SPI2EIF	0000
IFS3	0806	_	_	_	_	_	_	_	_	_	_	_	_	_	MI2C2IF	SI2C2IF	_	0000
IFS4	0808	_	_	CTMUIF	_	_	_	_	_	_	_	_	_	CRCIF	U2EIF	U1EIF	_	0000
IFS8	0810	JTAGIF	ICDIF		_	_	_	—	—	_	_	_	_	_	—	—	—	0000
IFS9	0812	_	_	_	_	_	_	—	—	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF	_	0000
IEC0	0820	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	_	_	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	_	_	_	_	_	_	_	_	_	IC4IE	IC3IE	DMA3IE	_	_	SPI2IE	SPI2EIE	0000
IEC3	0826	_	_	_	_	_	_	—	—	_	_	_	_	_	MI2C2IE	SI2C2IE	—	0000
IEC4	0828	_	_	CTMUIE	_	_	_	_	_	_	_	_	_	CRCIE	U2EIE	U1EIE	_	0000
IEC8	0830	JTAGIE	ICDIE	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
IEC9	0832	_	_	_	_	_	_	—	—	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
IPC0	0840	_		T1IP<2:0>		_	(OC1IP<2:0	>	_	- IC1IP<2:0> INT0IP<2:0>			4444				
IPC1	0842	_		T2IP<2:0>		_	(OC2IP<2:0	>	_		IC2IP<2:0>		_	C	0MA0IP<2:0>		4444
IPC2	0844	_	U	J1RXIP<2:0	>	_	;	SPI1IP<2:0	>	_		SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC3	0846	_	_	_	_	_	D)MA1IP<2:	0>	_		AD1IP<2:0>		_	ι	J1TXIP<2:0>		0444
IPC4	0848			CNIP<2:0>				CMIP<2:0	>	_		MI2C1IP<2:0	>	_	S	SI2C1IP<2:0>		4444
IPC5	084A	_	_	_	_	_	_	_	_	_	_	—	_	_	I	INT1IP<2:0>		0004
IPC6	084C	_		T4IP<2:0>		_	(OC4IP<2:0	>	_		OC3IP<2:0>		_	C)ma2IP<2:0>		4444
IPC7	084E		l	U2TXIP<2:0	>		L	J2RXIP<2:)>	_		INT2IP<2:0>		_		T5IP<2:0>		4444
IPC8	0850		_	_	_		_	—	—	_		SPI2IP<2:0>		_	S	SPI2EIP<2:0>		0044
IPC9	0852		_	_	_			IC4IP<2:0	>	_		IC3IP<2:0>		_	C	0MA3IP<2:0>		0444
IPC12	0858		_	_			N	112C2IP<2:	0>	_		SI2C2IP<2:0	>	_	_	_	_	0440
IPC16	0860			CRCIP<2:0>	>			U2EIP<2:0	>	_		U1EIP<2:0>		_	_	_	_	4440
IPC19	0866		_	_	_	_	_	_	_	_		CTMUIP<2:0	>	_	_	_	_	0040
IPC35	0886			JTAGIP<2:0	>	_		ICDIP<2:0	>	_	_	_	_	_	_	_	_	4400
IPC36	0888	_		PTG0IP<2:0	>	_	PT	GWDTIP<	2:0>	_	P	TGSTEPIP<2	:0>	_	_	—	_	4440
IPC37	088A	_	_	_	_	_	F	PTG3IP<2:)>	_		PTG2IP<2:0	>	_	F	PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	_				—	_	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	_				_	_		—	—	_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	_		_			_	_	_	_	DAE	DOOVR	_	_	—		0000
INTCON4	08C6		_	_	_	_	_	—	_	SGHT			SGHT	0000				
INTTREG	08C8	_			_		ILR<	3:0>					VECN	UM<7:0>				0000

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

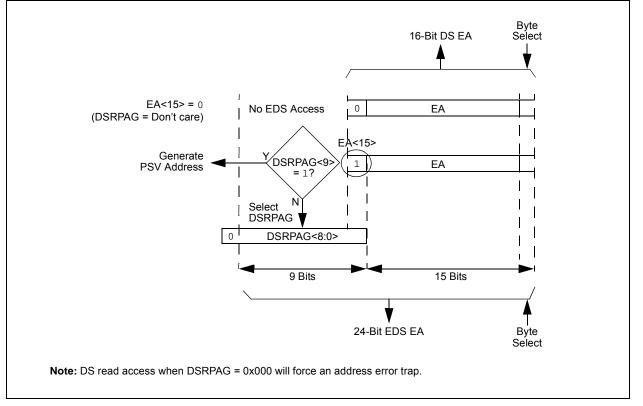
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E								See defini	ion when W	'IN = x							
C1BUFPNT1	0420		F3BF	P<3:0>			F2BI	><3:0>			F1BP	<3:0>			F0BP	<3:0>		0000
C1BUFPNT2	0422		F7BF	><3:0>			F6BI	><3:0>			F5BP	<3:0>		F4BP<3:0>				0000
C1BUFPNT3	0424		F11B	P<3:0>			F10B	P<3:0>			F9BP	<3:0>		F8BP<3:0>			0000	
C1BUFPNT4	0426		F15B	P<3:0>			F14B	P<3:0>			F13B	D<3:0>		F12BP<3:0>			0000	
C1RXM0SID	0430				SID<	:10:3>					SID<2:0>		_	MIDE	_	EID<	17:16>	xxxx
C1RXM0EID	0432				EID<	:15:8>							EID<	:7:0>			xxxx	
C1RXM1SID	0434				SID<	:10:3>					SID<2:0>		_	- MIDE - EID<17:16>				xxxx
C1RXM1EID	0436				EID<	:15:8>							EID<7:0>					xxxx
C1RXM2SID	0438				SID<	:10:3>					SID<2:0>		—	MIDE	—	EID<	17:16>	xxxx
C1RXM2EID	043A				EID<	:15:8>						EID<7:0>					xxxx	
C1RXF0SID	0440				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF0EID	0442		EID<			:15:8>					EID<7:0>					xxxx		
C1RXF1SID	0444				SID<10:3> SID<2:0> — EXIDE — EID<17:1						17:16>	xxxx						
C1RXF1EID	0446		EID<15:8>										EID<	7:0>				xxxx
C1RXF2SID	0448				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF2EID	044A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF3SID	044C				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF3EID	044E				EID<	:15:8>				EID<7:0>							xxxx	
C1RXF4SID	0450				SID<	:10:3>					SID<2:0>		—	EXIDE — EID<17:16>			17:16>	xxxx
C1RXF4EID	0452				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF5SID	0454				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF5EID	0456				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF6SID	0458				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF6EID	045A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF7SID	045C				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF7EID	045E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF8SID	0460				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF8EID	0462		EID<15:8>					EID<7:0>						xxxx				
C1RXF9SID	0464					:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF9EID	0466					:15:8>						xxxx						
C1RXF10SID	0468					:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF10EID	046A					:15:8>				EID<7:0>							xxxx	
C1RXF11SID	046C				SID<	:10:3>					SID<2:0>		—	EXIDE	-	EID<	17:16>	xxxx

TABLE 4-23: ECAN1 REGISTER MAP WHEN WIN (C1CTRL1<0>) = 1 FOR dsPIC33EPXXXMC/GP50X DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-33 :	PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMC20X DEVICES ONLY
---------------------	---

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	_				NT1R<6:0>					_	_	_	_		_	_	0000
RPINR1	06A2		—	—	-		-			-	INT2R<6:0>					0000		
RPINR3	06A6		_	_	_	_	_	_	_	_	T2CKR<6:0>				0000			
RPINR7	06AE	_				IC2R<6:0>				—	IC1R<6:0>				0000			
RPINR8	06B0	_				IC4R<6:0>				—	IC3R<6:0>				IC3R<6:0>			0000
RPINR11	06B6	_	_	_	—	_	_	_	_	—	OCFAR<6:0>				0000			
RPINR12	06B8	_			FLT2R<6:0> — FLT1R<6:0>					FLT1R<6:0>					0000			
RPINR14	06BC	_			(QEB1R<6:0	>			—			(QEA1R<6:0>	>			0000
RPINR15	06BE	_			Н	OME1R<6:0)>			—			I	NDX1R<6:0	>			0000
RPINR18	06C4	_	_	_	—	_	_	_	_	—			ι	J1RXR<6:0>	>			0000
RPINR19	06C6	_	_	_	_	_	_	_	_	—			ι	J2RXR<6:0>	>			0000
RPINR22	06CC	_		•	S	CK2INR<6:0)>			_				SDI2R<6:0>	•			0000
RPINR23	06CE	_	_		_	_	_	_	_	_	SS2R<6:0>				0000			
RPINR37	06EA	_			S	YNCI1R<6:0)>			_					0000			
RPINR38	06EC	_			DT	CMP1R<6:	0>			_						0000		
RPINR39	06EE	_			DT	CMP3R<6:	0>			—			D	CMP2R<6:	0>			0000


Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.4.1 PAGED MEMORY SCHEME

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X architecture extends the available Data Space through a paging scheme, which allows the available Data Space to be accessed using MOV instructions in a linear fashion for pre-modified and post-modified Effective Addresses (EA). The upper half of the base Data Space address is used in conjunction with the Data Space Page registers, the 10-bit Read Page register (DSRPAG) or the 9-bit Write Page register (DSWPAG), to form an Extended Data Space (EDS) address or Program Space Visibility (PSV) address. The Data Space Page registers are located in the SFR space.

Construction of the EDS address is shown in Example 4-1. When DSRPAG<9> = 0 and the base address bit, EA<15> = 1, the DSRPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS read address. Similarly, when base address bit, EA<15> = 1, DSWPAG<8:0> are concatenated onto EA<14:0> to form the 24-bit EDS write address.

Allocating different Page registers for read and write access allows the architecture to support data movement between different pages in data memory. This is accomplished by setting the DSRPAG register value to the page from which you want to read, and configuring the DSWPAG register to the page to which it needs to be written. Data can also be moved from different PSV to EDS pages, by configuring the DSRPAG and DSWPAG registers to address PSV and EDS space, respectively. The data can be moved between pages by a single instruction.

When an EDS or PSV page overflow or underflow occurs, EA<15> is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the EDS or PSV pages can occur at the page boundaries when:

- The initial address prior to modification addresses an EDS or PSV page
- The EA calculation uses Pre-Modified or Post-Modified Register Indirect Addressing; however, this does not include Register Offset Addressing

In general, when an overflow is detected, the DSxPAG register is incremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. When an underflow is detected, the DSxPAG register is decremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. This creates a linear EDS and PSV address space, but only when using Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0, EDS and PSV spaces. Table 4-61 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when overflow or underflow occurs, the EA<15> bit is set and the DSxPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- · Register Indirect with Register Offset Addressing
- Modulo Addressing
- · Bit-Reversed Addressing

0/11			Before			After							
O/U, R/W	Operation	DSxPAG	DS EA<15>	Page Description	DSxPAG	DS EA<15>	Page Description						
O, Read		DSRPAG = 0x1FF	1	EDS: Last page	DSRPAG = 0x1FF	0	See Note 1						
O, Read	[++Wn]	DSRPAG = 0x2FF	1	PSV: Last lsw page	DSRPAG = 0x300	1	PSV: First MSB page						
O, Read	Or [Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB page	DSRPAG = 0x3FF	0	See Note 1						
O, Write		DSWPAG = 0x1FF	1	EDS: Last page	DSWPAG = 0x1FF	0	See Note 1						
U, Read		DSRPAG = 0x001	1	PSV page	DSRPAG = 0x001	0	See Note 1						
U, Read	[Wn] Or [Wn]	DSRPAG = 0x200	1	PSV: First Isw page	DSRPAG = 0x200	0	See Note 1						
U, Read	[//11 -]	DSRPAG = 0x300	1	PSV: First MSB page	DSRPAG = 0x2FF	1	PSV: Last Isw page						

TABLE 4-61: OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0, EDS and PSV SPACE BOUNDARIES^(2,3,4)

Legend: O = Overflow, U = Underflow, R = Read, W = Write

Note 1: The Register Indirect Addressing now addresses a location in the base Data Space (0x0000-0x8000).

2: An EDS access with DSxPAG = 0x000 will generate an address error trap.

- **3:** Only reads from PS are supported using DSRPAG. An attempt to write to PS using DSWPAG will generate an address error trap.
- 4: Pseudo-Linear Addressing is not supported for large offsets.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
-	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1
_	_	_	_		LSTC	H<3:0>	
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	x = Bit is unkr	nown	
bit 15-4	Unimplemen	ted: Read as '	0'				
bit 3-0	LSTCH<3:0>	: Last DMAC C	hannel Active	e Status bits			
	1111 = No DI 1110 = Rese	MA transfer has rved	s occurred sir	nce system Res	set		
	•						
	•						
	•						
		rved data transfer wa data transfer wa					
		data transfer wa					

REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE STATUS REGISTER

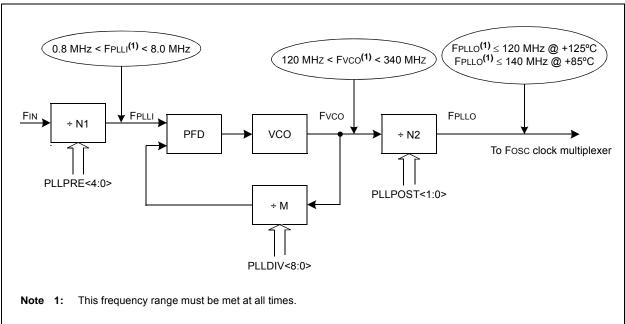
0001 = Last data transfer was handled by Channel 0 0000 = Last data transfer was handled by Channel 0

9.1 CPU Clocking System

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X family of devices provides six system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase Locked Loop (PLL)
- · FRC Oscillator with Postscaler
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- · Low-Power RC (LPRC) Oscillator

Instruction execution speed or device operating frequency, FCY, is given by Equation 9-1.


EQUATION 9-1: DEVICE OPERATING FREQUENCY

FCY = Fosc/2

Figure 9-2 is a block diagram of the PLL module.

Equation 9-2 provides the relationship between input frequency (FIN) and output frequency (FPLLO). In clock modes S1 and S3, when the PLL output is selected, FOSC = FPLLO.

Equation 9-3 provides the relationship between input frequency (FIN) and VCO frequency (FVCO).

EQUATION 9-2: FPLLO CALCULATION

$$FPLLO = FIN \times \left(\frac{M}{N1 \times N2}\right) = FIN \times \left(\frac{(PLLDIV + 2)}{(PLLPRE + 2) \times 2(PLLPOST + 1)}\right)$$

Where:

N1 = PLLPRE + 2 $N2 = 2 \times (PLLPOST + 1)$

M = PLLDIV + 2

EQUATION 9-3: Fvco CALCULATION

$$Fvco = FIN \times \left(\frac{M}{N1}\right) = FIN \times \left(\frac{(PLLDIV + 2)}{(PLLPRE + 2)}\right)$$

DS70000657H-page 154

© 2011-2013 Microchip Technology Inc.

FIGURE 9-2: PLL BLOCK DIAGRAM

REGISTER 11-16: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38 (dsPIC33EPXXXMC20X AND PIC24EPXXXMC20X DEVICES ONLY)

	-					-	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				DTCMP1R<6:	0>		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_		_	—	—
bit 7							bit C
Legend:							
R = Readal	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimpleme	nted: Read as '	0'				
bit 14-8		6:0>: Assign PV 1-2 for input pin		•	on Input 1 to the	e Corresponding	g RPn Pin bits
	1111001 =	Input tied to RP	1121				
	•						
	•						
		Input tied to CM	P1				
		Input tied to Vss					
bit 7-0		nted: Read as '					
			-				

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0
FLTMD	FLTOUT	FLTTRIEN	OCINV	—	_	—	OC32
bit 15	·				·		bit
R/W-0	R/W-0, HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
OCTRIG	G TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL
bit 7							bit
Legend:		HS = Hardwa	re Settable bit				
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	1 = Fault mo cleared i	t Mode Select b ode is maintain n software and	ed until the Fa a new PWM pe	eriod starts			
		de is maintaine	d until the Faul	t source is rem	loved and a ne	w PWM period	starts
bit 14	FLTOUT: Fau		. –				
		tput is driven hi tput is driven lo					
bit 13		ault Output Sta					
		is tri-stated on		'n			
	•	I/O state is defi			ault condition		
bit 12	OCINV: Outp	ut Compare x I	nvert bit				
		out is inverted out is not invert	ed				
bit 11-9	Unimplemen	ted: Read as '	כי				
bit 8	OC32: Casca	ide Two OCx M	odules Enable	bit (32-bit oper	ration)		
		module operate module operate					
bit 7		tput Compare x		Select bit			
		OCx from the s			CSELx bits		
		nizes OCx with				S	
bit 6	TRIGSTAT: T	imer Trigger St	atus bit				
		urce has been [.] urce has not be			d clear		
bit 5		put Compare x		•			
	1 = OCx is tr	• •	·				
	0 = Output C	ompare x mod	ule drives the C	OCx pin			
Note 1:	Do not use the O	Cx module as i	ts own Svnchro	nization or Tric	aaer source.		
	When the OCy m		-			module uses t	he OCv
	module as a Trigg						
3:	Each Output Con "Peripheral Trig PTGO0 = OC1 PTGO1 = OC2					n source. See S	Section 24.0
	PTGO2 = OC3 $PTGO3 = OC4$						

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—			DTR)	<13:8>				
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			DTR	x<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, rea	d as '0'			
-n = Value at POR (1' = Bit is set 0' = Bit is cleared x = Bit is unknown									

REGISTER 16-10: DTRx: PWMx DEAD-TIME REGISTER

bit 15-14 Unimplemented: Read as '0'

bit 13-0 DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 16-11: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	_			ALTDTF	Rx<13:8>				
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			ALTDT	Rx<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

U-0	U-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0
_	—	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN
bit 15							bit 8
HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0
PCIIRQ ⁽¹⁾	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN
bit 7							bit 0
r							
Legend:		HS = Hardware		C = Clearable			
R = Readable I		W = Writable b	bit	•	nented bit, rea		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-14	-	ted: Read as '0				.,	
bit 13		Position Counte	er Greater Tha	n or Equal Cor	npare Status b	it	
		T ≥ QEI1GEC T < QEI1GEC					
bit 12		Position Counte	r Greater Tha	n or Equal Con	npare Interrupt	Enable bit	
	1 = Interrupt i						
	0 = Interrupt i	s disabled					
bit 11		Position Counte	r Less Than o	r Equal Compa	are Status bit		
	1 = POS1CN						
bit 10		Position Counte	r Less Than or	- Equal Compa	ire Interrunt En	ahla hit	
	1 = Interrupt i						
	0 = Interrupt i						
bit 9	POSOVIRQ:	Position Counte	er Overflow Sta	itus bit			
	1 = Overflow						
		ow has occurred					
bit 8		Position Counte	r Overflow Inte	errupt Enable b	Dit		
	1 = Interrupt i 0 = Interrupt i						
bit 7	•	tion Counter (H	oming) Initializ	ation Process	Complete Stat	us bit ⁽¹⁾	
		T was reinitialize	•		· · · · · · · ·		
	0 = POS1CN	T was not reiniti	alized				
bit 6	PCIIEN: Posi	tion Counter (He	oming) Initializ	ation Process	Complete inter	rupt Enable bit	
	1 = Interrupt i						
bit 5	0 = Interrupt i		r Overflow Sta	tuo hit			
DIL 5	1 = Overflow	Velocity Counter	I Overnow Sta				
		ow has not occu	irred				
bit 4	VELOVIEN:	/elocity Counter	Overflow Inte	rrupt Enable bi	it		
	1 = Interrupt i	s enabled					
	0 = Interrupt i						
bit 3		atus Flag for Ho		us bit			
		ent has occurred event has occu					

REGISTER 17-3: QEI1STAT: QEI1 STATUS REGISTER

Note 1: This status bit is only applicable to PIMOD<2:0> modes, '011' and '100'.

19.0 INTER-INTEGRATED CIRCUIT[™] (I²C[™])

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated Circuit™ (I²C™)" (DS70330) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.
 - 3: There are minimum bit rates of approximately FCY/512. As a result, high processor speeds may not support 100 Kbit/second operation. See timing specifications, IM10 and IM11, and the "Baud Rate Generator" in the "dsPIC33/PIC24 Family Reference Manual".

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X family of devices contains two Inter-Integrated Circuit (I²C) modules: I2C1 and I2C2.

The l^2C module provides complete hardware support for both Slave and Multi-Master modes of the l^2C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- · The SCLx pin is clock
- The SDAx pin is data

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation
- I²C Slave mode supports 7 and 10-bit addressing
- I²C Master mode supports 7 and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly
- Intelligent Platform Management Interface (IPMI)
 support
- System Management Bus (SMBus) support

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
—	—	—	—	—	—					
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
_		—			DMABL2	DMABL1	DMABL0			
bit 7							bit 0			
Levend										
Legend:	le hit		.:.		mented bit mee					
		W = Writable bit		•	mented bit, read					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown				
bit 15-9	Unimplemen	tod: Poad as 'n	,							
bit 8	-	Unimplemented: Read as '0' ADDMAEN: ADC1 DMA Enable bit								
	1 = Conversion results are stored in the ADC1BUF0 register for transfer to RAM using DMA									
	 Conversion results are stored in ADC1BUF0 register for transfer to RAM using DMA Conversion results are stored in ADC1BUF0 through ADC1BUFF registers; DMA will not be used 									
bit 7-3	Unimplemen	Unimplemented: Read as '0'								
bit 2-0	DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits									
	111 = Allocates 128 words of buffer to each analog input									
	110 = Allocates 64 words of buffer to each analog input									
	101 = Allocates 32 words of buffer to each analog input									
	100 = Allocates 16 words of buffer to each analog input									
	011 = Allocates 8 words of buffer to each analog input									
		010 = Allocates 4 words of buffer to each analog input 001 = Allocates 2 words of buffer to each analog input								
	000 = Allocates 1 word of buffer to each analog input									
				. .						

REGISTER 23-4: AD1CON4: ADC1 CONTROL REGISTER 4

Bit Field	Description					
GCP	General Segment Code-Protect bit 1 = User program memory is not code-protected 0 = Code protection is enabled for the entire program memory space					
GWRP	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected					
IESO	 Two-Speed Oscillator Start-up Enable bit 1 = Start up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start up device with user-selected oscillator source 					
PWMLOCK ⁽¹⁾	PWM Lock Enable bit 1 = Certain PWM registers may only be written after a key sequence 0 = PWM registers may be written without a key sequence					
FNOSC<2:0>	Oscillator Selection bits 111 = Fast RC Oscillator with Divide-by-N (FRCDIVN) 110 = Fast RC Oscillator with Divide-by-16 (FRCDIV16) 101 = Low-Power RC Oscillator (LPRC) 100 = Reserved; do not use 011 = Primary Oscillator with PLL module (XT + PLL, HS + PLL, EC + PLL) 010 = Primary Oscillator (XT, HS, EC) 001 = Fast RC Oscillator with Divide-by-N with PLL module (FRCPLL) 000 = Fast RC Oscillator (FRC)					
FCKSM<1:0>	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled					
IOL1WAY	Peripheral Pin Select Configuration bit 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations					
OSCIOFNC	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is the clock output 0 = OSC2 is a general purpose digital I/O pin					
POSCMD<1:0>	Primary Oscillator Mode Select bits 11 = Primary Oscillator is disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode					
FWDTEN	 Watchdog Timer Enable bit 1 = Watchdog Timer is always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect.) 0 = Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register) 					
WINDIS	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode					
PLLKEN	PLL Lock Enable bit 1 = PLL lock is enabled 0 = PLL lock is disabled nly available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.					

TABLE 27-2: CONFIGURATION BITS DESCRIPTION

Note 1: This bit is only available on dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices.

2: When JTAGEN = 1, an internal pull-up resistor is enabled on the TMS pin. Erased devices default to JTAGEN = 1. Applications requiring I/O pins in a high-impedance state (tri-state) in Reset should use pins other than TMS for this purpose.

29.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

29.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- · Multiple projects
- Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

TABLE 30-38:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK2 Input Frequency	-	—	Lesser of FP or 11	MHz	(Note 3)
SP72	TscF	SCK2 Input Fall Time		_	—	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK2 Input Rise Time	_	_	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	_	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	_	—	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS2}$ ↓ to SCK2 ↑ or SCK2 ↓ Input	120	—	—	ns	
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	_	50	ns	(Note 4)
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 TCY + 40	—	—	ns	(Note 4)
SP60	TssL2doV	SDO2 Data Output Valid after SS2 Edge	—	_	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 91 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.