

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (10.7K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VFTLA Exposed Pad
Supplier Device Package	44-VTLA (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep32gp204t-i-tl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

3.7 CPU Control Registers

R/W-0) R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
0A ⁽¹⁾	OB ⁽¹⁾	SA ^(1,4)	SB ^(1,4)	OAB ⁽¹⁾	SAB ⁽¹⁾	DA ⁽¹⁾	DC
bit 15							bit 8
R/W-0 ⁽²	R/W-0 ^(2,3)	R/W-0 ^(2,3)	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2	IPL1	IPL0	RA	N	OV	Z	С
bit 7							bit 0
Legend:		C = Clearable	bit				
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value	e at POR	'1'= Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	OA: Accumu	lator A Overflow	v Status bit ⁽¹⁾				
	1 = Accumula	ator A has over	flowed				
	0 = Accumula	ator A has not c	verflowed				
bit 14	OB: Accumu	lator B Overflov	v Status bit ⁽¹⁾				
	1 = Accumula	ator B has over	flowed				
hit 13		lator A Saturatio	n 'Sticky' Sta	tue hit(1,4)			
DIL 15	$1 = \Delta c cumula$	ator A is saturat	ed or has her	n saturated at	some time		
	0 = Accumula	ator A is not sat	urated		Some time		
bit 12	SB: Accumu	lator B Saturatio	on 'Sticky' Sta	tus bit ^(1,4)			
	1 = Accumula	ator B is satura	ed or has bee	en saturated at	some time		
	0 = Accumula	ator B is not sat	urated				
bit 11	OAB: OA (OB Combined A	ccumulator O	verflow Status	bit ⁽¹⁾		
	1 = Accumula	ators A or B have	ve overflowed				
	0 = Neither A	Accumulators A	or B have ove	erflowed	(1)		
bit 10	SAB: SA S	B Combined A	cumulator 'Si	icky Status bit		1	
	1 = Accumula 0 = Neither A	ators A or B are	or B are satur	nave been sat	urated at some	time	
hit 9		Active hit(1)		alou			
bit 0	1 = DO loop is	s in progress					
	0 = DO loop is	s not in progres	S				
bit 8	DC: MCU AL	U Half Carry/Bo	orrow bit				
	1 = A carry-o	out from the 4th	low-order bit (for byte-sized o	data) or 8th low-	order bit (for wo	ord-sized data)
	of the re	sult occurred					
	0 = No carry	-out from the 4	th low-order t	bit (for byte-siz	ed data) or 8th	low-order bit (1	for word-sized
	uala) U						
Note 1:	This bit is availabl	e on dsPIC33E	PXXXMC20X	/50X and dsPl	C33EPXXXGP	50X devices on	ly.
2:	The IPL<2:0> bits	are concatenat	ed with the IF	PL<3> bit (COR	RCON<3>) to fo	rm the CPU Inte	errupt Priority
	Level. The value I IPL< $3 > = 1$.	n parentheses i	naicates the I	PL, IT IPL<3> =	= ⊥. User interru	ipts are disable	a wnen

REGISTER 3-1: SR: CPU STATUS REGISTER

- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
- **4:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

FIGURE 4-2: PROGRAM MEMORY MAP FOR dsPIC33EP64GP50X, dsPIC33EP64MC20X/50X AND PIC24EP64GP/MC20X DEVICES

Note: Memory areas are not shown to scale.

TABLE 4-7: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMC50X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC23	086E	—	F	PWM2IP<2:	0>	_	F	WM1IP<2:	:0>	_	_	—	_	_		_		4400
IPC24	0870	—	_	_	—	_	—	—	—	_	—	—		_	F	PWM3IP<2:0>		0004
IPC35	0886	—		JTAGIP<2:0)>	_		ICDIP<2:0	>	_	—	—		_	-	—		4400
IPC36	0888	—		PTG0IP<2:0)>	_	PT	GWDTIP<	2:0>	—	P	TGSTEPIP<2	:0>	_		_		4440
IPC37	088A	—	—		—	_	F	PTG3IP<2:	0>	—		PTG2IP<2:0>	•	_	-	PTG1IP<2:0>		0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_	—	—	—	_	—	—		_	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	—	—		—	_	—	—	—	_	—	DAE	DOOVR	_		_		0000
INTCON4	08C6	_	_		_	_	_	_	_	_	_	_	_	_	_	_	SGHT	0000
INTTREG	08C8	_	_		_		ILR<	3:0>		VECNUM<7:0>						0000		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 8-9: DSADRH: DMA MOST RECENT RAM HIGH ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	_	—	—	—
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSADR	<23:16>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bi	t	U = Unimpler	mented bit, read	as '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 DSADR<23:16>: Most Recent DMA Address Accessed by DMA bits

REGISTER 8-10: DSADRL: DMA MOST RECENT RAM LOW ADDRESS REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			DSAI	DR<15:8>				
bit 15							bit 8	
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			DSA	DR<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	adable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				

bit 15-0 DSADR<15:0>: Most Recent DMA Address Accessed by DMA bits

16.1.2 WRITE-PROTECTED REGISTERS

On dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices, write protection is implemented for the IOCONx and FCLCONx registers. The write protection feature prevents any inadvertent writes to these registers. This protection feature can be controlled by the PWMLOCK Configuration bit (FOSCSEL<6>). The default state of the write protection feature is enabled (PWMLOCK = 1). The write protection feature can be disabled by configuring, PWMLOCK = 0. To gain write access to these locked registers, the user application must write two consecutive values of (0xABCD and 0x4321) to the PWMKEY register to perform the unlock operation. The write access to the IOCONx or FCLCONx registers must be the next SFR access following the unlock process. There can be no other SFR accesses during the unlock process and subsequent write access. To write to both the IOCONx and FCLCONx registers requires two unlock operations.

The correct unlocking sequence is described in Example 16-1.

EXAMPLE 16-1: PWMx WRITE-PROTECTED REGISTER UNLOCK SEQUENCE

; FLT32 pin must be p	ulled low externally in order to clear and disable the fault
; Writing to FCLCON1 :	register requires unlock sequence
<pre>mov #0xabcd,w10 mov #0x4321,w11 mov #0x0000,w0 mov w10, PWMKEY mov w11, PWMKEY mov w0,FCLCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of FCLCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to FCLCON1 register</pre>
; Set PWM ownership as	nd polarity using the IOCON1 register
; Writing to IOCON1 re	egister requires unlock sequence
<pre>mov #0xabcd,w10 mov #0x4321,w11 mov #0xF000,w0 mov w10, PWMKEY mov w11, PWMKEY mov w0,IOCON1</pre>	<pre>; Load first unlock key to w10 register ; Load second unlock key to w11 register ; Load desired value of IOCON1 register in w0 ; Write first unlock key to PWMKEY register ; Write second unlock key to PWMKEY register ; Write desired value to IOCON1 register</pre>

REGISTER 17-1: QEI1CON: QEI1 CONTROL REGISTER (CONTINUED)

bit 6-4	INTDIV<2:0>: Timer Input Clock Prescale Select bits (interval timer, main timer (position counter), velocity counter and index counter internal clock divider select) ⁽³⁾						
	<pre>111 = 1:128 prescale value 110 = 1:64 prescale value 101 = 1:32 prescale value 100 = 1:16 prescale value 011 = 1:8 prescale value 010 = 1:4 prescale value 001 = 1:2 prescale value 000 = 1:1 prescale value</pre>						
bit 3	CNTPOL: Position and Index Counter/Timer Direction Select bit 1 = Counter direction is negative unless modified by external up/down signal						
	 0 = Counter direction is positive unless modified by external up/down signal 						
bit 2	GATEN: External Count Gate Enable bit						
	 1 = External gate signal controls position counter operation 0 = External gate signal does not affect position counter/timer operation 						
bit 1-0	CCM<1:0>: Counter Control Mode Selection bits						
	 11 = Internal Timer mode with optional external count is selected 10 = External clock count with optional external count is selected 01 = External clock count with external up/down direction is selected 00 = Quadrature Encoder Interface (x4 mode) Count mode is selected 						
Note 1:	When CCM<1:0> = 10 or 11, all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored.						

- 2: When CCM<1:0> = 00, and QEA and QEB values match the Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset. QEA/QEB signals used for the index match have swap and polarity values applied, as determined by the SWPAB and QEAPOL/QEBPOL bits.
- 3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

REGISTER 17-19: INT1HLDH: INTERVAL 1 TIMER HOLD HIGH WORD REGIS	TER
---	-----

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			INTHL	D<31:24>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			INTHL	D<23:16>				
bit 7							bit 0	
Legend:								
R = Readable	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown								

bit 15-0 INTHLD<31:16>: Hold Register for Reading and Writing INT1TMRH bits

REGISTER 17-20: INT1HLDL: INTERVAL 1 TIMER HOLD LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTHL	D<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTH	_D<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							

bit 15-0 INTHLD<15:0>: Hold Register for Reading and Writing INT1TMRL bits

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0
bit 7							bit 0
Legend:							

REGISTER 21-11: CxFEN1: ECANx ACCEPTANCE FILTER ENABLE REGISTER 1

Legend				
R = Rea	dable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Valu	ie at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

FLTEN<15:0>: Enable Filter n to Accept Messages bits

1 = Enables Filter n

0 = Disables Filter n

REGISTER 21-12: CxBUFPNT1: ECANx FILTER 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F3BF	°<3:0>			F2B	P<3:0>			
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F1BF	?<3:0>			F0B	P<3:0>			
bit 7							bit 0		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimplen	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-12	F3BP<3:0>:	RX Buffer Mas	k for Filter 3 b	pits					
	1111 = Filte	r hits received ir	n RX FIFO bu	uffer					
	1110 = Filte	r hits received ir	n RX Buffer 1	4					
	•								
	•								
	0001 = Filte	r hits received ir	n RX Buffer 1						
	0000 = Filte	r hits received ir	n RX Buffer 0						
bit 11-8	F2BP<3:0>:	RX Buffer Mas	k for Filter 2 k	oits (same value	s as bits<15:1	2>)			
bit 7-4	F1BP<3:0>:	RX Buffer Mas	k for Filter 1 k	oits (same value	s as bits<15:1	2>)			
bit 3-0	F0BP<3:0>:	RX Buffer Mas	k for Filter 0 k	oits (same value	s as bits<15:1	2>)			
						,			

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0

REGISTER 21-24: CxRXOVF1: ECANx RECEIVE BUFFER OVERFLOW REGISTER 1

RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0
bit 7							bit 0
Legend:		C = Writable b	oit, but only '0'	can be writter	ו to clear the bit		

Legend:	C = Writable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 RXOVF<15:0>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

REGISTER 21-25: CxRXOVF2: ECANx RECEIVE BUFFER OVERFLOW REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF31 | RXOVF30 | RXOVF29 | RXOVF28 | RXOVF27 | RXOVF26 | RXOVF25 | RXOVF24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF23 | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 RXOVF<31:16>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

NOTES:

23.4 ADC Control Registers

REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
ADON	—	ADSIDL	ADDMABM	—	AD12B	FORM1	FORM0	
bit 15						-	bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC, HS	R/C-0, HC, HS	
SSRC2	SSRC1	SSRC0	SSRCG	SIMSAM	ASAM	SAMP	DONE ⁽³⁾	
bit 7						-	bit 0	
Legend:		HC = Hardwa	re Clearable bit	HS = Hardwa	re Settable bit	C = Clearable bi	t	
R = Readab	le bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'		
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknow	vn	
bit 15	ADON: ADO	C1 Operating N	lode bit					
	1 = ADC mo	odule is operati	ng					
	0 = ADC is	off						
bit 14	Unimpleme	ented: Read as	'0'					
bit 13	ADSIDL: AI	DC1 Stop in Idle	e Mode bit					
	1 = Disconti	inues module o	peration when	device enters	Idle mode			
	0 = Continu	es module ope	ration in Idle mo	ode				
bit 12	ADDMABM	: DMA Buffer E	Build Mode bit					
	1 = DMA b	uffers are writte	en in the order	of conversion	; the module p	provides an addre	ess to the DMA	
	0 = DMA bi	uffers are writte	en in Scatter/Ga	ther mode: the	e module prov	ides a Scatter/Ga	ther address to	
	the DM	A channel, bas	ed on the index	of the analog	input and the	size of the DMA	ouffer.	
bit 11	Unimpleme	ented: Read as	'0'					
bit 10	AD12B: AD	C1 10-Bit or 12	2-Bit Operation	Mode bit				
	1 = 12-bit, 1	-channel ADC	operation					
	0 = 10-bit, 4	-channel ADC	operation					
bit 9-8	FORM<1:0	>: Data Output	Format bits					
	For 10-Bit C	Operation:						
	11 = Signed	d fractional (Do	UT = sddd ddd	ld dd00 000	0, where $s = $.	NOT.d<9>)		
	10 = Fractions	10 = Fractional (DOUT = dddd dddd dd00 0000)						
	00 = Intege	01 = Signed integer (DOUT = SSSS SSSA dada adda, where s = .NO1.0<9>) 00 = Integer (DOUT = 0000 00dd dddd dddd)						
	For 12-Bit Operation:							
	11 = Signed	11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<11>)						
	10 = Fractic	onal (Dout = do	ldd dddd ddd	ld 0000)				
	00 = Intege	r (DOUT = 0000	- ssss sada) dddd dddd	aaaa aaad, dddd)	where $s = .NC$	JI.U<112)		
		. (2001 - 0000		adduj				
Note 1: S	See Section 24	1.0 "Peripheral	l Trigger Gene	rator (PTG) M	odule" for info	ormation on this s	election.	

- 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
- 3: Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
CSS31	CSS30		—	_	CSS26 ⁽²⁾	CSS25 ⁽²⁾	CSS24 ⁽²⁾
bit 15				•			bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_				—			
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable b	pit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	CSS31: ADC	1 Input Scan Se	election bit				
	1 = Selects C	TMU capacitive	and time me	asurement for	input scan (Ope	en)	
	0 = Skips CTI	MU capacitive a	ind time meas	surement for in	put scan (Open)	
bit 14	CSS30: ADC	1 Input Scan Se	election bit				
	1 = Selects C 0 = Skips CTI	TMU on-chip te MU on-chip tem	mperature mea	easurement fo surement for i	r input scan (CT nput scan (CTM	MU TEMP) IU TEMP)	
bit 13-11	Unimplemen	ted: Read as '0)'				
bit 10	CSS26: ADC	1 Input Scan Se	election bit ⁽²⁾				
	1 = Selects O	A3/AN6 for inpu	ut scan				
	0 = Skips OA	3/AN6 for input	scan				
bit 9	CSS25: ADC	1 Input Scan Se	election bit ⁽²⁾				
	1 = Selects O	1 = Selects OA2/AN0 for input scan					
	0 = Skips OA	2/AN0 for input	scan				
bit 8	CSS24: ADC	1 Input Scan Se	election bit ⁽²⁾				
	1 = Selects O 0 = Skips OA	A1/AN3 for input 1/AN3 for input	ut scan scan				
bit 7-0	Unimplemen	ted: Read as 'o)'				
Note 1: A	II AD1CSSH bits prresponding inpu	can be selected ut on the device	d by user softw , convert VRE	vare. However _{FL.}	r, inputs selecte	d for scan, with	out a

REGISTER 23-7: AD1CSSH: ADC1 INPUT SCAN SELECT REGISTER HIGH⁽¹⁾

2: The OAx input is used if the corresponding op amp is selected (OPMODE (CMxCON<10>) = 1); otherwise, the ANx input is used.

REGISTER 25-2: CMxCON: COMPARATOR x CONTROL REGISTER (x = 1, 2 OR 3) (CONTINUED)

bit 7-6	EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits
	 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): Low-to-high transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): High-to-low transition of the comparator output.
	01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity-selected comparator output (while CEVT = 0)
	If CPOL = 1 (inverted polarity): High-to-low transition of the comparator output.
	If CPOL = 0 (non-inverted polarity): Low-to-high transition of the comparator output
	00 = Trigger/event/interrupt generation is disabled
bit 5	Unimplemented: Read as '0'
bit 4	CREF: Comparator Reference Select bit (VIN+ input) ⁽¹⁾
	 1 = VIN+ input connects to internal CVREFIN voltage⁽²⁾ 0 = VIN+ input connects to CxIN1+ pin
bit 3-2	Unimplemented: Read as '0'
bit 1-0	CCH<1:0>: Op Amp/Comparator Channel Select bits ⁽¹⁾
	 11 = Unimplemented 10 = Unimplemented 01 = Inverting input of the comparator connects to the CxIN2- pin⁽²⁾ 00 = Inverting input of the op amp/comparator connects to the CxIN1- pin

- **Note 1:** Inputs that are selected and not available will be tied to Vss. See the "**Pin Diagrams**" section for available inputs for each package.
 - 2: This output is not available when OPMODE (CMxCON<10>) = 1.

Field	Description
Wm,Wn	Dividend, Divisor working register pair (direct addressing)
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 working registers ∈ {W0W15}
Wnd	One of 16 destination working registers ∈ {W0W15}
Wns	One of 16 source working registers ∈ {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}

TABLE 28-1:	SYMBOLS USED IN OPCODE DESCRIPTIONS ((CONTINUED)

TADLE 30-23. THVIER I EATERINAL CLOCK THVIING REQUIREIVIEN 13	TABLE 30-23:	TIMER1 EXTERNAL	CLOCK TIMING	REQUIREMENTS ⁽¹⁾
---	--------------	-----------------	---------------------	------------------------------------

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽²⁾		Min.	Тур.	Max.	Units	Conditions
TA10	ТтхН	T1CK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	—	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)
			Asynchronous	35		—	ns	
TA11	ΤτxL	T1CK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)
			Asynchronous	10	—	—	ns	
TA15	ΤτχΡ	T1CK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_		ns	N = prescale value (1, 8, 64, 256)
OS60	Ft1	T1CK Oscillator Input Frequency Range (oscillator enabled by setting bit, TCS (T1CON<1>))		DC		50	kHz	
TA20	TCKEXTMRL	Delay from E Clock Edge t Increment	xternal T1CK to Timer	0.75 Tcy + 40		1.75 Tcy + 40	ns	

Note 1: Timer1 is a Type A.

2: These parameters are characterized, but are not tested in manufacturing.

TABLE 30-37:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK2 Input Frequency	-	—	Lesser of FP or 15	MHz	(Note 3)
SP72	TscF	SCK2 Input Fall Time	—	_	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK2 Input Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO2 Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO2 Data Output Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO2 Data Output Valid after SCK2 Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO2 Data Output Setup to First SCK2 Edge	30	—	—	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI2 Data Input to SCK2 Edge	30	—	—	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI2 Data Input to SCK2 Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{SS2}$ ↓ to SCK2 ↑ or SCK2 ↓ Input	120	—	—	ns	
SP51	TssH2doZ	SS2 ↑ to SDO2 Output High-Impedance	10	—	50	ns	(Note 4)
SP52	TscH2ssH TscL2ssH	SS2 ↑ after SCK2 Edge	1.5 Tcy + 40	_	_	ns	(Note 4)
SP60	TssL2doV	SDO2 Data Output Valid after SS2 Edge	-	—	50	ns	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK2 is 66.7 ns. Therefore, the SCK2 clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPI2 pins.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Tradema Architecture — Flash Memory Fam Program Memory S Product Group — Pin Count — Tape and Reel Flag Temperature Range Package Pattern	rk ily ize (Kb (if app	dsPI	C 33 EP 64 MC5 04 T 1/PT - XXX	Examples: dsPIC33EP64MC504-I/PT: dsPIC33, Enhanced Performance, 64-Kbyte Program Memory, Motor Control, 44-Pin, Industrial Temperature, TQFP package.
Architecture:	33 24	= =	16-bit Digital Signal Controller 16-bit Microcontroller	
Flash Memory Family:	EP	=	Enhanced Performance	
Product Group:	GP MC	= =	General Purpose family Motor Control family	
Pin Count:	02 03 04 06	= = =	28-pin 36-pin 44-pin 64-pin	
Temperature Range:	l E	= =	-40°C to+85°C (Industrial) -40°C to+125°C (Extended)	
Package:	ML MR MV PT SO SP SS TL TL		Plastic Quad, No Lead Package - (44-pin) 8x8 mm body (QFN) Plastic Quad, No Lead Package - (28-pin) 6x6 mm body (QFN-S) Plastic Quad, No Lead Package - (64-pin) 9x9 mm body (QFN) Thin Quad, No Lead Package - (64-pin) 9x9 mm body (UQFN) Plastic Thin Quad Flatpack - (64-pin) 10x10 mm body (TQFP) Plastic Thin Quad Flatpack - (64-pin) 10x10 mm body (TQFP) Plastic Small Outline, Wide - (28-pin) 7.50 mm body (SOIC) Skinny Plastic Dual In-Line - (28-pin) 300 mil body (SPDIP) Plastic Shrink Small Outline - (28-pin) 5.30 mm body (SOP) Very Thin Leadless Array - (36-pin) 5x5 mm body (VTLA) Very Thin Leadless Array - (44-pin) 6x6 mm body (VTLA)	