

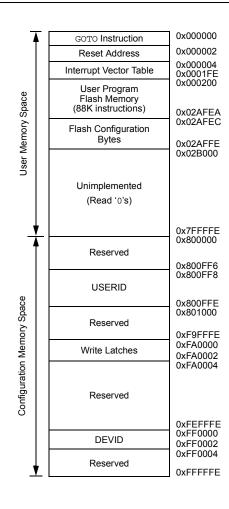
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


⊡XFI

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (10.7K x 24)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	2K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep32mc202-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

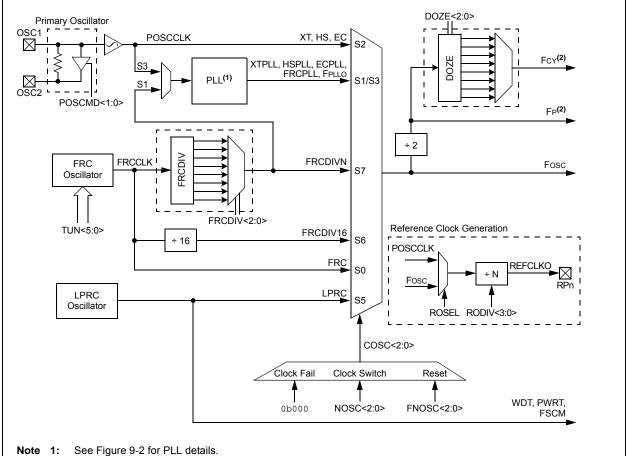
FIGURE 4-4: PROGRAM MEMORY MAP FOR dsPIC33EP256GP50X, dsPIC33EP256MC20X/50X AND PIC24EP256GP/MC20X DEVICES

Note: Memory areas are not shown to scale.

TABLE	4-2:	CPU C	CORE RE	EGISTER	R MAP F	FOR PIC	24EPX)	XGP/M	C20X D	EVICES	ONLY							
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
W0	0000		W0 (WREG) x2														xxxx	
W1	0002		W1 x2													xxxx		
W2	0004		W2 xxx													xxxx		
W3	0006		W3 xxx												xxxx			
W4	0008								W4									xxxx
W5	000A								W5									xxxx
W6	000C								W6									xxxx
W7	000E								W7									xxxx
W8	0010								W8									xxxx
W9	0012								W9									xxxx
W10	0014								W10									xxxx
W11	0016								W11									xxxx
W12	0018								W12									xxxx
W13	001A								W13									xxxx
W14	001C								W14									xxxx
W15	001E								W15									xxxx
SPLIM	0020								SPLIM<1	5:0>								0000
PCL	002E							P	CL<15:1>								—	0000
PCH	0030	—	-	_	_	—	—	—	—	_				PCH<6:0>				0000
DSRPAG	0032	—	-	_	_	—	—					DSRPA	G<9:0>					0001
DSWPAG	0034	_				_		_				DS	SWPAG<8:0	>				0001
RCOUNT	0036								RCOUNT<	15:0>								0000
SR	0042	_				—		_	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
CORCON	0044	VAR	_	-	_	—		—	_	-	_	—	-	IPL3	SFA	—	_	0020
DISICNT	0052	_	_							DISICNT<	:13:0>							0000
TBLPAG	0054	_	_	-	-	—		—	_				TBLPA	G<7:0>				0000
MSTRPR	0058								MSTRPR<	15:0>								0000

D I -4.0 - -

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.


9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Oscillator" (DS70580) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X oscillator system provides:

- On-chip Phase-Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources
- On-the-fly clock switching between various clock sources
- · Doze mode for system power savings
- Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- Configuration bits for clock source selection
- A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: OSCILLATOR SYSTEM DIAGRAM

2: The term, FP, refers to the clock source for all peripherals, while FCY refers to the clock source for the CPU. Throughout this document, FCY and FP are used interchangeably, except in the case of Doze mode. FP and FCY will be different when Doze mode is used with a doze ratio of 1:2 or lower.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0
Logondi							

REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 **TUN<5:0>:** FRC Oscillator Tuning bits 011111 = Maximum frequency deviation of 1.453% (7.477 MHz) 011110 = Center frequency + 1.406% (7.474 MHz) •••• 000001 = Center frequency + 0.047% (7.373 MHz) 000000 = Center frequency (7.37 MHz nominal) 111111 = Center frequency - 0.047% (7.367 MHz) ••• 100001 = Center frequency - 1.453% (7.263 MHz) 100000 = Minimum frequency deviation of -1.5% (7.259 MHz)

- g) The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRIS setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRIS settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned
- h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Pin Select registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Pin Select registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

11.6 I/O Ports Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

11.6.1 KEY RESOURCES

- "I/O Ports" (DS70598) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

13.0 TIMER2/3 AND TIMER4/5

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As 32-bit timers, Timer2/3 and Timer4/5 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with all 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter
- They also support these features:
- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (32-bit timer pairs, and Timer3 and Timer5 only)

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, and T4CON, T5CON registers. T2CON and T4CON are shown in generic form in Register 13-1. T3CON and T5CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2 and Timer4 are the least significant word (lsw); Timer3 and Timer5 are the most significant word (msw) of the 32-bit timers.

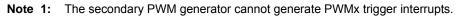
Note: For 32-bit operation, T3CON and T5CON control bits are ignored. Only T2CON and T4CON control bits are used for setup and control. Timer2 and Timer4 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3 and Timer5 interrupt flags.

A block diagram for an example 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 13-3.

Note: Only Timer2, 3, 4 and 5 can trigger a DMA data transfer.

14.1 Input Capture Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.


Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

14.1.1 KEY RESOURCES

- "Input Capture" (DS70352) in the "dsPIC33/ PIC24 Family Reference Manual"
- · Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0						
	TRGD	V<3:0>		—		—	_						
bit 15							bit 8						
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
_				TRGSTF	RT<5:0> (1)								
bit 7							bit						
Legend:	1. 1.4												
R = Readab		W = Writable		•	nented bit, read								
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own						
bit 15-12)>: Trigger # Ou	-										
	1111 = Trigger output for every 16th trigger event												
	1110 = Trigger output for every 15th trigger event												
	1101 = Trigger output for every 14th trigger event 1100 = Trigger output for every 13th trigger event												
	1100 = Irigger output for every 13th trigger event 1011 = Trigger output for every 12th trigger event												
	1011 = Trigger output for every 12th trigger event 1010 = Trigger output for every 11th trigger event												
		ger output for ev											
		per output for ev											
		per output for ev											
		ger output for ev											
		ger output for ev											
	0100 = Trigger output for every 5th trigger event												
		ger output for ev											
	0010 = Trigger output for every 3rd trigger event												
		ger output for ev											
	0000 = Trigg	ger output for ev	ery trigger ev	ent									
bit 11-6	-	nted: Read as '											
bit 5-0	TRGSTRT<	5:0>: Trigger Po	stscaler Start	Enable Select	bits ⁽¹⁾								
	111111 = Waits 63 PWM cycles before generating the first trigger event after the module is enabled												
	•			·									
	•			-									
	•			-									
	• • •	aits 2 PW/M ava	les hefore co	nerating the fire	t trigger event :	after the module	a is anabled						
		/aits 2 PWM cyc /aits 1 PWM cyc											

REGISTER 16-12: TRGCONx: PWMx TRIGGER CONTROL REGISTER

REGISTER 23-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

bit 7-5	SSRC<2:0>: Sample Trigger Source Select bits
	If SSRCG = 1: 111 = Reserved 110 = PTGO15 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 101 = PTGO14 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 100 = PTGO13 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 011 = PTGO12 primary trigger compare ends sampling and starts conversion ⁽¹⁾ 010 = PWM Generator 3 primary trigger compare ends sampling and starts conversion ⁽²⁾ 001 = PWM Generator 2 primary trigger compare ends sampling and starts conversion ⁽²⁾ 000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion ⁽²⁾
	If SSRCG = 0: 111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = CTMU ends sampling and starts conversion 101 = Reserved
	 101 - Reserved 100 = Timer5 compare ends sampling and starts conversion 011 = PWM primary Special Event Trigger ends sampling and starts conversion 010 = Timer3 compare ends sampling and starts conversion 001 = Active transition on the INT0 pin ends sampling and starts conversion 000 = Clearing the Sample bit (SAMP) ends sampling and starts conversion (Manual mode)
bit 4	SSRCG: Sample Trigger Source Group bit
	See SSRC<2:0> for details.
bit 3	 SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x) <u>In 12-bit mode (AD21B = 1), SIMSAM is Unimplemented and is Read as '0':</u> 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence
bit 2	ASAM: ADC1 Sample Auto-Start bit
	 1 = Sampling begins immediately after the last conversion; SAMP bit is auto-set 0 = Sampling begins when the SAMP bit is set
bit 1	SAMP: ADC1 Sample Enable bit
	 1 = ADC Sample-and-Hold amplifiers are sampling 0 = ADC Sample-and-Hold amplifiers are holding If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC<2:0> = 000, software can write '0' to end sampling and start conversion. If SSRC<2:0> ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC1 Conversion Status bit ⁽³⁾
	 1 = ADC conversion cycle has completed 0 = ADC conversion has not started or is in progress Automatically set by hardware when the ADC conversion is complete. Software can write '0' to clear the DONE status bit (software is not allowed to write '1'). Clearing this bit does NOT affect any operation in progress. Automatically cleared by hardware at the start of a new conversion.
Note 1:	See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

- 2: This setting is available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.
- **3:** Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

REGISTER 23-2: AD1CON2: ADC1 CONTROL REGISTER 2 (CONTINUED)

bit 1	BUFM: Buffer Fill Mode Select bit
	 1 = Starts the buffer filling the first half of the buffer on the first interrupt and the second half of the buffer on next interrupt 0 = Always starts filling the buffer from the start address.
bit 0	ALTS: Alternate Input Sample Mode Select bit

1 = Uses channel input selects for Sample MUXA on first sample and Sample MUXB on next sample 0 = Always uses channel input selects for Sample MUXA

REGISTER 24-10: PTGADJ: PTG ADJUST REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PTGA	DJ<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			PTGA	DJ<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable b	oit	U = Unimplemented bit, read as '0'				
-n = Value at P	-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				

bit 15-0 **PTGADJ<15:0>:** PTG Adjust Register bits This register holds user-supplied data to be added to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 registers with the PTGADD command.

REGISTER 24-11: PTGL0: PTG LITERAL 0 REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	PTGL0<15:8>											
bit 15							bit 8					

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGL)<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 PTGL0<15:0>: PTG Literal 0 Register bits

This register holds the 16-bit value to be written to the AD1CHS0 register with the ${\tt PTGCTRL}$ Step command.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

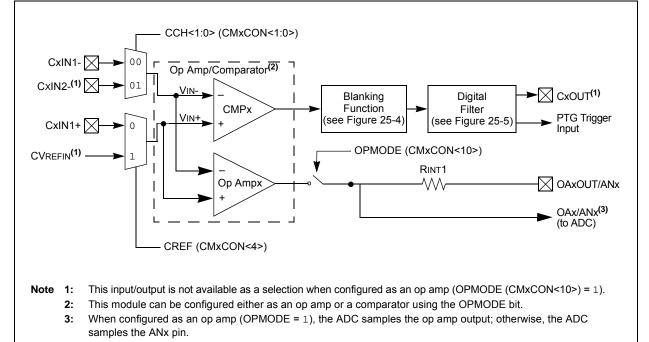
Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

NOTES:

25.0 OP AMP/COMPARATOR MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Op Amp/Comparator" (DS70357) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X devices contain up to four comparators, which can be configured in various ways. Comparators, CMP1, CMP2 and CMP3, also have the option to be configured as op amps, with the output being brought to an external pin for gain/filtering connections. As shown in Figure 25-1, individual comparator options are specified by the comparator module's Special Function Register (SFR) control bits.

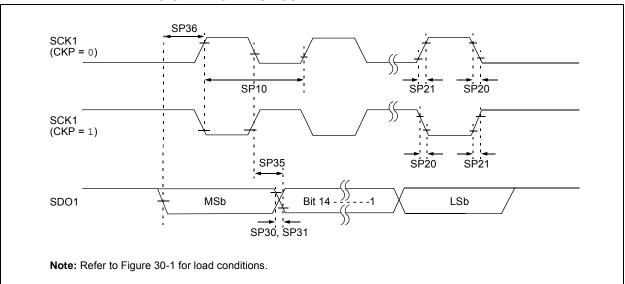

Note: Op Amp/Comparator 3 is not available on the dsPIC33EPXXXGP502/MC502/MC202 and PIC24EP256GP/MC202 (28-pin) devices.

These options allow users to:

- · Select the edge for trigger and interrupt generation
- · Configure the comparator voltage reference
- · Configure output blanking and masking
- Configure as a comparator or op amp (CMP1, CMP2 and CMP3 only)

Note: Not all op amp/comparator input/output connections are available on all devices. See the "Pin Diagrams" section for available connections.

FIGURE 25-1: OP AMP/COMPARATOR x MODULE BLOCK DIAGRAM (MODULES 1, 2 AND 3)



26.3 Programmable CRC Registers

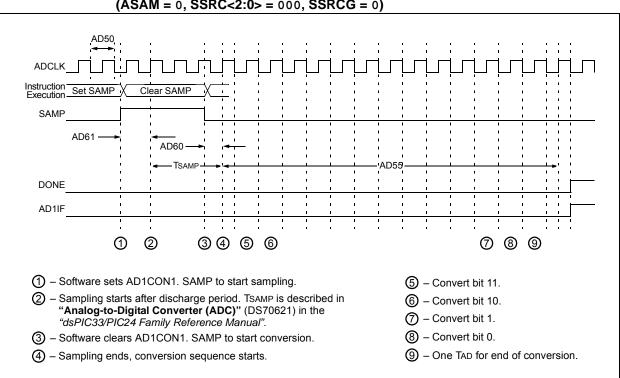
REGISTER 26-1: CRCCON1: CRC CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0		
CRCEN	_	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0		
bit 15		•	·				bit 8		
R-0	R-1	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0		
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	_	_	—		
bit 7			•				bit (
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	0 = CRC mo	dule is enabled		chines, pointer	s and CRCWD	AT/CRCDAT a	re reset, othe		
bit 14	Unimplemen	ted: Read as '	0'						
bit 13	CSIDL: CRC	Stop in Idle Mo	ode bit	CSIDL: CRC Stop in Idle Mode bit					
	 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 								
		•			ldle mode				
bit 12-8	0 = Continue VWORD<4:0:	s module opera	ation in Idle m e bits	ode					
bit 12-8	0 = Continue VWORD<4:0: Indicates the	s module opera	ation in Idle m e bits	ode		of 8 when PLE	N<4:0> > 7		
	0 = Continue VWORD<4:0: Indicates the or 16 when Pl	s module oper >: Pointer Valu number of valio	ation in Idle m e bits d words in the	ode		of 8 when PLE	N<4:0> > 7		
	0 = Continue VWORD<4:0: Indicates the or 16 when Pl	s module operations >: Pointer Valu number of valid LEN<4:0> \leq 7. C FIFO Full bit ull	ation in Idle m e bits d words in the	ode		of 8 when PLE	N<4:0> > 7		
bit 12-8 bit 7 bit 6	0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fu 0 = FIFO is n	s module operations >: Pointer Valu number of valid LEN<4:0> \leq 7. C FIFO Full bit ull	ation in Idle m e bits d words in the t	ode		of 8 when PLE	N<4:0> > 7		
bit 7	0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fu 0 = FIFO is n CRCMPT: CR 1 = FIFO is e	s module operatives >: Pointer Valu number of valid LEN<4:0> \leq 7. C FIFO Full bit ull not full RC FIFO Empty empty	ation in Idle m e bits d words in the t	ode		of 8 when PLE	N<4:0> > 7		
bit 7 bit 6	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is e 0 = FIFO is n 	s module operatives >: Pointer Valu number of valid LEN<4: $0> \le 7$. C FIFO Full bit ull not full RC FIFO Empty empty not empty	ation in Idle m e bits d words in the t v Bit	ode		of 8 when PLE	N<4:0> > 7		
bit 7 bit 6	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is n 0 = FIFO is n CRCISEL: CF 	s module operatives >: Pointer Valu number of valid LEN<4: $0> \le 7$. C FIFO Full bit ull NC FIFO Empty empty not empty RC Interrupt Se	ation in Idle m e bits d words in the t v Bit election bit	ode FIFO. Has a m	naximum value		N<4:0> > 7		
bit 7 bit 6	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is e 0 = FIFO is n CRCISEL: CF 1 = Interrupt 	s module operatives >: Pointer Valu number of valid LEN<4: $0> \le 7$. C FIFO Full bit ull AC FIFO Empty empty not empty RC Interrupt Secon FIFO is emptore on FIFO is emptore	ation in Idle m e bits d words in the t v Bit election bit pty; final word	ode FIFO. Has a m of data is still s	naximum value shifting through		N<4:0> > 7		
bit 7 bit 6 bit 5	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is e 0 = FIFO is n CRCISEL: CF 1 = Interrupt 	s module operatives >: Pointer Value number of valid LEN<4:0> \leq 7. C FIFO Full bit uil not full RC FIFO Empty empty not empty RC Interrupt Secon FIFO is empty on FIFO is empty on shift is compared	ation in Idle m e bits d words in the t v Bit election bit pty; final word	ode FIFO. Has a m of data is still s	naximum value shifting through		N<4:0> > 7		
bit 7 bit 6 bit 5	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is ft 0 = FIFO is n CRCMPT: CR 1 = FIFO is e 0 = FIFO is n CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Star 	s module operatives >: Pointer Value number of valid LEN<4:0> \leq 7. C FIFO Full bit uil not full RC FIFO Empty empty not empty RC Interrupt Secon FIFO is empty on FIFO is empty on shift is compared	ation in Idle m e bits d words in the t election bit pty; final word plete and CRO	ode FIFO. Has a m of data is still s	naximum value shifting through		N<4:0> > 7		
bit 7	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is n CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Start 1 = Starts CF 	s module operatives >: Pointer Valu number of valid LEN<4: $0> \le 7$. C FIFO Full bit ull Not full RC FIFO Empty mpty not empty RC Interrupt Secon FIFO is emponent on FIFO is emponent on shift is component t CRC bit	ation in Idle m e bits d words in the t / Bit election bit pty; final word plete and CRC	ode FIFO. Has a m of data is still s	naximum value shifting through		N<4:0> > 7		
bit 7 bit 6 bit 5 bit 4	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is e 0 = FIFO is n CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Start 1 = Starts CF 0 = CRC serii LENDIAN: Data 	s module operatives >: Pointer Value number of valide LEN<4:0> \leq 7. C FIFO Full bit ull and full C FIFO Empty empty and empty RC Interrupt Secon on FIFO is emplored on FIFO is emplored on Shift is com t CRC bit RC serial shifter ial shifter is turn ata Word Little-	ation in Idle m e bits d words in the t election bit pty; final word plete and CRC r ned off Endian Config	ode FIFO. Has a m of data is still s CWDAT results guration bit	naximum value shifting through are ready	CRC	N<4:0> > 7		
bit 7 bit 6 bit 5 bit 4	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is e 0 = FIFO is n CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Start 1 = Starts CF 0 = CRC serit LENDIAN: Data 1 = Data wor 	s module operatives Pointer Value number of valid LEN<4: $0^{5} \leq 7$. C FIFO Full bit ull at full C FIFO Empty mot full C FIFO Empty mot empty RC Interrupt Second on FIFO is empty on FIFO is empty t CRC bit RC serial shifter ial shifter is turn ata Word Little- d is shifted into	ation in Idle m e bits d words in the t election bit pty; final word plete and CRC r ned off Endian Configo the CRC star	ode FIFO. Has a m of data is still s CWDAT results guration bit	naximum value shifting through are ready Sb (little endiar	CRC	N<4:0> > 7		
bit 7 bit 6 bit 5	 0 = Continue VWORD<4:0: Indicates the or 16 when Pl CRCFUL: CR 1 = FIFO is fit 0 = FIFO is n CRCMPT: CR 1 = FIFO is n CRCISEL: CF 1 = Interrupt 0 = Interrupt CRCGO: Start 1 = Starts CF 0 = CRC serit LENDIAN: Data 1 = Data wort 0 = Data wort 	s module operatives Pointer Value number of valid LEN<4: $0^{5} \leq 7$. C FIFO Full bit ull at full C FIFO Empty mot full C FIFO Empty mot empty RC Interrupt Second on FIFO is empty on FIFO is empty t CRC bit RC serial shifter ial shifter is turn ata Word Little- d is shifted into	ation in Idle m e bits d words in the t d Bit election bit pty; final word plete and CRC r med off Endian Config the CRC star o the CRC star	ode FIFO. Has a m of data is still s CWDAT results guration bit	naximum value shifting through are ready	CRC	N<4:0> > 7		

FIGURE 30-23: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

TABLE 30-42: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max. Units Conditions				Conditions
SP10	FscP	Maximum SCK1 Frequency	—		15	MHz	(Note 3)
SP20	TscF	SCK1 Output Fall Time	-	_	_	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK1 Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	-	_	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	—	—	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	6	20	ns	
SP36	TdiV2scH, TdiV2scL	SDO1 Data Output Setup to First SCK1 Edge	30			ns	


Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCK1 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPI1 pins.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

FIGURE 30-36: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000, SSRCG = 0)

31.0 HIGH-TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C.

The specifications between -40° C to $+150^{\circ}$ C are identical to those shown in **Section 30.0** "**Electrical Characteristics**" for operation between -40° C to $+125^{\circ}$ C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter DC10 in **Section 30.0 "Electrical Characteristics"** is the Industrial and Extended temperature equivalent of HDC10.

Absolute maximum ratings for the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X high-temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias ⁽²⁾	40°C to +150°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽³⁾	0.3V to 3.6V
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(3)}$	0.3V to 5.5V
Maximum current out of Vss pin	60 mA
Maximum current into Vod pin ⁽⁴⁾	60 mA
Maximum junction temperature	+155°C
Maximum current sourced/sunk by any 4x I/O pin	10 mA
Maximum current sourced/sunk by any 8x I/O pin	15 mA
Maximum current sunk by all ports combined	70 mA
Maximum current sourced by all ports combined ⁽⁴⁾	70 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: AEC-Q100 reliability testing for devices intended to operate at +150°C is 1,000 hours. Any design in which the total operating time from +125°C to +150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
 - 3: Refer to the "Pin Diagrams" section for 5V tolerant pins.
 - 4: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).

31.1 High-Temperature DC Characteristics

TABLE 31-1: OPERATING MIPS VS. VOLTAGE

			Max MIPS
Characteristic	VDD Range (in Volts)	Temperature Range (in °C)	dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X
HDC5	3.0 to 3.6V ⁽¹⁾	-40°C to +150°C	40

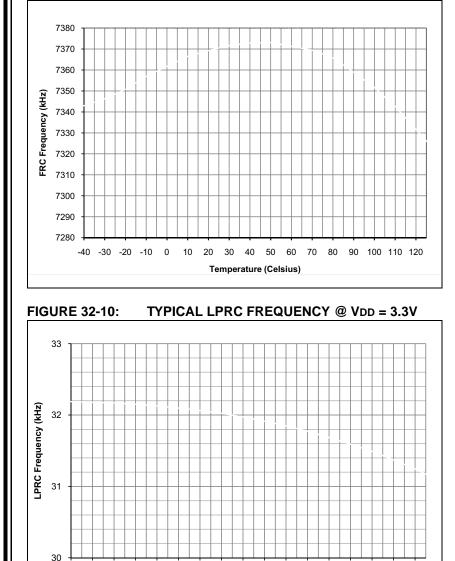

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules, such as the ADC, may have degraded performance. Device functionality is tested but not characterized.

TABLE 31-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
High-Temperature Devices					
Operating Junction Temperature Range		-40	—	+155	°C
Operating Ambient Temperature Range		-40	_	+150	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	I	Pint + Pi/c)	W
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	IA	W

TABLE 31-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$					
Parameter No.	Symbol	Characteristic	Min Typ Max Units Conditions					
Operating V	Operating Voltage							
HDC10	Supply Voltage							
	Vdd	_	3.0	3.3	3.6	V	-40°C to +150°C	

Temperature (Celsius)

70 80 90 100 110 120

TYPICAL FRC FREQUENCY @ VDD = 3.3V

-40 -30 -20 -10

0 10 20 30 40 50 60

FIGURE 32-9:

Section Name	Update Description
Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X Devices Only)"	Updated the High-Speed PWM Module Register Interconnection Diagram (see Figure 16-2). Added the TRGCONx and TRIGx registers (see Register 16-12 and Register 16-14, respectively).
Section 21.0 "Enhanced CAN (ECAN™) Module (dsPIC33EPXXXGP/MC50X Devices Only)"	Updated the CANCKS bit value definitions in CiCTRL1: ECAN Control Register 1 (see Register 21-1).
Section 22.0 "Charge Time Measurement Unit (CTMU)"	Updated the IRNG<1:0> bit value definitions and added Note 2 in the CTMU Current Control Register (see Register 22-3).
Section 25.0 "Op amp/ Comparator Module"	Updated the Op amp/Comparator I/O Operating Modes Diagram (see Figure 25-1). Updated the User-programmable Blanking Function Block Diagram (see Figure 25-3). Updated the Digital Filter Interconnect Block Diagram (see Figure 25-4). Added Section 25.1 "Op amp Application Considerations ". Added Note 2 to the Comparator Control Register (see Register 25-2). Updated the bit definitions in the Comparator Mask Gating Control Register (see Register 25-5).
Section 27.0 "Special Features"	Updated the FICD Configuration Register, updated Note 1, and added Note 3 in the Configuration Byte Register Map (see Table 27-1). Added Section 27.2 "User ID Words" .
Section 30.0 "Electrical Characteristics"	 Updated the following Absolute Maximum Ratings: Maximum current out of Vss pin Maximum current into VDD pin Added Note 1 to the Operating MIPS vs. Voltage (see Table 30-1).
	Updated all Idle Current (IIDLE) Typical and Maximum DC Characteristics values (see Table 30-7).
	Updated all Doze Current (IDOZE) Typical and Maximum DC Characteristics values (see Table 30-9).
	Added Note 2, removed Parameter CM24, updated the Typical values Parameters CM10, CM20, CM21, CM32, CM41, CM44, and CM45, and updated the Minimum values for CM40 and CM41, and the Maximum value for CM40 in the AC/DC Characteristics: Op amp/Comparator (see Table 30-14).
	Updated Note 2 and the Typical value for Parameter VR310 in the Op amp/ Comparator Reference Voltage Settling Time Specifications (see Table 30-15).
	Added Note 1, removed Parameter VRD312, and added Parameter VRD314 to the Op amp/Comparator Voltage Reference DC Specifications (see Table 30-16).
	Updated the Minimum, Typical, and Maximum values for Internal LPRC Accuracy (see Table 30-22).
	Updated the Minimum, Typical, and Maximum values for Parameter SY37 in the Reset, Watchdog Timer, Oscillator Start-up Timer, Power-up Timer Timing Requirements (see Table 30-24).
	The Maximum Data Rate values were updated for the SPI2 Maximum Data/Clock Rate Summary (see Table 30-35)

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)