E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I²C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (10.7K x 24)
Program Memory Type	FLASH
EEPROM Size	- ·
RAM Size	2K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep32mc202-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4	-12:	PWM RI	EGISTE	R MAP	FOR de	sPIC33E	PXXXN	AC20X/50	DX AND F	PIC24EP	PXXXM	C20X [DEVICE	S ONI	_Y			
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0C00	PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SY	NCSRC<	2:0>		SEV	/TPS<3:0>		0000
PTCON2	0C02	_	—	_	_	_	—	_	—	—	_	—	_	—		PCLKDIV<2:	0>	0000
PTPER	0C04								PTPER<15	:0>								00F8
SEVTCMP	0C06								SEVTCMP<	5:0>								0000
MDC	0C0A								MDC<15:)>								0000
CHOP	0C1A	CHPCLKEN	_	_	_	_	_					CHOPCI	_K<9:0>					0000
PWMKEY	0C1E								PWMKEY<1	5:0>								0000
Legend: -	– = unir	mplemented, re	ead as '0'.	Reset valu	es are show	vn in hexade	ecimal.											-

TABLE 4-13: PWM GENERATOR 1 REGISTER MAP FOR dsPIC33EPXXXMC20X/50X AND PIC24EPXXXMC20X DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON1	0C20	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	<1:0>	DTCP	—	MTBS	CAM	XPRES	IUE	0000
IOCON1	0C22	PENH	PENL	POLH	POLL	PMOD	PMOD<1:0> OVRENH OVRENL OVRDAT<1:0> FLTDAT<1:0> CLDAT<1:0> SWAP					SWAP	OSYNC	C000				
FCLCON1	0C24	_		(CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0> FLTPOL FLTMOD<1:0>						D<1:0>	0000						
PDC1	0C26								PDC1<15:	0>								FFF8
PHASE1	0C28								PHASE1<15	5:0>								0000
DTR1	0C2A	_	_							DTR1<13	:0>							0000
ALTDTR1	0C2C	_	_						A	LTDTR1<1	13:0>							0000
TRIG1	0C32								TRGCMP<1	5:0>								0000
TRGCON1	0C34		TRGDI	V<3:0>		_	_	—	_	_	_			TRG	STRT<5:0	>		0000
LEBCON1	0C3A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY1	0C3C	_	_	_	—						LEB<11	:0>						0000
AUXCON1	0C3E	_	_	_	—		BLANKS	SEL<3:0>		_	_		CHOPS	EL<3:0>		CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.5.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions. which apply to dsPIC33EPXXXGP50X. dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices, and the DSP accumulator class of instructions, which apply to the dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X devices, provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.5.4 MAC INSTRUCTIONS (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X DEVICES ONLY)

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

The Two-Source Operand Prefetch registers must be members of the set: {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must therefore, be valid addresses within X Data Space for W8 and W9, and Y Data Space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- · Register Indirect
- Register Indirect Post-Modified by 2
- · Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.5.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as a NOP, do not have any operands.

4.6.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than, or greater than, the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed but the contents of the register remain unchanged.

4.7 Bit-Reversed Addressing (dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X Devices Only)

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.7.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled when all these conditions are met:

- BWMx bits (W register selection) in the MODCON register are any value other than '1111' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^{N}$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XBREV<14:0> is the Bit-Reversed Addressing modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word-sized data (LSb of every EA is always
	clear). The XBREVx value is scaled
	accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XBREVx) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note: Modulo Addressing and Bit-Reversed Addressing can be enabled simultaneously using the same W register, but Bit-Reversed Addressing operation will always take precedence for data writes when enabled.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

7.3 Interrupt Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter
	this ORL in your prowser.
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

7.3.1 KEY RESOURCES

- "Interrupts" (DS70600) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

7.4 Interrupt Control and Status Registers

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- INTTREG

7.4.1 INTCON1 THROUGH INTCON4

Global interrupt control functions are controlled from INTCON1, INTCON2, INTCON3 and INTCON4.

INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS), as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior and also contains the Global Interrupt Enable bit (GIE).

INTCON3 contains the status flags for the DMA and DO stack overflow status trap sources.

The INTCON4 register contains the software generated hard trap status bit (SGHT).

7.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.4.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number bits (VECNUM<7:0>) and Interrupt Priority Level bits (ILR<3:0>) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

7.4.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers refer to "**CPU**" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual".

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-3 through Register 7-7 in the following pages.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT	DL2	DL1	DL0
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit

bit 15	VAR: Variable Exception Processing Latency Control
	1 = Variable exception processing is enabled
	0 = Fixed exception processing is enabled
bit 3	IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾
	1 = CPU Interrupt Priority Level is greater than 7
	0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	_	PPST3	PPST2	PPST1	PPST0
bit 7							bit 0

REGISTER 8-14: DMAPPS: DMA PING-PONG STATUS REGISTER

Legend:				
R = Readal	ole bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-4	Unimple	mented: Read as '0'		
bit 3	PPST3: [MA Channel 3 Ping-Pong	Mode Status Flag bit	
	1 = DMA	STB3 register is selected		
	0 = DMA	STA3 register is selected		
bit 2	PPST2: [MA Channel 2 Ping-Pong	Mode Status Flag bit	
	1 = DMA	STB2 register is selected		
	0 = DMA	STA2 register is selected		
bit 1	PPST1: [MA Channel 1 Ping-Pong	Mode Status Flag bit	

- 1 = DMASTB1 register is selected0 = DMASTA1 register is selected
- bit 0 PPST0: DMA Channel 0 Ping-Pong Mode Status Flag bit
 - 1 = DMASTB0 register is selected
 - 0 = DMASTA0 register is selected

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	—	—	_	—	_	—
bit 15		L	I	4			bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INT2R<6:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown							
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
-n = Value at F bit 15-7	POR Unimplemen	<pre>'1' = Bit is set ted: Read as '0</pre>	0'	ʻ0' = Bit is cle	ared	x = Bit is unkr	iown
-n = Value at F bit 15-7 bit 6-0	Unimplement INT2R<6:0>: (see Table 11-	'1' = Bit is set ted: Read as '0 Assign Externa -2 for input pin)' al Interrupt 2 (selection nun	'0' = Bit is cle (INT2) to the C nbers)	orresponding R	x = Bit is unkr Pn Pin bits	iown
-n = Value at F bit 15-7 bit 6-0	POR Unimplement INT2R<6:0>: (see Table 11- 1111001 = In	'1' = Bit is set ted: Read as '0 Assign Externa -2 for input pin uput tied to RPI	o' al Interrupt 2 (selection nun 121	'0' = Bit is cle (INT2) to the C nbers)	ared	x = Bit is unkr Pn Pin bits	iown
-n = Value at F bit 15-7 bit 6-0	OR Unimplemen INT2R<6:0>: (see Table 11- 1111001 = In	'1' = Bit is set ted: Read as '(Assign Externa -2 for input pin put tied to RPI	o' al Interrupt 2 (selection nun 121	'0' = Bit is cle (INT2) to the C nbers)	orresponding R	x = Bit is unkr Pn Pin bits	iown
-n = Value at F bit 15-7 bit 6-0	POR Unimplement INT2R<6:0>: (see Table 11- 1111001 = In	'1' = Bit is set ted: Read as '0 Assign Externa 2 for input pin uput tied to RPI	o' al Interrupt 2 (selection nun 121	'0' = Bit is cle (INT2) to the C nbers)	orresponding R	x = Bit is unkr Pn Pin bits	iown
-n = Value at F bit 15-7 bit 6-0	POR Unimplement INT2R<6:0>: (see Table 11- 1111001 = In	'1' = Bit is set ted: Read as '0 Assign Externa 2 for input pin put tied to RPI	o' al Interrupt 2 (selection nun 121 P1	'0' = Bit is cle (INT2) to the C nbers)	orresponding R	x = Bit is unkr Pn Pin bits	iown
-n = Value at F bit 15-7 bit 6-0	Unimplement INT2R<6:0>: (see Table 11- 1111001 = In 0000001 = In 0000000 = In	'1' = Bit is set ted: Read as '0 Assign Externa 2 for input pin put tied to RPI put tied to CMI put tied to Vss	o' al Interrupt 2 (selection nun 121 P1	'0' = Bit is cle (INT2) to the C nbers)	orresponding R	x = Bit is unkr	iown

REGISTER 11-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

REGISTER 11-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	_		_				_	
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—				T2CKR<6:0>				
bit 7							bit 0	
Legend:								
R = Readabl	le bit	W = Writable I	bit	U = Unimplem	nented bit, read	as '0'		
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-7	Unimplemen	ted: Read as 'o)'					
bit 15-7 bit 6-0	Unimplemen T2CKR<6:0> (see Table 11	ted: Read as '(: Assign Timer2 -2 for input pin)' 2 External Clo selection nur	ock (T2CK) to th nbers)	e Correspondi	ng RPn pin bits		
bit 15-7 bit 6-0	Unimplemen T2CKR<6:0> (see Table 11 1111001 = Ir	ted: Read as '(: Assign Timer2 -2 for input pin nput tied to RPI) [;] 2 External Clo selection nur 121	ock (T2CK) to th nbers)	ie Correspondii	ng RPn pin bits		
bit 15-7 bit 6-0	Unimplemen T2CKR<6:0> (see Table 11 1111001 = Ir	ted: Read as '(: Assign Timer2 -2 for input pin nput tied to RPI) [;] 2 External Clo selection nur 121	ock (T2CK) to th nbers)	e Correspondi	ng RPn pin bits		
bit 15-7 bit 6-0	Unimplemen T2CKR<6:0> (see Table 11 1111001 = Ir	ted: Read as ' : Assign Timer2 -2 for input pin nput tied to RPI)' 2 External Cle selection nur 121	ock (T2CK) to th nbers)	e Correspondi	ng RPn pin bits		
bit 15-7 bit 6-0	Unimplemen T2CKR<6:0> (see Table 11 1111001 = Ir	ted: Read as 'c : Assign Timer2 -2 for input pin nput tied to RPI)' 2 External Clo selection nur 121 P1	ock (T2CK) to th nbers)	le Correspondi	ng RPn pin bits		
bit 15-7 bit 6-0	Unimplemen T2CKR<6:0> (see Table 11 1111001 = Ir 0000001 = Ir 0000000 = Ir	ted: Read as '(: Assign Timer2 -2 for input pin nput tied to RPI nput tied to CMI nput tied to Vss)' 2 External Clo selection nur 121 P1	ock (T2CK) to th nbers)	e Correspondi	ng RPn pin bits		

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	IC32
bit 15							bit 8
R/W-0	R/W/HS-0	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

bit 7			bit 0
Legend:	HS = Hardware Settal	ble bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	

SYNCSEL4⁽⁴⁾ SYNCSEL3⁽⁴⁾ SYNCSEL2⁽⁴⁾ SYNCSEL1⁽⁴⁾

SYNCSEL0⁽⁴⁾

		P	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9 Unimplemented: Read as '0'

TRIGSTAT⁽³⁾

ICTRIG⁽²⁾

bit 8

- IC32: Input Capture 32-Bit Timer Mode Select bit (Cascade mode)
 - 1 = Odd IC and Even IC form a single 32-bit input capture module⁽¹⁾
 - 0 = Cascade module operation is disabled

bit 7 ICTRIG: Input Capture Trigger Operation Select bit⁽²⁾

- 1 = Input source used to trigger the input capture timer (Trigger mode)
- 0 = Input source used to synchronize the input capture timer to a timer of another module (Synchronization mode)

bit 6 **TRIGSTAT:** Timer Trigger Status bit⁽³⁾

- 1 = ICxTMR has been triggered and is running
- 0 = ICxTMR has not been triggered and is being held clear

bit 5 Unimplemented: Read as '0'

- **Note 1:** The IC32 bit in both the Odd and Even IC must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits). It can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own Sync or Trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.
 - 6: Each Input Capture x (ICx) module has one PTG input source. See Section 24.0 "Peripheral Trigger Generator (PTG) Module" for more information.

PTGO8 = IC1 PTGO9 = IC2 PTGO10 = IC3 PTGO11 = IC4

DS70000657H-page 216

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL ⁽²⁾	CLMOD
bit 15		•	•				bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL ⁽²⁾	FLTMOD1	FLTMOD0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-10	CLSRC<4:0>	Current-Limit	Control Signa	al Source Sele	ct for PWM Ger	nerator # bits	
	11111 = Fau	lt 32					
	11110 = Res	served					
	•						
	•	anyod					
	01100 = Res 01011 = Con	nparator 4					
	01010 = Op	Amp/Comparat	or 3				
	01001 = Op	Amp/Comparat	or 2				
	01000 = Op	Amp/Comparat	or 1				
	00111 = Res	erved					
	00101 = Res	erved					
	00100 = Res	erved					
	00011 = Fau	lt 4					
	00010 = Fau	lt 3					
	00000 = Fau	It 1 (default)					
bit 9	CLPOL: Curr	rent-Limit Polar	ity for PWM G	enerator # bit	2)		
	1 = The selec	cted current-lim	it source is ac	tive-low			
	0 = The selec	cted current-lim	it source is ac	tive-high			
bit 8	CLMOD: Cur	rent-Limit Mode	e Enable for P	WM Generato	er # bit		
	1 = Current-L	imit mode is er	nabled				
	0 = Current-L	imit mode is di	sabled				
Note 1: If the	he PWMLOCK	Configuration b	it (FOSCSEL·	<6>) is a '1', th	ne IOCONx regi	ster can only be	e written after
the	unlock sequen	ice has been ex	cecuted.				

REGISTER 16-15: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER⁽¹⁾

2: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 17-2: QEI1IOC: QEI1 I/O CONTROL REGISTER (CONTINUED)

- bit 2 INDEX: Status of INDXx Input Pin After Polarity Control
 - 1 = Pin is at logic '1'
 - 0 = Pin is at logic '0'
- bit 1 QEB: Status of QEBx Input Pin After Polarity Control And SWPAB Pin Swapping 1 = Pin is at logic '1' 0 = Pin is at logic '0'
- bit 0 **QEA:** Status of QEAx Input Pin After Polarity Control And SWPAB Pin Swapping 1 = Pin is at logic '1'
 - 0 = Pin is at logic '0'

FIGURE 18-1: SPIX MODULE BLOCK DIAGRAM

19.0 INTER-INTEGRATED CIRCUIT[™] (I²C[™])

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXGP50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Inter-Integrated Circuit™ (I²C™)" (DS70330) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.
 - 3: There are minimum bit rates of approximately FCY/512. As a result, high processor speeds may not support 100 Kbit/second operation. See timing specifications, IM10 and IM11, and the "Baud Rate Generator" in the "dsPIC33/PIC24 Family Reference Manual".

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X family of devices contains two Inter-Integrated Circuit (I²C) modules: I2C1 and I2C2.

The l^2C module provides complete hardware support for both Slave and Multi-Master modes of the l^2C serial communication standard, with a 16-bit interface.

The I^2C module has a 2-pin interface:

- · The SCLx pin is clock
- The SDAx pin is data

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation
- I²C Slave mode supports 7 and 10-bit addressing
- I²C Master mode supports 7 and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly
- Intelligent Platform Management Interface (IPMI)
 support
- System Management Bus (SMBus) support

R/W-0	R/W	-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
VCFG2	VCFC	G1	VCFG0		_	CSCNA	CHPS1	CHPS0		
bit 15						·		bit 8		
R-0	R/W	-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
BUFS	SMP	SMPI4 SMPI3		SMPI2	SMPI1	SMPI0	BUFM	ALTS		
bit 7								bit 0		
Legend:										
R = Readable	bit		W = Writable	bit	U = Unimpl	emented bit, read	d as '0'			
-n = Value at	POR		'1' = Bit is set		'0' = Bit is c	leared	x = Bit is unk	nown		
bit 15-13	VCFG<	2:0>:	Converter Volt	age Reference	Configuratio	n bits				
	Value		VREFH	VREFL						
	000		Avdd	Avss						
	001	Ext	ernal VREF+	Avss						
	010		Avdd	External VRE	F-					
	011	Ext	ernal VREF+	External VRE	F-					
	1xx		Avdd	Avss						
bit 12-11	Unimple	emen	ted: Read as '	0'						
bit 10	CSCNA	CSCNA: Input Scan Select bit								
	1 = Scans inputs for CH0+ during Sample MUXA									
	0 = Doe	s not	scan inputs							
bit 9-8	CHPS<	CHPS<1:0>: Channel Select bits								
	<u>In 12-bit</u>	In 12-bit mode (AD21B = 1), the CHPS<1:0> bits are Unimplemented and are Read as '0':								
	1x = Converts CH0, CH1, CH2 and CH3									
	01 = C0 00 = Co	nvert	s CH0 and CH	1						
bit 7	BUFS: Buffer Fill Status bit (only valid when BUFM = 1)									
	1 = AD	1 = ADC is currently filling the second half of the buffer; the user application should access data in the								
	first half of the buffer									
	0 = ADC is currently filling the first half of the buffer; the user application should access data in the second half of the buffer									
hit 6 2	Sec SMDI - 4		neromont Date	l bite						
Dit 0-2	When A	SMPI<4:0>: Increment Kate bits								
	x1111 =	<u>when ADDWAEN = 0:</u> x1111 = Generates interrupt after completion of every 16th sample/conversion operation								
	x1110 =	x1110 = Generates interrupt after completion of every 15th sample/conversion operation								
	•									
	•									
	x0001 =	= Gen	erates interrup	t after completio	on of everv 2	2nd sample/conv	ersion operatio	on		
	x0000=	= Gen	erates interrup	t after completion	on of every s	sample/conversion	on operation			
	When A	DDM/	AEN = 1:							
	11111 =	= Incre	ements the DM	IA address after	completion	of every 32nd sa	ample/conversi	on operation		
	11110 =	= Incre	ements the DIV	IA address after	completion	of every 31st sa	mple/conversio	on operation		
	•									
	•									
	00001 = 00000 =	00001 = Increments the DMA address after completion of every 2nd sample/conversion operation 00000 = Increments the DMA address after completion of every sample/conversion operation								

. . ACOND. ADCA CONTROL DECISTED 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
	—	—	_	—	—		ADDMAEN	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
—	—	—	—	—	DMABL2	DMABL1	DMABL0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable b	pit	U = Unimple	mented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
L								
bit 15-9	Unimplemen	ted: Read as 'o)'					
bit 8	ADDMAEN: A	ADC1 DMA Ena	able bit					
	1 = Conversio	on results are st	ored in the Al	DC1BUF0 regi	ster for transfer	to RAM using	DMA	
	0 = Conversio	on results are st	ored in ADC1	BUF0 through	ADC1BUFF reg	gisters; DMA w	vill not be used	
bit 7-3	Unimplemen	ted: Read as '0)'					
bit 2-0	DMABL<2:0>	Selects Number Selects Number	per of DMA Bu	uffer Locations	per Analog Inp	ut bits		
	111 = Allocat	es 128 words o	f buffer to eac	h analog input	t			
	110 = Allocat	es 64 words of	buffer to each	analog input				
	101 = Allocates 32 words of buffer to each analog input							
	100 = Allocat	es 16 words of	buffer to each	analog input				
		es 8 words of b	uffer to each a	analog input				
		es 2 words of h	uffer to each :	analog input				
	000 = Allocat	es 1 word of bu	ffer to each a	nalog input				
	000 - Allocates I word of build to each analog input							

REGISTER 23-4: AD1CON4: ADC1 CONTROL REGISTER 4

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADCTS	4 ADCTS3	ADCTS2	ADCTS1	IC4TSS	IC3TSS	IC2TSS	IC1TSS
bit 15							bit 8
						=	=
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
00408	00308	OC2CS	OC1CS	OC41SS	OC31SS	OC21SS	OCTISS
DIT 7							Dit U
l egend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit. read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	ADCTS4: Sa	mple Trigger P	TGO15 for AE	DC bit			
	1 = Generate	s Trigger wher	the broadcas	t command is	executed		
	0 = Does not	generate Trigg	er when the b	roadcast comr	mand is execute	ed	
bit 14	ADCIS3: Sa	mple Trigger P	IGO14 for AL	DC bit	overuted		
	0 = Does not	generate Trigo	er when the b	roadcast com	mand is execute	ed	
bit 13	ADCTS2: Sa	mple Trigger P	TGO13 for AE	DC bit			
	1 = Generate	s Trigger wher	the broadcas	t command is	executed		
	0 = Does not	generate Trigg	er when the b	roadcast comr	mand is execute	ed	
bit 12	ADCIS1: Sa	mple Trigger P	IGO12 for AL	DC bit	overuted		
	0 = Does not	generate Trigo	er when the b	roadcast com	mand is execute	ed	
bit 11	IC4TSS: Trig	ger/Synchroniz	ation Source	for IC4 bit			
	1 = Generate	s Trigger/Sync	hronization wh	nen the broadc	ast command is	s executed	
	0 = Does not	generate Trigg	jer/Synchroniz	ation when the	e broadcast con	nmand is execu	ited
bit 10	IC3TSS: Irig	ger/Synchroniz	ation Source	for IC3 bit	act command is	avagutad	
	0 = Does not	generate Trigo	er/Synchroniz	ation when the	e broadcast con	nmand is execu	ited
bit 9	IC2TSS: Trig	ger/Synchroniz	ation Source	for IC2 bit			
	1 = Generate	s Trigger/Sync	hronization wh	nen the broadd	ast command is	s executed	
	0 = Does not	generate Trigg	jer/Synchroniz	ation when the	e broadcast con	nmand is execu	ited
bit 8	IC1TSS: Trig	ger/Synchroniz	ation Source	for IC1 bit			
	0 = Does not	aenerate Triac	ier/Svnchroniz	ation when the	e broadcast con	nmand is execu	ited
bit 7	OC4CS: Cloc	ck Source for C	0C4 bit				
	1 = Generate	s clock pulse v	when the broad	dcast comman	d is executed		
	0 = Does not	generate clock	c pulse when t	he broadcast o	command is exe	ecuted	
bit 6	OC3CS: Cloc	ck Source for C	C3 bit		-l :		
	⊥ = Generate 0 = Does not	aenerate clock	onen the broad	he broadcast c	u is executed command is exe	ecuted	
bit 5	OC2CS: Cloc	ck Source for C	C2 bit				
	1 = Generate	s clock pulse v	when the broad	dcast comman	d is executed		
	0 = Does not	generate clock	c pulse when t	he broadcast o	command is exe	ecuted	
Note 1:	This register is rea PTGSTRT = 1).	ad-only when th	ne PTG modul	e is executing	Step commands	s (PTGEN = 1 a	and
2:	This register is onl	v used with the	PTGCTRL O	PTION = 1111	Step command	1.	

REGISTER 24-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2)

AC CHARA	CTERISTICS		$\label{eq:standard} \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	СКЕ	СКР	SMP	
15 MHz	Table 30-33		_	0,1	0,1	0,1	
9 MHz	—	Table 30-34	—	1	0,1	1	
9 MHz	—	Table 30-35	—	0	0,1	1	
15 MHz	—	—	Table 30-36	1	0	0	
11 MHz	—	—	Table 30-37	1	1	0	
15 MHz		_	Table 30-38	0	1	0	
11 MHz	_	_	Table 30-39	0	0	0	

TABLE 30-33: SPI2 MAXIMUM DATA/CLOCK RATE SUMMARY

FIGURE 30-14: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

FIGURE 30-38: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SSRCG = 0, SAMC<4:0> = 00010)

DS70000657H-page 464

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimension	Dimension Limits						
Number of Pins	Ν		28				
Pitch	е		0.65 BSC				
Overall Height	Α	-	-	2.00			
Molded Package Thickness	A2	1.65	1.75	1.85			
Standoff	A1	0.05	-	-			
Overall Width	E	7.40	7.80	8.20			
Molded Package Width	E1	5.00	5.30	5.60			
Overall Length	D	9.90	10.20	10.50			
Foot Length	L	0.55	0.75	0.95			
Footprint	L1		1.25 REF				
Lead Thickness	с	0.09	-	0.25			
Foot Angle	¢	0°	4°	8°			
Lead Width	b	0.22	_	0.38			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Microchip Technology Drawing C04-154A Sheet 1 of 2