

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I²C, IrDA, LINbus, QEI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (10.7K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 16
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24ep32mc202t-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.5 X AND Y DATA SPACES

The dsPIC33EPXXXMC20X/50X and dsPIC33EPXXXGP50X core has two Data Spaces, X and Y. These Data Spaces can be considered either separate (for some DSP instructions) or as one unified linear address range (for MCU instructions). The Data Spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X Data Space is used by all instructions and supports all addressing modes. X Data Space has separate read and write data buses. The X read data bus is the read data path for all instructions that view Data Space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y Data Space is used in concert with the X Data Space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y Data Spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X Data Space. Modulo Addressing and Bit-Reversed Addressing are not present in PIC24EPXXXGP/MC20X devices.

All data memory writes, including in DSP instructions, view Data Space as combined X and Y address space. The boundary between the X and Y Data Spaces is device-dependent and is not user-programmable.

4.3 Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en555464

4.3.1 KEY RESOURCES

- "Program Memory" (DS70613) in the "dsPIC33/ PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGP50X DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_	_	_	_	_	—	_	_	—	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4		_	_	—	_	_		_	_	—	DAE	DOOVR	—	_	_		0000
INTCON4	08C6		_				Ι	_			—	_		—			SGHT	0000
INTTREG	08C8	_	_	_	_		ILR<	3:0>					VECNU	M<7:0>				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

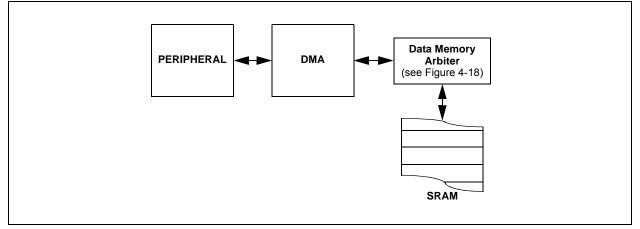
R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0						
GIE	DISI	SWTRAP				_							
bit 15							bit 8						
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0						
	—				INT2EP	INT1EP	INT0EP						
bit 7							bit C						
Legend:													
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'							
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unknown							
bit 15	GIE: Global	Interrupt Enable	e bit										
	1 = Interrupts and associated IE bits are enabled												
		s are disabled, I	•	still enabled									
bit 14	DISI: DISI	DISI: DISI Instruction Status bit											
		struction is active struction is not a	-										
bit 13	SWTRAP: S	SWTRAP: Software Trap Status bit											
		e trap is enabled e trap is disabled											
bit 12-3	Unimpleme	nted: Read as '	0'										
bit 2	INT2EP: Ext	T2EP: External Interrupt 2 Edge Detect Polarity Select bit											
		on negative edg											
bit 1	INT1EP: Ext	INT1EP: External Interrupt 1 Edge Detect Polarity Select bit											
		on negative edg											
bit 0	INTOEP: Ext	ternal Interrupt C	Edge Detec	t Polarity Selec	t bit								
		on negative edg											

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Direct Memory Access (DMA)" (DS70348) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

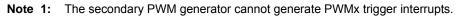
The DMA Controller transfers data between Peripheral Data registers and Data Space SRAM


In addition, DMA can access the entire data memory space. The Data Memory Bus Arbiter is utilized when either the CPU or DMA attempts to access SRAM, resulting in potential DMA or CPU stalls.

The DMA Controller supports 4 independent channels. Each channel can be configured for transfers to or from selected peripherals. Some of the peripherals supported by the DMA Controller include:

- ECAN[™]
- Analog-to-Digital Converter (ADC)
- Serial Peripheral Interface (SPI)
- UART
- Input Capture
- Output Compare

Refer to Table 8-1 for a complete list of supported peripherals.


FIGURE 8-1: DMA CONTROLLER MODULE

NOTES:

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
	TRGD	V<3:0>		—		—	_				
bit 15							bit 8				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_				TRGSTF	RT<5:0> (1)						
bit 7							bit				
Legend:	1. 1.4										
R = Readab		W = Writable		•	nented bit, read						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 15-12)>: Trigger # Ou	-								
	1111 = Trigger output for every 16th trigger event										
	1110 = Trigger output for every 15th trigger event										
	1101 = Trigger output for every 14th trigger event 1100 = Trigger output for every 13th trigger event										
		ger output for ev									
		ger output for ev									
		ger output for ev									
		per output for ev									
		per output for ev									
		ger output for ev									
		ger output for ev									
	0100 = Trigg	ger output for ev	ery 5th trigge	r event							
		ger output for ev									
		ger output for ev									
	0001 = Trigger output for every 2nd trigger event										
	0000 = Trigg	ger output for ev	ery trigger ev	ent							
bit 11-6	-	nted: Read as '									
bit 5-0	TRGSTRT<	5:0>: Trigger Po	stscaler Start	Enable Select	bits ⁽¹⁾						
	111111 = Waits 63 PWM cycles before generating the first trigger event after the module is enabled										
	•										
	•			·							
	•			-							
	•			-							
	• • •	aits 2 PW/M ava	les hefore co	nerating the fire	t trigger event :	after the module	a is anabled				
		/aits 2 PWM cyc /aits 1 PWM cyc									

REGISTER 16-12: TRGCONx: PWMx TRIGGER CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			TRGC	MP<15:8>						
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			TRGC	MP<7:0>						
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	'0' = Bit is cleared x = Bit is unknown				

REGISTER 16-14: TRIGX: PWMx PRIMARY TRIGGER COMPARE VALUE REGISTER

bit 15-0 TRGCMP<15:0>: Trigger Control Value bits

When the primary PWMx functions in local time base, this register contains the compare values that can trigger the ADC module.

REGISTER 17-3: QEI1STAT: QEI1 STATUS REGISTER (CONTINUED)

bit 2	HOMIEN: Home Input Event Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled
bit 1	IDXIRQ: Status Flag for Index Event Status bit 1 = Index event has occurred 0 = No Index event has occurred
bit 0	IDXIEN: Index Input Event Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled

Note 1: This status bit is only applicable to PIMOD<2:0> modes, '011' and '100'.

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			INTHL	D<31:24>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			INTHL	D<23:16>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown					

bit 15-0 INTHLD<31:16>: Hold Register for Reading and Writing INT1TMRH bits

REGISTER 17-20: INT1HLDL: INTERVAL 1 TIMER HOLD LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			INTHL	.D<15:8>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			INTH	_D<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown					

bit 15-0 INTHLD<15:0>: Hold Register for Reading and Writing INT1TMRL bits

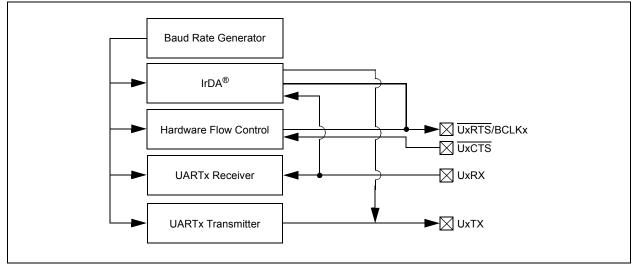
20.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "UART" (DS70582) in the "dsPIC33/ PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X family of devices contains two UART modules.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/ 50X and PIC24EPXXXGP/MC20X device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.

Note: <u>Hardware</u> flow control using UxRTS and UxCTS is not available on all pin count devices. See the "**Pin Diagrams**" section for availability.


The primary features of the UARTx module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 4.375 Mbps to 67 bps at 16x mode at 70 MIPS
- Baud Rates Ranging from 17.5 Mbps to 267 bps at 4x mode at 70 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- A Separate Interrupt for all UARTx Error Conditions
- · Loopback mode for Diagnostic Support
- · Support for Sync and Break Characters
- Support for Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UARTx module is shown in Figure 20-1. The UARTx module consists of these key hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 20-1: UARTx SIMPLIFIED BLOCK DIAGRAM

© 2011-2013 Microchip Technology Inc.

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	 ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle 0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	<pre>FERR: Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected</pre>
bit 1	 OERR: Receive Buffer Overrun Error Status bit (clear/read-only) 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed; clearing a previously set OERR bit (1 → 0 transition) resets the receiver buffer and the UxRSR to the empty state
bit 0	 URXDA: UARTx Receive Buffer Data Available bit (read-only) 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to the "**UART**" (DS70582) section in the "*dsPIC33/PIC24 Family Reference Manual*" for information on enabling the UARTx module for transmit operation.

21.4 ECAN Control Registers

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	
—	—	CSIDL	ABAT	CANCKS	REQOP2	REQOP1	REQOP0	
bit 15							bit 8	
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0	
OPMODE2	OPMODE1	OPMODE0	_	CANCAP			WIN	
bit 7							bit (
Legend:								
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, read	d as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is				x = Bit is unkr	nown			
bit 15-14	Unimplemen	ted: Read as 'o)'					
bit 13	CSIDL: ECAN	Nx Stop in Idle I	Node bit					
		ues module opera module opera		device enters I ode	dle mode			
bit 12	ABAT: Abort	All Pending Tra	nsmissions b	bit				
	 1 = Signals all transmit buffers to abort transmission 0 = Module will clear this bit when all transmissions are aborted 							
bit 11	CANCKS: EC	ANx Module C	lock (FCAN)	Source Select b	bit			
	1 = FCAN is equal to 2 * FP 0 = FCAN is equal to FP							
bit 10-8	111 = Set Lis 110 = Reserv 101 = Reserv 100 = Set Co 011 = Set Lis 010 = Set Loc 001 = Set Dis	ed nfiguration moo ten Only mode opback mode	es mode le	bits				
bit 7-5	111 = Module 110 = Reserv 101 = Reserv 100 = Module		Messages n ation mode	node				
	010 = Module 001 = Module 000 = Module	e is in Loopback e is in Disable n e is in Normal C	mode node operation mod	de				
bit 4	-	ted: Read as '						
bit 3		nput capture ba		Capture Event message recei				
bit 2-1		ted: Read as '(ı'					
bit 0	-	ap Window Sele						
UIL U	1 = Uses filter	-	יטו אונ					

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

REGISTER 21-17: CxRXFnEID: ECANx ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTER (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Message address bit, EIDx, must be '1' to match filter

0 = Message address bit, EIDx, must be '0' to match filter

REGISTER 21-18: CxFMSKSEL1: ECANx FILTER 7-0 MASK SELECTION REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F7MS	SK<1:0>	F6MS	K<1:0>	F5MS	K<1:0>	F4MS	K<1:0>	
bit 15		·					bit	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F3MS	SK<1:0>	F2MS	2MSK<1:0> F1MSK<1:0> F0MSK<1		K<1:0>			
bit 7							bit (
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	nown	
	01 = Accept	red ance Mask 2 reg ance Mask 1 reg ance Mask 0 reg	gisters contain	mask				
bit 13-12	F6MSK<1:0	>: Mask Source	for Filter 6 bit	s (same values	s as bits<15:14	>)		
bit 11-10	F5MSK<1:0	>: Mask Source	for Filter 5 bit	s (same values	s as bits<15:14	>)		
bit 9-8	F4MSK<1:0	>: Mask Source	for Filter 4 bit	s (same values	s as bits<15:14	>)		
bit 7-6	F3MSK<1:0	>: Mask Source	for Filter 3 bit	s (same values	s as bits<15:14	>)		
bit 5-4	F2MSK<1:0	>: Mask Source	for Filter 2 bit	s (same values	s as bits<15:14	>)		
bit 3-2	F1MSK<1:0	>: Mask Source	for Filter 1 bit	er 1 bits (same values as bits<15:14>)				
						.)		

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X AND PIC24EPXXXGP/MC20X

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1				
bit 15							bit 8				
U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
—	—	_	RB0	DLC3	DLC2	DLC1	DLC0				
bit 7							bit 0				
Lonondi											
Legend:	l. h.:.		L.11			-l (O)					
R = Readable bit W = Writable bit				•	mented bit, read						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown				
bit 15-10	EID<5:0>: E	xtended Identifi	er bits								
bit 9	RTR: Remote Transmission Request bit										
	When IDE = 1:										
	•	1 = Message will request remote transmission									
		0 = Normal message									
	When IDE = The RTR bit										
h :+ 0	RB1: Reserv										
bit 8			or CAN proto								
	User must set this bit to '0' per CAN protocol.										
bit 7-5	•	nted: Read as '	0								
bit 4	RB0: Reserv										
	User must se	et this bit to '0' p	per CAN proto	ocol.							
hit 2 0	DLC 23.0 Data Langth Cada hita										

BUFFER 21-3: ECAN™ MESSAGE BUFFER WORD 2

bit 3-0 DLC<3:0>: Data Length Code bits

BUFFER 21-4: ECAN[™] MESSAGE BUFFER WORD 3

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			Ву	/te 1				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			Ву	rte 0				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		

bit 15-8 Byte 1<15:8>: ECAN Message Byte 1 bits

bit 7-0 Byte 0<7:0>: ECAN Message Byte 0 bits

27.2 User ID Words

dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X devices contain four User ID Words, located at addresses, 0x800FF8 through 0x800FFE. The User ID Words can be used for storing product information such as serial numbers, system manufacturing dates, manufacturing lot numbers and other application-specific information.

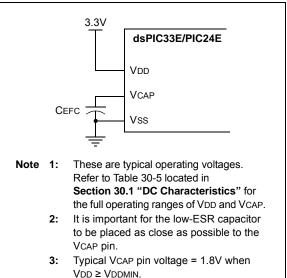
The User ID Words register map is shown in Table 27-3.

TABLE 27-3:USER ID WORDS REGISTER
MAP

File Name	Address	Bits 23-16	Bits 15-0
FUID0	0x800FF8	_	UID0
FUID1	0x800FFA	_	UID1
FUID2	0x800FFC	_	UID2
FUID3	0x800FFE	_	UID3

Legend: — = unimplemented, read as '1'.

27.3 On-Chip Voltage Regulator


All of the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/ MC20X devices power their core digital logic at a nominal 1.8V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33EPXXXGP50X, dsPIC33EPXXXMC20X/50X and PIC24EPXXXGP/MC20X family incorporate an onchip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. A low-ESR (less than 1 Ohm) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 27-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 30-5 located in **Section 30.0 "Electrical Characteristics"**.

Note: It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin.

FIGURE 27-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE

REGULATOR^(1,2,3)

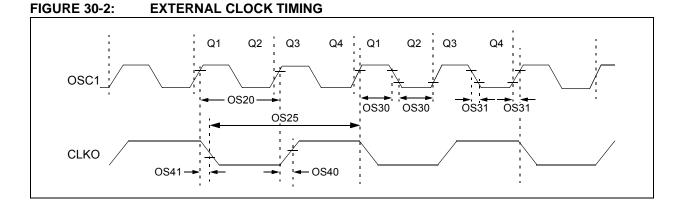
27.4 Brown-out Reset (BOR)

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to Parameter SY35 in Table 30-22 of **Section 30.0 "Electrical Characteristics"** for specific TFSCM values.


The BOR status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
9	BTG	BTG	f,#bit4	Bit Toggle f			None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	4	SFA
		CALL	Wn	Call indirect subroutine	1	4	SFA
		CALL.L	Wn	Call indirect subroutine (long address)	1	4	SFA
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc, Wx, Wxd, Wy, Wyd, AWB ⁽¹⁾	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	СОМ	COM	f	f = f	1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CPO	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CPO	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
	CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, branch if =	1	1 (5)	None
22	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, branch if >	1	1 (5)	None
23	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
	CPBLT	CPBLT	Wb,Wn,Expr	Compare Wb with Wn, branch if <	1	1 (5)	None
24	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
	CPBNE	CPBNE	Wb,Wn,Expr	Compare Wb with Wn, branch if ≠	1	1 (5)	None

TABLE 28-2:	INSTRUCTION SET OVERVIEW (CONTINUED)
		CONTINUED	,

Note 1: These instructions are available in dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X devices only.

2: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

AC CHA	RACTE	RISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symb	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions		
OS10	Fin	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	60	MHz	EC		
		Oscillator Crystal Frequency	3.5 10		10 25	MHz MHz	XT HS		
OS20	Tosc	Tosc = 1/Fosc	8.33	_	DC	ns	+125°C		
		Tosc = 1/Fosc	7.14	_	DC	ns	+85°C		
OS25	Тсү	Instruction Cycle Time ⁽²⁾	16.67	_	DC	ns	+125°C		
		Instruction Cycle Time ⁽²⁾	14.28	_	DC	ns	+85°C		
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.45 x Tosc	—	0.55 x Tosc	ns	EC		
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	—	20	ns	EC		
OS40	TckR	CLKO Rise Time ^(3,4)	—	5.2	_	ns			
OS41	TckF	CLKO Fall Time ^(3,4)	—	5.2		ns			
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	—	12	_	mA/V	HS, VDD = 3.3V, TA = +25°C		
			—	6	_	mA/V	XT, VDD = 3.3V, TA = +25°C		

TABLE 30-17: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

- 2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Minimum" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Maximum" cycle time limit is "DC" (no clock) for all devices.
- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: This parameter is characterized, but not tested in manufacturing.

TABLE 30-18: PLL CLOCK TIMING SPECIFICATIONS

АС СНА	RACTERI	STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				$A \le +85^{\circ}C$ for Industrial
Param No.	Symbol	Characteristic	Min. Typ. ⁽¹⁾ Max. Units Conditions				Conditions
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8	_	8.0	MHz	ECPLL, XTPLL modes
OS51	Fvco	On-Chip VCO System Frequency	120	—	340	MHz	
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	ms	
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%	

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

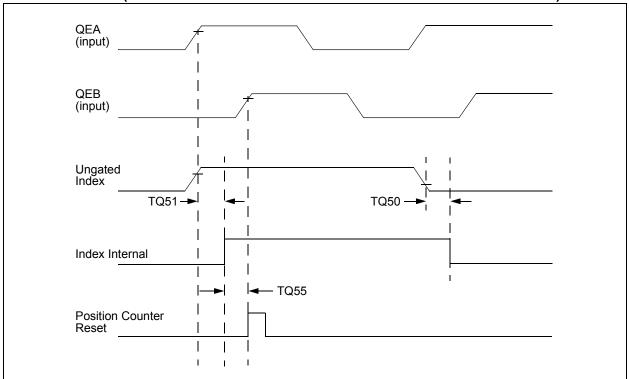
2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases, or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Time Base or Communication Clock}}}$$

For example, if Fosc = 120 MHz and the SPIx bit rate = 10 MHz, the effective jitter is as follows:

Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 30-19: INTERNAL FRC ACCURACY


$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						vise stated)	
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditio	ons
Internal	FRC Accuracy @ FRC Fre	equency =	: 7.37 MHz	<u>,(1)</u>			
F20a	FRC	-1.5	0.5	+1.5	%	$-40^{\circ}C \le TA \le -10^{\circ}C$	VDD = 3.0-3.6V
		-1	0.5	+1	%	$-10^{\circ}C \le TA \le +85^{\circ}C$	VDD = 3.0-3.6V
F20b	FRC	-2	1	+2	%	$+85^{\circ}C \le TA \le +125^{\circ}C$	VDD = 3.0-3.6V

Note 1: Frequency is calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.

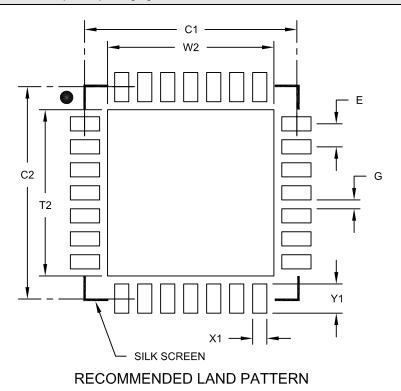
TABLE 30-20: INTERNAL LPRC ACCURACY

AC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Characteristic		Тур.	Max.	Units	Conditions			
LPRC @ 32.768 kHz ⁽¹⁾									
F21a	LPRC	-30	—	+30	%	$-40^{\circ}C \le TA \le -10^{\circ}C$	VDD = 3.0-3.6V		
		-20		+20	%	$-10^{\circ}C \leq TA \leq +85^{\circ}C$	VDD = 3.0-3.6V		
F21b	LPRC	-30	_	+30	%	$+85^{\circ}C \leq TA \leq +125^{\circ}C$	VDD = 3.0-3.6V		

Note 1: The change of LPRC frequency as VDD changes.

FIGURE 30-13: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)

TABLE 30-32: QEI INDEX PULSE TIMING REQUIREMENTS (dsPIC33EPXXXMC20X/50X and PIC24EPXXXMC20X DEVICES ONLY)


AC CHARACTERISTICS			$\label{eq:standard} \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	ⁿ Symbol Characteristic ⁽¹⁾		Min.	Max.	Units	Conditions	
TQ50	TqiL	Filter Time to Recognize Low, with Digital Filter	3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)	
TQ51	TqiH	Filter Time to Recognize High, with Digital Filter	3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)	
TQ55	Tqidxr	Index Pulse Recognized to Position Counter Reset (ungated index)	3 TCY	—	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but index pulse recognition occurs on the falling edge.

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensior	MIN	NOM	MAX		
Contact Pitch E		0.65 BSC			
Optional Center Pad Width	W2			4.70	
Optional Center Pad Length	T2			4.70	
Contact Pad Spacing	C1		6.00		
Contact Pad Spacing	C2		6.00		
Contact Pad Width (X28)	X1			0.40	
Contact Pad Length (X28)	Y1			0.85	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A